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ABSTRACT

Managers and policymakers in higher education institutions try to improve graduation rates and

decrease halt rates. To achieve this goal, it is important to understand academic and demographic

factors that correlate with academic performance. Many studies in the field of education analytics

have identified student grade point averages (GPA) as an important indicator and predictor of final

academic outcomes (graduating or halting their studies). While semester-to-semester fluctuations

in GPA are considered normal, significant changes in academic performance may warrant more

thorough investigation and consideration, particularly with regard to final academic outcomes.

However, it is challenging to represent complex academic trajectories over an academic career. To

overcome this challenge, in this dissertation two different Hidden Markov Models (HMMs) are

developed to provide a standard and intuitive classification over students’ academic-performance

levels. This leads to a compact representation of academic-performance trajectories. Next, the re-

lationship between different academic-performance trajectories and their correspondence to final

academic success are explored. Based on student transcript data from the University of Cen-

tral Florida, the proposed HMMs are trained using sequences of students’ course grades for each

semester to estimate the students’ academic-performance levels. Through the HMMs, the anal-

ysis follows the expected finding that higher academic performance levels correlate with lower

halt rates. However, in this dissertation, we identify many scenarios in which both improving or

worsening academic-performance trajectories actually correlate to higher graduation rates. This

counter-intuitive finding is made possible through the two proposed HMMs.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Despite the importance of higher education, in the United States it is noted to have numerous

inefficiencies and disparities in a variety of contexts. Based on the National Student Clearinghouse

Research Center, on average, only 58% of students who began college in Fall 2012 have earned

their degrees within six years, with the remaining graduating in more than six years or leaving

college without a degree (referred to as halting) [1]. The effect of inefficiencies in higher education

is even noted after graduation, as many employers believe college graduates lack the necessary

qualifications and skills to succeed in the workplace [2]. They believe that many graduates are

not properly prepared for their jobs and lack the basic skill sets, including critical thinking and

problem-solving. B. Derek argues that due to the weakness of course design in the education

system, college students today spend much less time on their course work when compared to their

predecessors 50 years ago [2].

In an effort to minimize students’ halt rate, universities need to proactively identify risk factors

impacting academic performance. Statistical tools should then be used to track these factors, fa-

cilitating interventions to provide support. Earlier studies suggest that one of the most important

risk factors corresponds to student demographics. For example, students coming from families

with lower incomes are more likely to halt their education when compared to students coming

from families with higher incomes. Similar disparities are noted across ethnicity, race, gender,

and other demographic features. One study conducted by the Pew Research Center [3] suggests

a performance gap between male and female students; female students have a higher graduation

rate when compared to males. This difference is more significant for students aged between 25

and 34 rather than students aged 25 and younger, showing that gender and age are two tied de-

mographic features that are correlated with academic-performance. Furthermore, based on the
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National Clearinghouse Research Center [4], students with a white race/ethnicity have a higher

six-year graduation rate (62.0%) when compared to Hispanic (45.8%) or black (38.0%) students.

Several other features are studied by Marbouti et al. [5]. For example, they showed that His-

panic, first-generation, low-income students have a lower GPA and take fewer classes per semester

when compared to other students, and therefore, take more time to graduate. Another class of stud-

ies has introduced enrollment types, including full-time and part-time, as a predictor for students’

halt/graduate status. Feldman et al. [6] showed that on average, students with full-time enrollment

have higher retention rates when compared to part-time students. Another study conducted by

Darolia [7] illustrates that students who take more credits in their first semester are more likely

to complete their program and graduate. The impact of admission type, including first-time-in-

college (FTIC) or transfer admission on students’ GPA is investigated in a study by L. Smith et al.

[8]. Their results suggest that transfer students, in general, are expected to have a lower relative

GPA when compared to their FTIC counterparts as a result of so called transfer shock.

GPA has received significant attention among researchers as a critical identifier to predict stu-

dents’ graduation rates. For example, Plagge et al. [9] show that among several important demo-

graphic, academic, and financial features, including gender, race/ethnicity, and estimated family

contribution, the first Fall semester GPA is the most significant identifier for predicting first-to-

second-year retention rate. In another study, Ojha et al. [10] showed that semester GPA and cumu-

lative credit hours are the most powerful predictors for graduation delay. Despite the importance

of GPA and course grades, it is crucial to acknowledge that those are not the cause for the students’

halt or graduation, but rather merely a proximate measure or approximate outcome1. The reasons

that students leave college can include doubts about their success, their lack of enjoyment, a lack

of proper support, and so on. In fact, these non-observable reasons will result in the observable

outcomes of lower course grades and GPAs.

While other factors as mentioned earlier (e.g., demographic features) could also impact stu-

1There is one exception for that, as a student with a GPA less than 2 is on academic probation and should leave
college.

2



dents’ performance, in this dissertation, the main focus is on students’ course grades and their

correlation with their halt/graduation status. This manuscript provides a comprehensive study as-

sessing the shortfalls of the current machine learning studies that take GPA as input to predict

students’ outcomes; building on this, an alternative representation of GPA and course grade are

proposed to guarantee better prediction accuracy.

The importance of identifying factors that impact students’ halt/graduate status, along with the

critical shortcomings of these methods, has stimulated a large body of scientific research to identify

curricula, teaching modalities and techniques, policies, and other solutions to improve graduation

rates in higher education. The wide range of solutions draws from both qualitative and quantita-

tive techniques. Of particular interest to this dissertation are technical approaches that make use

of educational data sets to evaluate, analyze, and improve the performance of students and higher

education systems [11, 12]. Educational Data Mining (EDM) is one of the recent but most popu-

lar and effective methods within that pool. EDM is defined as ”an emerging discipline concerned

with developing methods for exploring the unique types of data that come from educational set-

tings and using those methods to better understand students, and the settings which they learn in”

[13]. Romero et al. have defined four main stakeholders and users engaged with EDM, including

Learners, Educators, Researchers, and Administrators.

1.1 Related works

In this section, a systematic literature review is conducted to identify the most popular areas that

EDM focuses on and gaps in the literature. Hence, a comprehensive search is performed to find

previous works in this area. The applied search terms in this systematic literature review are devel-

oped based on the steps of PRISMA [14]. The databases which are used in this systematic literature

review are Springer Link, IEEE Xplore, ACM Digital Library, ProQuest Computer Science Col-

lection, Science Direct, Engineering Village, and EBSCOhost. Keywords used in the search area

are as follows: (educational data mining OR educational machine learning) AND (algorithms OR

3



Figure 1.1: Chart of the selection strategy

Table 1.1: Classification of the papers included in the review

Category number of papers
Predicting students’ academic performance 8

Understating factors that impact students’ academic performance 20
Designing recommendation systems 8

technique OR method OR application OR system) AND (students’ GPA OR students’ academic

performance) AND (estimation OR prediction) AND (students’ academic behavior).

Figure 1.1 displays the selection strategy chart according to PRISMA guidelines. The con-

ducted review contains a total of 36 papers written by 84 authors. Of the 36 papers, 26 were

published in journal papers, and 10 were published in conferences proceedings. The existing body

of papers in this systematic literature review that focus on the application of data mining in the

field of education can be grouped into three main categories: (1) predicting students’ academic

performance, (2) understating factors that impact students’ academic performance, and (3) design-

ing recommendation systems. The number of papers presented in this literature review for each

category is summarized in Table 1.1. Each of these domains is explained in more detail below:
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1.1.1 Predicting students’ academic performance

The main goal of this application area is to predict students’ academic performance, which could

be beneficial for learners, educators, and university policy-makers in better understanding and im-

proving performances. Some research in this area focuses on assessing different machine learning

algorithms (such as decision trees, neural networks, support vectors machines, etc.) by comparing

their accuracy in predicting students’ performance, including retention and course grades.

Some studies have used machine learning approaches to predict students’ retention and iden-

tify at-risk students. For example, Delen’s [15] study tries to predict student retention by using five

years of institutional data and different data mining techniques, including individual and ensem-

bles models (bagging, busting, and information fusion). The individual models include artificial

neural networks, decision trees, support vector machines, and logistic regression. The results show

that the ensembles models have better performance than individual models for predicting student

retention, with roughly 80% prediction accuracy. Furthermore, among the individual models, the

SVM models have the best accuracy, followed by decision trees, neural networks, and logistic re-

gression. Moreover, regardless of the models used, balanced data sets provide better results when

compared to unbalanced data sets.

In a similar study, Lin et al. [16] used the Neural Network algorithm to predict engineering stu-

dent retention based on cognitive and non-cognitive factors. The cognitive variables consist of 11

items that represent students’ high school performance. Some non-cognitive variables are leader-

ship, surface learning, teamwork, self-efficacy, motivation, meta-cognition, expectancy-value, and

major decisions. Their results show that the applied neural network has a consistent predictive per-

formance when trained and tested on different cohorts. Furthermore, a model that was built based

on the 2004 freshman cohort’s data kept its predictive power when tested on 2005 and 2006 cohorts.

In another study, He et al. [17] applied two different Logistic regression models, named Simulta-

neously Smoothed Logistic Regression (LR-SIM) and Sequentially Smoothed Logistic Regression

(LR-SEQ), to identify at-risk students in Massive Open Online Courses (MOOCs). At-risk stu-
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dents in their study were defined as students who are at risk of not completing online courses.

They considered a basic Logistic Regression (LR) as a baseline and compared the results of their

proposed models to this baseline. The results showed that the LR-SIM model has higher perfor-

mance (AUC) when compared to the other models in terms of identifying at-risk students at an

early stage.

Ghorbani et al. [18] compared the performance of different resampling methods that predicted

student dropouts using two different data sets where the sets are imbalanced. The applied resam-

pling models in this study were Random Over Sampler, SMOTE, SMOTE-ENN, SVM-SMOTE,

Borderline SMOTE, and SMOTE-Tomek. Furthermore, in order to evaluate the performance of

the mentioned resampling models with the imbalanced data set, different machine learning algo-

rithms such as Random Forest, XG-boost, Support Vector Machine, Logistic Regression, Artificial

Neural Network, and K-Nearest-Nighbor were used in this study. Using prediction accuracy, sen-

sitivity, precision, and F1-score as performance evaluation metrics, the random forest classifier

combined with the SVM-SMOTE resampling model have the highest performance in predicting

student performance. In a similar study, Lagman et al. [19] applied ensemble models to predict

student graduation in a Filipino university. The applied machine learning models in this study were

Naive Bayes, Decision Tree, Neural Network, and Logistic Regression. The results demonstrated

that adding the Boosting approach to the Logistic regression significantly increases the graduation

rate prediction accuracy.

Many studies in the field of educational data mining focused on predicting students’ course

grades using their academic and demographic features [20, 21]. For example, Marbouti et al.

[20] used different prediction methods, including Logistic Regression (LR), Decision Tree (DT),

Support Vector Machine (SVM), Naive Bayes Classifier (NBC), Multi-Layer Perceptron Neural

Network (MLP), and K-Nearest Neighbor (KNN) to predict student course grade early in the

semester. The inputs for this model were homework grades, quiz grades, and midterm exams;

the models’ output was the students’ grade letter at the end of the semester. Their results suggest
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that for courses with at least 120 students, the NBC has the highest total accuracy when compared

to the other models. In a similar study, Huang et al. [22] used the grades for prerequisite courses

(Statistic, Calculus I and II), three midterm exams, and students’ cumulative GPA as inputs to pre-

dict students’ final grades in an engineering Dynamics course. Using information from a pool of

323 students during four semesters, they show that the support vector machine had a better per-

formance in predicting students’ grades when compared to multiple linear regression, multi-layer

perception network, and radial basis functions. In another study, [23] et al. applied logistic regres-

sion to predict if students will get a grade less than B in Physics 1 and 2 courses using data already

available in the first week of the semester. They used several inputs such as students’ cumulative

GPA, homework grades, gender, race, and first-generation status. The proposed model was able to

predict students’ grades with 73% accuracy in Physics 1 and 81% accuracy in Physics 2.

1.1.2 Understanding factors that impact students’ academic performance

While the main goal of the reviewed research in the previous section was predicting students’

academic performance, the aim of this application domain is to understand the features that affect

students’ academic performance.

Some research has used clustering approaches to group students using significant features that

can affect their academic performance. Grouping students in this way can guide investigations

on where, why, and how universities should track sensitive groups and assign resources. For ex-

ample, Marbouti et al. [5] used students’ demographic information and past academic records to

analyze students’ success. They used a clustering method (K-means) to group students based on

their academic and demographic features. Some of these features included financial status, en-

rollment status, first-generation status, housing status, and transfer status. Their results indicated

that Hispanic, first-generation, low-income students have a lower GPA and take fewer classes per

semester when compared to other students, which causes them to graduate with delays. In a sim-

ilar study, Alfiani et al. [24] applied the K-means clustering method to classify students based
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on their demographic characteristics including origin and gender, and academic features such as

course grades and the average of course attending. Comparing the academic performance of the

clusters revealed that the grades of certain courses such as optimization and production planning

is the most important feature to consider when clustering.

In another study, Khan [25] applied a clustering approach to examine the academic perfor-

mance of 400 students, including 200 girls and 200 boys, at a secondary school in India. The study

was aimed at investigating the impact of different factors such as personality, cognition, and demo-

graphic variables on student academic success. He used a cluster sampling technique to divide the

data set into different clusters based on the mentioned variables. Then random samples were se-

lected for analysis. The result of this study indicated that female students with high socioeconomic

status have higher academic success when compared to other clusters. These results are confirmed

in another study conducted by Goldrick et al. [26], where they claimed that students who come

from families with low-level income are more likely to leave college without degrees. Their study

also shows that offering additional financial aid to these students can significantly help them finish

their program within four years. Similarly, several other studies show that students with low so-

cioeconomic backgrounds are more likely to leave university or have a longer transition time from

high school to university [27, 28, 29, 30]. Other demographic features that may affect students’

performance include race [31], age [32], life changes including career and marriage [33], and gen-

der [34]. All these studies show that students’ demographic features have meaningful correlations

with their academic success. Without such findings, academic institutions may fall short in iden-

tifying at-risk students early in their academic careers, and consequently fail to assign supporting

financial and educational resources optimally.

Some other studies have tried to identify, extract, and analyze hidden patterns that might exist

in students’ academic behaviors to investigate their impact on academic performance. Sequence

modeling and Hidden Markov models are two machine learning methods that are used extensively

in this area to investigate students’ academic behavior, such as enrollment trajectory and engage-
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ment. For example, many studies in the field of educational data mining have studied the impact

of students’ academic trajectories on degree completion. Jardins et al. [31] investigated the rela-

tionship between continuous and non-continuous enrollment on graduation rates. Analysis of the

data collected from the University of Minnesota-Twin Cities shows that students with stop-outs

(non-continuous or interrupted enrollment) are more likely to leave school without a degree when

compared to students who continuously enroll at the university. In a similar study, Burley et al.

[35] showed that college students who register for consecutive semesters with no interruptions have

higher GPAs and graduation rates when compared to students who skip one or more semesters.

In another study, Crosta [36] investigated the impact of students’ enrollment patterns on aca-

demic success using a clustering approach. The enrollment pattern in the study focused on two

aspects: patterns of enrollment status, including full-time or part-time semesters, and patterns of

enrollment continuity, including consecutive enrollment or skipping one or more terms. The re-

sults show a positive correlation between the number of full-time semesters and students’ academic

success. Also, students who enroll in their college without skipping terms are more likely to grad-

uate than students with non-continuous enrollment. Bahr [37] developed a clustering approach

based on students’ courses and enrollment patterns during their academic careers. He used thirteen

different variables, of which eight variables correspond to various forms of credit hours (i.e., trans-

ferable English units). The five remaining variables are the average number of units attempted per

semester, number of noncredit courses, the percentage of courses completed, number of registered

semesters, and the number of academic years. Attewell et al. [38] used the concept of academic

momentum perspective to examine the effect of students’ enrollment trajectories on degree com-

pletion. Their results indicate that the number of credits that students earn in their first semester

creates an enrollment trajectory that has a positive correlation with degree completion.

Another academic behavior of students which has gained attention among education re-

searchers over the past decade is academic engagement. Many studies have indicated that there is

a strong relationship between student academic performance and student engagement. G.D. Kuh
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[39] defines engagement as the amount of time students spend in collaboration with educational

facilitates to enhance their knowledge and learning. The Community College Survey of Student

Engagement (CCSSE) defines five student engagement benchmarks [40]: active and collaborative

learning, student effort, academic challenge, student-faculty interaction, and support for learn-

ers. Additional studies focus on investigating the relationship between students’ engagement and

students’ outcomes [41]. Research conducted using CCSSE data demonstrates that greater the

student engagement correlates with better academic performance, including average GPA, reten-

tion, graduation rate, and persistence. For example, Price et al. [42] provides empirical evidence

that shows student engagement with active and collaborative learning has a significant impact on

student graduation rates.

1.1.3 Designing recommendation systems

Colleges and departments introduce prerequisites, GPA requirements, and curricula in an effort to

improve student outcomes. Students seeking a degree at college often have difficulties choosing

elective courses since some departments may propose various courses. Also, students might not

have enough experience to decide which courses are the most suitable for them. Furthermore, stu-

dents might not be aware of which courses could help them achieve their career goals; they may

also not know if they have the required skills to pursue their goals. Traditionally, faculty propose

prerequisites based on their experience and academic knowledge, which is subjective and may not

always lead to the best results, impacting students’ careers. The main goal of recommendation

systems in EDM is to take advantage of machine learning techniques to best inform students re-

garding academic enrollment. These systems measure the academic impact of course sequencing

on students’ performance and propose the optimal order to lead to the highest course grades for

students.

One recommendation system, named the degree compass recommendation system, is used to

predict the sequence of courses through a post-secondary degree program in order to help students
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graduate [43]. For example, Morsy et al. [44] proposed an approach using a recurrent neural net-

work (RNN) to create a course recommendation system intending to maintain or improve students’

cumulative GPA. In another study, Wang et al [45] used demographic and academic features, in-

cluding gender, personality, learning style, grades, and cognitive style as inputs for a random forest

model to propose the best course sequence for students to improve academic performance.

Another course recommendation system known as the course agent system considers students’

career goals and interests in the recommendation process [43]. For example, Upendran et al. [43]

proposed a course recommendation system to identify courses that are important for students who

want to get admitted to a college. While most of the predictions used students’ career goals or

current job trends as inputs for the prediction, they also considered students’ grades and students’

cognitive ability for the model’s input. In a similar study, Farzan et al. [46] proposed a course

recommendation system based on students’ assessment of course relevance to their career goals.

A recommendation system based on association rules considers not only the past preference of

students, but also the preferences of similar past students when recommending courses [47]. For

example, Khorasani et al. [48] applied a Markov-based collaborative filtering model as a course

recommendation system for students based on the sequence of courses they have taken in previous

semesters.

1.2 Research questions and contributions

In reviewing the existing body of literature, it was found that many studies in the field of education

analytics have identified students’ course grades or GPA as an important indicators and predictors

of students’ final academic outcomes (graduation or halting). However, using GPA as to deter-

mine student outcomes may cause issues, since the grades that a student gets in any one semester

might not necessarily reflect the true academic capability of a student. For example, a student

might perform poorly in a semester because of other external factors, such as a change in grad-

ing policy, sickness, or other circumstances that cause a student to have a lower or higher GPA
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in a semester. Therefore, while semester-to-semester fluctuations in GPA are considered normal,

significant changes in academic performance may warrant more thorough investigation and con-

sideration, particularly with regard to final academic outcomes. In Chapter 2, it will be shown that

using GPA and course grades to predict students’ final academic outcomes, as done in the literature,

is not able to distinguish between normal or significant changes in academic performance. There

then is the assertion that there are academic-performance indicators that can distinguish normal

changes from significant changes in students’ academic performance.

In this dissertation, the Hidden Markov Model (HMM), an unsupervised machine learning ap-

proach, is used to define a students’ academic features, termed the students’ academic-performance

level, to predict students’ final outcomes. The HMM, first introduced in a series of articles by

Leonard E. Baum in the second half of the 1960s [49], is a statistical approach in which a sys-

tem is modeled through a stochastic process. Unlike ordinary Markov Models in which the states

are directly observable, in HMMs, states’ statuses are hidden. The aim is to estimate the hidden

states’ statuses using observations generated from the hidden states. Using HMMs, this disser-

tation provides a standard and intuitive classification of students’ academic-performance levels,

which leads to a compact representation of academic-performance trajectories. This dissertation

contributes to this field of by using sequences of students’ course grades for each semester to intro-

duce students’ academic-performance levels as an academic feature that may capture both normal

and significant changes in students’ academic performance. The relationship between different

academic-performance trajectories and their correspondence to final academic success is also ex-

plored.

These aims are achieved based on different HMMs. In the literature, HMMs with different

properties have been used based on the types of problems and their corresponding data structures.

HMM’s properties refer to the structure of HMM observation including observation type (e.g., dis-

crete or continuous), observation dimension (e.g., univariate or multivariate), and HMM emission

distribution (e.g., Categorical or Gaussian, etc.). Table 1.2 shows the gaps in the literature in terms
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Table 1.2: Gaps in the literature

Categorical Poisson Gaussian
Univariate

Multivariate ×

of the number of observation dimensions and emission distributions. As shown the table below,

HMMs with univariate observation and different emission matrices have been addressed in pre-

vious studies [50, 51, 52]. Also based on the table, while HMMs with categorical and Gaussian

distributions and multivariate observations have been used in the literature, there is no work on the

multivariate observations with a Poisson emission. Therefore, another contribution of this disser-

tation is to provide a multivariate hidden Markov model in which observations are generated from

states with Poisson distribution.

This dissertation seeks to answer the following research questions within the context of higher

education:

(RQ-1) Does the proposed academic feature (students’ academic performance level)

outperform the traditional features (i.e., students’ semester GPA) in predict-

ing students’ graduate status?

(RQ-2) Does a decrease in academic performance proportionally increase the risk

of halting?

(RQ-3) If a student improves their academic performance, does their likelihood of

graduation equal that of students that always performed at higher academic-

performance levels?

In the process of answering the above research questions, this dissertation develops a Multivari-

ate Poisson hidden Markov model to address the research gap indicated in Table 1.2. Accordingly,

a fourth research question is generated:

(RQ-4) What are the computational benefits and modeling benefits of a multivariate

Poisson HMM when compared to a standard empirical HMM?
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This dissertation aims to answer the above-mentioned research questions by proposing a new

academic feature, students’ academic-performance level. Then, after generating students’ aca-

demic trajectories during their academic careers based on the proposed feature, the correlations

between students’ educational features (i.e., halt rate) and different academic trajectories are in-

vestigated using hypothesis tests. This aims to find the students’ academic-performance trajecto-

ries which are associated with the most halt rates, and accordingly identify at-risk students. The

obtained results can help students improve their academic performance and guide educators and

university policy-makers in assigning their educational and financial resources efficiently to the

most in-need students.

1.3 Outline of the dissertation

The remainder of the dissertation is organized as follows: First, Chapter 2 begins by providing a

review of machine learning techniques commonly used in educational data mining. In this chapter,

a short-fall analysis of machine-learning techniques is performed to highlight the strengths and

weaknesses of machine learning techniques when modeling the impact of academic performance

on student graduation rates. To this end, six different machine learning methods are introduced

and applied to University of Central Florida (UCF) student data records to predict students’ gradua-

tion/halt status. Two different studies are conducted to discuss two limitations that these techniques

have when predicting students’ academic outcomes. Finally, based on another study, shortcomings

of traditional features used in EDM as factors that impact students’ academic performance are

investigated. Overall, this chapter provides motivation to answer the mentioned research question.

Next, Chapter 3 provides an introduction and description of the academic data records from

UCF used throughout this dissertation. Descriptions of relevant data fields are provided; addi-

tionally, this chapter provides a description of common measures that are used to evaluate student

academic performance (i.e., course grade, graduate/halt, etc), with a brief analysis correlating de-

mographic features to final academic outcomes. Then, after stating shortcomings associated with
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the data set, the chapter ends by reporting key statistical measures related to UCF. Providing the sta-

tistical measures gives a greater context regarding the student population and notes unique features

which may limit the transferability of this dissertation’s research findings to other universities.

Chapter 4 intends to answer research questions 2 and 3. In the chapter, a new academic feature,

named the academic performance level, is introduced using a Hidden Markov model. This new

measure seeks to estimate the true academic-performance of students, regardless of mild semester-

to-semester deviations in course grades. Then, after using the introduced academic-performance

levels to classify students based on their academic performance trajectories, the correlation be-

tween different academic performance trajectories and halt rates is investigated. Furthermore,

some hypothesis tests are conducted to see how students’ demographic features, such as gender

and race/ethnicity, correlate with students’ academic-performance levels. At the end of the chap-

ter, the limitations of the proposed HMM are discussed to highlight the need for an alternative

approach to tackle those limitations.

Chapter 5 provides the formulation of the Hidden Markov models algorithms, including the

Forward algorithm, the Backward algorithm, the Baum-Welch algorithm, and the Viterbi algo-

rithm. While mathematical formulations of the mentioned algorithms are clear, there exist chal-

lenges (i.e., underflow) with the computational implementation. Thus, the limitations in the com-

putation implementation of Hidden Markov models are discussed. To support subsequent chap-

ters, two solutions, log-sum-exponential trick and log space formulation, are proposed to overcome

computation limitations. Finally, pseudo-code is provided that enables the implementation of more

complex HMM not currently supported by existing software libraries in Python.

In Chapter 6, the use of a Multivariate Poisson Hidden Markov Model (MPHMM) is proposed

to overcome the mentioned limitations of the applied basic HMM in Chapter 4. In this chapter, after

introducing the MPHMM, its formulation and implementation along with the required replacement

in the proposed pseudocode are explained. Then, some case studies are simulated to compare the

performance of the proposed MPHHM and the basic empirical HMM for both Baum-Welch and
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Viterbi algorithms. This chapter answers research question 4 using simulation approaches.

In Chapter 7, the proposed MPHMM is applied to UCF student data records to compare the

results with the findings from the basic empirical HMM in chapter 4. These comparisons will be

conducted from qualitative and quantitative points of view. Thus, research question 4 is answered

using a real data set. Finally, in order to address the first research question, the proposed academic-

performance level obtained by the MPHMM and the basic HMM along with the traditional features

(e.g., semester GPA) are used as inputs for different logistic regression models to determine which

of these features have a better performance in predicting students graduation/halt status.

Finally, the dissertation is concluded in Chapter 8 with a summary of the findings. After pre-

senting the goals, approaches, and key findings for all chapters, the contributions of this dissertation

are discussed.
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CHAPTER 2

SHORT-FALL ANALYSIS IN PREDICTING STUDENTS’ PERFORMANCE AND

OUTCOMES

One prominent focus in educational data mining is the application of machine-learning techniques

to predict student performance. Such outcomes can be binary or discreet categorizations, such

as graduating/halting, passing/failing a course, or final major. Alternatively, machine learning

techniques may also produce continuous measures like GPA or time-to-graduation. A related,

but fundamentally distinct focus area of EDM research seeks to understand factors that impact

student performance. This type of research is particularly beneficial to university stakeholders

when creating policies, support systems, and intervention programs that target at-risk students

to improve overall performance (i.e., retention and graduation rates). A review of prior work

on the subject is provided in an effort to understand the differences between these two research

approaches. After reviewing prior work, a subset of the associated machine-learning techniques

are applied to a student-record data set to evaluate performance. In doing so, the strengths and

weaknesses of the techniques and the underlying approaches are evaluated, highlighting the need

for improved modeling approaches.

2.1 Predicting student outcomes

Machine learning in higher education is used to improve retention and graduation rates at aca-

demic institutions, with most of these applications using machine learning to make predictions for

individual students. While these approaches are useful in some cases, for the most part they do

not help university policy-makers at scale. Universities are often more interested in developing

policies or finding mitigation strategies that target groups of students, as opposed to predicting

whether an individual student will pass or fail. In this section, the following items from previous
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research are investigated: machine learning models commonly used in such studies, model inputs

and outputs, model performance evaluation, and their findings. These studies are conducted from

the years 2010 to 2021.

Some studies have applied machine learning models to identify at-risk students. For example,

Hu et al. [53] developed an early warning system to inform students who are at risk of leaving

online courses before completion. In their model, they considered time-dependent variables as their

model inputs to predict student performance. Some of these variables were the number of logins

in the system, total time online, average time per session, total time viewing material, number of

assignment delays, and number of incompleted assignments. They applied three machine learning

models, namely Logistic Regression (LR), Adaptive Boosting (AdaBoost), and Classification and

Regression Tree (CART), of which, the CART model had better performance in terms of the type

I and type II errors.

In another study, Lin et al. [16] used the Neural Network algorithm to predict engineering stu-

dents’ retention based on cognitive and non-cognitive factors. The cognitive variables consisted of

11 items that represent students’ high school performance. Some non-cognitive factors include

leadership, surface learning, teamwork, self-efficacy, motivation, meta-cognition, expectancy-

value, and major decision. Their results show that the applied neural network has a consistent

predictive performance when trained and tested on different cohorts. Furthermore, the model, built

based on the 2004 freshman cohort’s data, kept its predictive power when tested on 2005 and 2006

cohorts.

In a similar study, Lakkaraju et al. [54] developed a machine learning framework to identify

at-risk students. In their research, at-risk students are defined as students who are at risk of failing

to complete their program or completing the program beyond the required time to graduation.

Five different machine learning models, including random forest, logistic regression, AdaBoost,

support vector machine, and decision tree, were applied to a data set collected from two different

districts in the U.S. which contain about 200,000 students . Using recall, precision, and AUC for
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the models’ performance evaluation, results indicated that the random forest model has a higher

performance when compared to other models in identifying at-risk students.

Other studies have used machine learning techniques to predict students’ course grades. For

example, Marbouti et al. [20] applied six different prediction methods, including Logistic Regres-

sion (LR), Decision Tree (DT), Support Vector Machine (SVM), Naive Bayes Classifier (NBC),

Multi-Layer Perceptron Neural Network (MLP), and K-Nearest Neighbor (KNN) to identify at-

risk students early in the semester by predicting their grade letter in a given course. The inputs

of their model were the grades for homework, quizzes, team participation, design projects, math-

ematical modeling activities, and midterm exams; and the models’ output was the students’ grade

letters at the end of the semester. They used the concepts of total accuracy, recall, precision, and

F-1 score to evaluate the model’s performance. The results suggested that for courses with at least

120 students, NBC has the highest performance compared to the other models.

In a similar study, Iqbal et al. [55] applied three machine learning methods, Collaborative

Filtering (CF), Matrix Factorization (MF), and Restricted Boltzmann Machines (RBM), to predict

students’ grades in particular courses. The data set was collected from the Information Technology

University; students with a bachelor’s degree in Electrical Engineering were considered for this

case study. Iqbal et al. [55] also proposed a feedback model to inform students if they needed to

put more effort into their courses based on the predicted grades. Using the Root Mean Squared

Error (RMSE), Mean Squared Error (MSE), and Mean Absolute Error (MAE) to evaluate the

model’s performance, it was found that RBM has the highest accuracy when compared to the other

proposed models for course grade prediction.

Predicting whether a student will pass or fail a course is another area where machine learning

is used in many studies. For example, Ahmad et al. [56] used machine learning models to predict

academic performance for first-year students in a computer science course. The data set, collected

from the UniSZA in Malaysia during the years 2007 to 2014, contains academic and demographic

information. Naive Bayes, Decision Tree, and Rule-Based classification were applied to the data
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set to predict if students would pass or fail a course. Some of the inputs in these models were race,

gender, family income, English grade, Malay languages, hometown, and high school GPA. Results

showed that the rule-based classifier has the highest accuracy when compared to the Naive Bayes

and Decision Tree classifiers.

Osmanbegovic et al. [57] compared the performances of three different machine learning mod-

els, Multilayer perception (MLP), Naive Bayes (NB), and Decision Tree (DT), to predict students’

success, where success was defined as passing a given exam. The data set was collected from

the University of Tuzla during the 2010-2011 academic year, and contained demographic and aca-

demic information of first-year students from the department of economics. The results illustrated

that the Naive Bayes model outperforms both the Decision Tree and Multilayer perception models

in terms of total accuracy.

In similar research, Kotsiaritis et al. [58] used ensemble models to predict students’ final

examination score with two values, pass or fail, in the Hellenic Open University. The ensemble

models in this study used a combination of three different machine learning models, namely Naive

Bayes (NB), Neural Network (NN), and WINNOW (a linear online algorithm similar to NN).

The input of the models was the grades of four different written assignments and the output was

a passing or failing grade for the course. Their results indicated that the ensemble model had

a higher accuracy (lower error rate) when compared to other machine learning models such as

random forest, AdaBoost, and voted perceptron models.

2.2 Identifying factors that effect students outcomes

The previous section analyzed some papers aimed at predicting students’ academic performance

using machine learning models. In this section, additional studies that focus on identifying fac-

tors that impact students’ retention are reviewed. Understanding these factors can help university

policy-makers in proposing strategies that reduce performance gaps that may exist between student

demographic factors such as gender, age, family income, etc. Essentially, if these performance
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gaps are discovered, then appropriate interventions may be identified and applied to reduce the

performance gaps.

Many studies in the field of EDM have identified academic features, including GPA, course

grades, enrollment type, and student learning behaviors as significant factors that impact students’

outcomes. For example, Ojha et al. [10] investigated the impact of academic and demographic

features to predict students’ graduation delay at the University of New Mexico (UNM) using ma-

chine learning techniques. They used Support Vector Machines, Gaussian Processes, and the Deep

Boltzmann Machines for their predictions. The inputs of these models were high school GPA,

composite ACT score, gender, first and second semester GPA in UNM, number of credits taken by

the students before the second semester, and gender. These models classified students into three

categories: students with no delay in graduation, students with one year delay in graduation, and

students with more than one year delay in graduation. The results showed that semester GPA and

cumulative credit hours are the most significant factors in the prediction of graduation delay.

Plagge [9] used two different artificial neural networks to identify factors which impact first-

year to second-year retention rate based on a data set from Columbus State University from the

years 2005 to 2010. Some of the models inputs are students’ age, gender, race, in-state status,

distance from home, high school GPA, estimated family contribution, parent’s highest education

level, Fall semester core course count, and Fall GPA. The dependent variable was a binary variable

that indicates if a student registers for the second Fall semester or not. Their analysis indicated

that the Fall semester core course count and Fall GPA are the most significant factor that affects

first-year to second-year retention rate.

Ahmed et al. [59] employed two different kinds of Decision Trees (DT) to predict students’

final grades in a given course and identify the most significant factors that impacted the students’

grades. They considered ten different variables as the model input, including the students’ depart-

ment, high school degree of students, midterm grade, lab test grade, seminar performance, class

attendance, and so on. They used the concept of Information Gain (IG) and entropy to determine
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Table 2.1: Online learning behavior variables

Learning Process stage Variables

Preparation

Number of course
Introduction views

Number of course register
Number of course login

Progress Number of course progress page checked

Resource learning

Time of resource watch
Completion of resource watch

Number of resource repeated watch
Degree of resource repeated watch

Forum interaction
Number of forum browse

Number of forum post
Number of forum reply

the most significant variable that affected students’ final grades. The results demonstrated that

midterm grades have the highest information gain and was considered the root node in the applied

decision trees.

Zheng et al. [60] investigated the relationship between students’ learning behavior and their

academic performance in an online course. The learning behavior was classified into different

learning processes and variables were considered for each. The learning process includes the

following stages: preparation, progress, resource learning, forum interaction, and test. Variables

for each stage are shown in Table 2.1. Using logistic regression and correlation analysis, the study

identified the factors which were significant in students’ success prediction. For example, results

indicated that most students who started to watch course materials a few days before the test have a

lower grade when compared to students who viewed course materials over a longer period of time.

Enrollment type, including full-time and part-time, is another important academic feature used

in EDM which affects students’ performance. For example, Crosta [36] investigated the impact of

student enrollment patterns on student dropout using a clustering approach. The enrollment pattern

in the study focused on two aspects: patterns of enrollment status, including full-time or part-time
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semesters, and patterns of enrollment continuity, including consecutive enrollment or skipping one

or more terms. The results showed a positive correlation between the number of full-time semesters

and students’ academic success. Also, students who enroll in their college consecutively without

skipping terms are more likely to graduate than students with non-continuous enrollment.

Demographic features such as gender, age, family income, and first-generation status have

been used widely in EDM as significant features that impact students’ academic performance.

For example, Kovacic [61] applied machine learning algorithms to predict student dropout rates

at the Open Polytechnic of New Zealand using socio-demographic and academic features. After

applying a feature selection method to identify input variables with a strong relationship to the de-

pendent variable, three different decision trees, namely CHAID, exhaustive CHAID, and QUEST

were applied to predict student dropout. In this research, results indicated that some background

information such as student gender, disability, and work status are significant factors to categorize

students into successful and unsuccessful groups.

In another study, Djulovic and Li [62] applied classification approaches to predict the retention

rates for freshman students at Eastern Washington University. Four different predictive models

including Naive Bayes, Neural Network, Decision Tree, and Rule Induction were applied to the

data set. Age, gender, high school GPA, student SAT score, cumulative GPA, and financial aid

status were the input variables and the dependent variable was if freshman students were retained

in the next year. Among all the models, the Naive Bayes classifier had the highest negative recall

rate. Their analysis indicated that student financial aid status is a significant variable that has a

considerable effect on student retention.

A comprehensive model with different features is presented by Morell et al. [63]. They studied

the effect of different features on university GPA. These features are high school GPA, level of high

school education, teacher experience, ethnicity, family income, and gender. Their research seeks to

find underlying factors which impact student performance at a major public university. There are

four sets of explanatory factors: The degree program in which the students are enrolled, the back-
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ground of students’ families, the traits of schools at which students graduate, and the demographics

of the high school at which the students attended. The results show that personal background, in-

cluding gender, ethnicity, and family income has a significant impact on the university GPA.

2.3 Limitations of traditional models and features in EDM

In the previous section, some applications of machine learning methods in EDM research were

briefly described and reviewed. A common theme in each of these studies is examining how demo-

graphic and academic features impact student academic performance. In this section, shortcomings

of the previous studies in predicting final student outcomes are discussed from two different views:

(1) the methods themselves, and (2) the features by which the methods are trained. A performance

analysis is performed by examining three specific modeling problems that consider various ways

that academic features are represented when applying machine-learning techniques.

To begin, six different machine-learning techniques are considered; these techniques are com-

monly applied to identify students who are at risk of halting enrollment. Students are considered

as halted if they leave school without a degree or graduate in more than six years (the 6-year grad-

uation rate method). These studies are conducted based on records of 36,261 first-time-in-college

(FTIC) students who started their education at UCF during the years 2008, 2009, and 2010. Short

descriptions of the applied models are provided as follows:

• Random Forest (RF) is a reliable machine-learning technique used for both classification

and regression problems. This technique utilizes ensemble learning to construct a group of

decision trees that partitions data based on attributes (i.e. variables) until all data in each

node has one class label (in this problem, halt or graduate status).

• Support Vector Classifier (SVC) uses hyperplanes and support vectors to classify data

points by solving an optimization problem that maximizes the margin of each class. One

key advantage of SVCs is that they are computationally effective when working with high
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dimensional linear and non-linear data; however, this efficiency degrades with larger data

sets. Non-linear SVC is used to find an optimum surface when the two classes are not

linearly separable.

• Logistic Regression (LR) is another popular model in educational data mining research.

While linear regression models are used in regression problems, logistic regression mod-

els are the corresponding standard model used to address classification problems. Logistic

Regression classifies data points by computing the probability of each class label (e.g., grad-

uate/halt) for each data point. One major benefit of Logistic Regression models is that their

corresponding coefficients are interpretable and well understood; as such Logistic Regres-

sion is not considered to be a black box technique.

• Gaussian Naive Bayes Classifier (GNB) is another probabilistic classifier that classifies

data points by computing a conditional probability distribution; this approach utilizes the

Bayes rule and assumes the input variables are independent of each other. While in most

cases this assumption is not true (for example the number of A’s and W’s a student earns is

not independent), previous studies have shown that the performance of GNBs is similar to

other advanced machine learning models such as SVC [64].

• Gradient Boosting (GB) is used for both regression and classification tasks based on en-

semble learners. The technique essentially works by recursively stacking simple models that

address and correct the residual errors of prior models.

• K-Nearest Neighbor (KNN) is a non-parametric algorithm that is used for both classifica-

tion and regression problems. This method classifies data points by a majority vote of its

K-neighbors. Therefore, instead of estimating model parameters, the algorithm only com-

putes the distance between data points and classifies them based on the distances.

The six machine-learning techniques above will be analyzed by considering their application to

a series of related studies identifying first-time-in-college (FTIC) students who are at risk of halting
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their enrollment based on early college performance (i.e. first two years of grades). Here, halting

is defined as two consecutive years without enrolling for classes (either full-time or part-time).

Each application of the machine-learning techniques will take a set of features associated with

academic performance as its input and return a prediction of halting or graduating; the demographic

attributes of students and other relevant features (e.g. part-time vs full-time enrollment status)

are not considered in these models. While the lack non-academic factors is clearly a limitation,

the purpose of these studies is to highlight that fundamental issues remain with algorithms and

representations of academic performance measures when making classification predictions like

halting or graduating.

Predicting final outcomes based on a cumulative grade-count model. The first study under

consideration develops prediction models that take as their input the cumulative number of A’s,

B’s, C’s, D’s, F ’s, and W ’s that a student obtains over their first two academic semesters to

predict if the student will halt enrollment or graduate. The required inputs and output of the model

set-up are illustrated in Figure 2.1; as shown, the machine-learning models have six numerical

inputs corresponding to grade counts.

The data set used in this study to train the machine-learning models is based on 36,261

anonymized first-time-in-college (FTIC) student records from the University of Central Florida

(UCF), a large public 4-year institution (see chapter 3 for additional contextual information re-

garding UCF). As indicated by the student records data-set and publicly available data, the ma-

jority of UCF students graduate with a degree (75% vs 25%, see chapter 3). The grade count

distribution also skews towards successful outcomes corresponding to higher letter grades. Based

on Figure 2.2, the distribution of A, B, C, D, F , and W (withdrawal) grades, for students at UCF

is 44.7%, 31.8%, 13.7%, 3.1%,3.5%, and 3.2%. The grade distribution considers both students

that halted their enrollment or graduated from UCF.

With the broader goal of increasing persistence and graduation rates, when analyzing the six

machine-learning models greater attention is paid to their performance in correctly identifying
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Figure 2.1: Inputs and output for the applied machine learning for predicting students’ performance

Figure 2.2: Grade count distribution for students at UCF
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students that halt their education. This measurement objective is reasonable given that the majority

of students ultimately graduate, as such, any predictive model should have an accuracy rate of at

least 75%. Furthermore, there is limited value in correctly identifying high-performing students

that will graduate given their traditionally high graduation rates (see chapter 4 and chapter 7).

The UCF data set is divided into training and testing data sets. The training data set is used to

build the models, while the test set is used to evaluate the models’ performance. Evaluating the

various models makes use of total accuracy, halt accuracy, and graduate accuracy; the correspond-

ing equations for each metric are provided in Equation 2.1 through Equation 2.3. For all models,

the F1 score, which is a harmonic mean of recall and precision, is also computed (Equation 2.4).

Here, the recall refers to the accuracy of predicting students who halted enrollment. Meanwhile,

precision refers to the fraction of students correctly predicted to halt out of all students predicted

to halt.

Accuracy =
True Positives + True Negatives

Total number of students
(2.1)

Halt-Accuracy =
True Positives

Total number of halt students
(2.2)

Graduation-Accuracy =
True Negatives

Total number of graduated students
(2.3)

F1 Score =
2 × (Precision × Recall)

Precision + Recall
(2.4)

In the equations above, True Negative refers to the number of students who graduate that are

not identified as students at-risk of halting. The number of True Positives is the number of students

who halt enrollment and are identified as at-risk students. Meanwhile, False Negatives are those

students who halt enrollment but are classified as graduating by the predictive models. Finally,

False Positives refer to the number of students who graduated but are identified as at-risk stu-
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Table 2.2: Results for the machine learning models on the test set based on students’ performance
during two semesters (FTIC students)

Models RF SVC LR GNB GB KNN

Total Accuracy 80.1% 81.6% 81.7% 80.7% 81.6% 76.4%
Halt-Accuracy 48.5% 47.3% 48.7% 54.5% 48.9% 50.5%

Graduation-Accuracy 92.8% 95.5% 95.0% 91.2% 94.9% 86.9%
F1 Score 58.3% 59.7% 60.5% 61.9% 60.5% 55.2%

True Negative 7910 8136 8099 7774 8084 7407
True Positive 1670 1629 1678 1878 1685 1739

False Negative 1776 1817 1768 1568 1761 1707
False Positive 611 385 422 747 437 1114

dents. Typically, False Positives and False Negatives are known as type I error and type II errors,

respectively.

Table 2.2 provides summary statistics of the six machine-learning models trained based on

count grades. The logistic regression model, serving as a baseline given its simplicity and propen-

sity in EDM research, has a total accuracy of 81.7%. The halt-accuracy, graduation-accuracy,

and F1 score for the logistic regression model is 48.7%, 95.0%, and 60.5% respectively. With a

graduation-accuracy of 95.5%, the support vector classifier has the best performance when predict-

ing graduation. While this model has the highest total accuracy among all the machine learning

models, it has the lowest halt-accuracy when compared to the other models (47.3%). In contrast,

the Gaussian Naive Bayes classifier model has the best performance when identifying at-risk stu-

dents among all machine learning models; it has a halt-accuracy of 54.5%. However, the total

accuracy and graduation-accuracy for this model are 80.7% and 91.2% respectively.

As a point of interest, the same study above is repeated using training and testing data sets based

on transfer students at UCF. As before, student grade counts for the first two semesters are used in

order to predict halting or graduation. Table 2.3 provides the summary statistics for the six standard

machine-learning techniques that are applied when building the prediction models. Comparing the

results in Table 2.2 and Table 2.3, the machine-learning models have a higher prediction accuracy
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Table 2.3: Results for the machine learning models on the test set based on students’ performance
during two semesters (Transfer students)

Models RF SVC LR GNB GB KNN

Total Accuracy 85.5% 86.3% 86.4% 84.8% 86.4% 81.5%
Halt-Accuracy 59.0% 57.2% 59.2% 64.7% 59.6% 59.3%

Graduation-Accuracy 94.3% 95.9% 95.4% 91.4% 95.2% 88.8%
F1 Score 66.9% 67.5% 68.5% 67.9% 68.4% 61.4%

True Negative 14879 15134 15059 14432 15017 14011
True Positive 3076 2985 3089 3374 3109 3091

False Negative 2137 2228 2124 1839 2104 2122
False Positive 903 648 723 1350 765 1771

for transfer students when compared to FTIC students. For example, the halt-accuracy for the

Random Forest model increases from 48.8% to 59.0% for transfer students when compared to

FTIC students. On average, the models have 10.15% higher halt-accuracy for transfer students

compared to FTIC students. However, similar to the model trained based on FTIC students, SVC

has the highest graduation-accuracy among all models applied to the transfer students (95.9%),

but the lowest halt-accuracy when compared to other models (57.2%). Furthermore, based on two

tables, GNB has the highest accuracy among all models in predicting halted students (54.5% and

64.7% for FTIC and transfer students, respectively).

As tools, the six machine learning models struggle to surpass a 50% accuracy when predicting

halting. Their limitations can be traced to numerous factors, some of which include the exclusion

of demographic and other non-academic features (e.g. financial aid). Regardless, the prediction

models have a more important flaw in that they do not account for possible interventions or changes

that students might make in their educational careers in response to their performance. The models

also make an implicit, yet fundamentally wrong assumption that halting is in response to academic

performance. So while university policies may dictate that students with poor academic perfor-

mance be placed on academic probation, and ultimately subject to disqualification, for the most

part, low grades only correlate with the decision to halt. In many cases, the decision to halt can be
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Figure 2.3: Relative importance of features for students’ performance prediction based on students’
records during two semesters using random forest (FTIC students)

tied to other reasons like finances, work, family obligations, stress, lack of support, etc. As such,

low academic performance is at best a proximate cause or in most cases a byproduct of the true

reasons for halting college. Based on this argument, better usage of machine-learning models is

not for prediction but rather for understanding correlations and factors that influence halting.

One way to understand the factors that influence student outcomes is to perform feature impor-

tance or perturbation analysis on the underlying models. This process is usually straightforward

for linear regression models and logistic regression models, as feature importance is closely tied

to the magnitude of model coefficients. However, this approach is not without limitations, espe-

cially when features are co-linear. Programming implementation of Random Forest models (e.g.

the Scikit-learn’s RandomForestClassifier module in Python) often includes the necessary tools

to perform a feature importance analysis. Figure 2.3 illustrates the relative feature importance

for predicting if a student halts when using the Random Forest model. Based on the results, the

numbers of F ’s and A’s that students make during their academic careers are the two most im-

portant features that correlate with final academic outcomes (halt/graduate). As seen in the figure,

the number of W ’s has the lowest effect on the students’ halt/graduate status, since the W grade
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in this research includes medical withdrawals, which is not necessarily an academic performance

indicator.

For the remaining five machine-learning models, Python’s Scikit-learn library does not have

this same ability to calculate feature importance. As such, an alternative approach for calculating

the feature importance is used for all six machine-learning models based on a feature drop-out

approach. For each of the six machine-learning techniques, seven different models are constructed:

one using the full data set, and the remaining six models are constructed using a subset of the

data features. As such, the first model variant is trained using all features (i.e. grade counts); it

is considered to be a full model. For the other six model variants, one feature is removed and the

machine-learning model is trained based on the remaining data features. For example, in model/X ,

grade counts for X are excluded when training the model, where X is A, B, C, D, F , or W . The

relative importance of each grade is computed based on the following equation:

Relative importance (F) = Accuracy(Halt|Full model)-Accuracy(Halt|Full model/F)

Based on the formula, the relative importance for each grade is the difference in the halt-accuracy

between the full model and halt-accuracy of the model variant trained with fewer features. For

example, for the SVC model, the halt-accuracies for the full model and the model variant without

the F grade counts (model/F ) are 47.3% and 42.2%, respectively. The relative importance of

this feature (number of F grades) corresponding to a drop in halt-accuracy is 5.1 (47.3-42.2) for

SVC. Figure 2.4 provides the relative importance of all machine-learning models and variants.

Based on the figure, as was shown for the random forest, excluding the number of F ’s students

earns in the first year has the greatest impact on the halt-accuracy, and as such it is considered

to be the feature with the greatest relative importance. The number of course withdrawals is the

second most important feature for the SVC, LR, and KNN models. However, for the GNB and GB

models, the second most important grades are D and A grades, respectively. The number of B and

C grades are usually the least informative for all the models. While the number of A grades has
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Figure 2.4: Relative importance of features for students’ performance prediction based on students’
records during two semesters for all models (FTIC students)

some importance for the LR, GB, and GNB models, the feature is not predictive for SVM when

focusing on halt-accuracy. Unfortunately, due to the black-box nature of these techniques, it is not

clear why this distinction exists.

Most of the papers reviewed earlier in this chapter are aimed at predicting students’ perfor-

mance using demographic and academic features. One main limitation common to many of the

models is the timing of the predictions. While early predictions after one or two semesters may

have low prediction accuracy, a late prediction may not provide sufficient time to intervene for

at-risk students. In order to investigate the trade-offs between early detection and improved model

accuracy of later predictions, the six machine-learning techniques are retrained based on 1, 2, 3,

4, and 5 semesters worth of grade data to produce a total of 30 model variants. The accuracies

of the model variants are then compared to each other to quantify the improvements in predic-

tion accuracy according to the number of semester grades considered. Figure 2.5 illustrates the

impact of the number of semesters on the halt-accuracy for the various machine learning models.

As was expected, the more semester grade-data is fed into the training data set, and are ultimately

used as part of the prediction model, the better the halt-accuracy. For example, for the Random
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Figure 2.5: Impact of the number of semesters in the training set on accuracy (halt) for FTIC
students

Forest model, when considering four semesters worth of grades, the halt-accuracy improves from

40.0% to 73.5%. A similar pattern is observed for the other machine-learning models. Similarly,

as shown in Figure 2.6, the improvement in halt-accuracy as the number of semesters is increased

is also observed when developing a halt-prediction model for transfer students. Interestingly, the

improvement in halt-accuracy is smaller for the GNB model. So while the GNB model has the

highest halt-accuracy when making predictions based on two semesters of grade data, it has the

lowest accuracy when considering 5 semesters of grade data.

Predicting final outcomes based on a semester grade-count model. In the previous study, the

cumulative number of A’s, B’s, C’s, D’s, F’s, and W’s that a student obtains until a given semester

(i.e., the second semester) were used as inputs to predict if the student halts enrollment or not.

Here, a similar model is developed, but instead of using cumulative grade counts over semesters,

the semester grade counts serve as the input to the prediction model. Using this input structure,

for a model based on N semesters, there will be 6N inputs used for the new model structure,

while the previous cumulative grade-count models had six inputs. Figure 2.7 depicts the inputs for

the proposed model structure under consideration. An advantage of a semester grade-count model
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Figure 2.6: Impact of the number of semesters in the training set on accuracy (halt) for transfer
students

over the previous model structure is that semester grade-count models can take into consideration if

performance in a specific semester is more predictive of the final academic outcome. Additionally,

a semester grade-count model may be able to account for improvement or deterioration of academic

performance when making predictions as semester grade data is separated, not aggregated.

The same six machine-learning techniques are used to build prediction models based on the new

inputs to see how this change impacts the models’ performances. Accuracy results for the models

are summarized in Table 2.4. By comparing Table 2.2 and Table 2.4, it is seen that while the halt-

accuracy has been slightly increased for the RF model (from 48.5% to 50.9%) and in the GNB

model (from 54.4% to 58.0%), there is no significant change for the remaining machine-learning

models as the difference is less than 1%. In summary, changing the models’ inputs in this problem

does not change the models’ performance significantly. The lack of meaningful improvement for

four of the models suggests that addressing research questions RQ-2 and RQ-3 may not yield

much value, as there appears to be a limited benefit of considering time-sequences of grade data.

By extension, such a finding may imply that if a student’s grades decrease from high to low and

another student’s grades increased from low to high, meaning each has the same cumulative GPA,

35



Figure 2.7: Inputs of the model created based on the grades number in N semesters

Table 2.4: Results for the machine learning models on the test set based on students’ performance
during two semesters separately (FTIC students)

Models RF SVC LR GNB GB KNN

Total Accuracy 80.0% 81.5% 81.7% 80.2% 81.7% 73.2%
Halt-Accuracy 50.9% 47.6% 48.8% 58.0% 49.2% 51.3%

Graduate-Accuracy 90.9% 95.4% 95.0% 89.2% 94.9% 82.1%
F1 Score 58.7% 59.1% 60.5% 62.8% 60.8% 52.5%

True Negative 7746 8130 8097 7598 8083 6994
True Positive 1754 1610 1680 1990 1697 1768

False Negative 1692 1836 1766 1448 1749 1678
False Positive 775 391 424 923 438 1527

they may have an equal probability of halting or graduating. Such a finding would be somewhat

unexpected.

Limitations of traditional academic features in predicting student outcomes. In previous stud-

ies, some of the limitations of the machine-learning methods in predicting student academic out-

comes were discussed in the context of cumulative versus semester grade counts. In this study, the

nature of the academic input features and how they impact the classification of machine-learning

models are examined. In the process, a key shortcoming related to single-semester deviations in

academic performance is identified.
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Table 2.5: Accuracy results for the machine learning models using semester GPAs.

Models RF SVC LR GNB GB KNN

Total Accuracy 79.6% 77.2% 73.3% 77.5% 76.3% 73.3%
Halt-Accuracy 42.4% 58.6% 65.0% 58.3% 58.5% 42.3%

Graduate-Accuracy 87.5% 81.1% 75.0% 81.6% 80.1% 79.9%
F1 Score 42.1% 47.4% 46.0% 47.6% 46.4% 35.7%

True Negative 7080 6566 6073 6606 6484 6464
True Positive 728 1007 1117 1001 1005 726

False Negative 990 711 601 717 713 992
False Positive 1012 1526 2019 1486 1608 1628

Many studies have used semester GPAs and cumulative GPAs as inputs for machine-learning

models to predict student academic performance and outcomes [10, 65, 66]. For example, Ger-

shenfeld et. al [67] applied a set of logistic regression models to predict if undergraduate students

graduate within six years. Their results suggest that a low first-semester GPA is a significant factor

in predicting if students will graduate within six years.

While using student GPA measures as inputs in educational data mining is common, utilizing

GPA to analyze academic performance trajectories (i.e. times-series) may not be ideal. For exam-

ple, it is common for a student’s GPA to fluctuate on a semester-to-semester basis. Fluctuations in

performance and semester GPA can result from both internal factors associated with a course (e.g.,

grading policies, course difficulty) and external factors unrelated to a course (e.g., illness the week

of an exam). And while machine-learning techniques are able to account for noisy input features

across samples, it is not immediately clear that machine-learning techniques are able to mediate

the impacts of noise within a sample; thus,, normal fluctuations in GPA between semesters may

cause incorrect classifications.

In order to show the impact of grade fluctuations on model accuracy, the same six different

machine learning techniques are used to train a set of graduate/halt prediction models based on

semester GPA (as opposed to grade counts). The models will be trained to predict graduating or

halting based on the first four semester GPAs of students. A summary of the accuracy measures
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of the models are provided in Table 2.5. Interestingly, the total accuracy of the four-semester GPA

models decreased when compared to the grade-count models based on two semesters. The decrease

in total accuracy is directly tied to both the decreases in graduation-accuracy and halt-accuracy. For

example, based on Figure 2.5, the halt-accuracy for models trained based on grade-count during the

first four semesters is 66.7%, 61.5%, 63.8%, 59.3%, 63.9%, and 65.3% for the RF, SVC, LR, GNB,

GB, and KNN, respectively, which are higher than the corresponding halt-accuracies provided in

Table 2.5. Broadly speaking, a greater number of input features generally results in greater model

accuracy, as such reducing the number of input features from 6-to-1 is expected to come with

a decrease in model accuracy (particularly since GPA is a measure derived from semester grade

counts). However, the change in accuracy is more meaningful, as the previous sensitivity analysis

indicated that specific grade-counts have greater importance when making predictions (i.e. the

number of F grades).

For each of the six models, GPA data for two different synthetic students are evaluated. The

first synthetic student maintains a consistently high GPA over four semesters. The second syn-

thetic student performs well for three of the four semesters; in their second semester, they earn a

1.3 GPA. Table 2.6 reports the classification for each of the machine-learning models, along with

the corresponding prediction probability (as provided by the predict proba function in Sklearn).

The prediction probability is an estimate that a particular sample falls into the underlying classes.

In the table, the halt and graduate probabilities for the KNN model is not available since this

method does not classify data points using probabilistic approaches. The study of the halt proba-

bilities indicates that the GNB model is the most sensitive to a singular fluctuation in GPA when

compared to the other models since the difference in halt probability between students 1 and 2

for this model (76.9%-7.6%) is greater than the same difference of the other models. In contrast,

logistic regression is the least sensitive model when changing to semester-to-semester GPAs when

compared to other models. Regardless, each of the six models predicts that student 2 will halt their

academic career.
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Table 2.6: Impact of students’ GPA change on model prediction

Model Student Num. GPA Probability (Halt) Model prediction

RF
1 3.55, 3.7, 3.6, 3.4 18.0% Graduate
2 3.55, 1.3, 3.6, 3.4 55.0% Halt

SVC
1 3.55, 3.7, 3.6, 3.4 27.1% Graduate
2 3.55, 1.3, 3.6, 3.4 72.9% Halt

LR
1 3.55, 3.7, 3.6, 3.4 25.9% Graduate
2 3.55, 1.3, 3.6, 3.4 54.1% Halt

GNB
1 3.55, 3.7, 3.6, 3.4 7.6% Graduate
2 3.55, 1.3, 3.6, 3.4 76.9% Halt

GB
1 3.55, 3.7, 3.6, 3.4 24.7% Graduate
2 3.55, 1.3, 3.6, 3.4 61.1% Halt

KNN
1 3.55, 3.7, 3.6, 3.4 − Graduate
2 3.55, 1.3, 3.6, 3.4 − Graduate

Figure 2.8: Impact of students’ GPA change on model prediction
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In the previous table, two different values for second semester GPA were considered to in-

vestigate the impact of perturbations on model predictions. Figure 2.8 extends this analysis by

continuously varying the perturbation in the second semester GPA over a wider range. In other

words, the input to the machine-learning models is the following vector: [3.55, X, 3.6, 3.4], where

X is considered as a variable and is replaced by a value between 1 and 4. As illustrated in Fig-

ure 2.8, a decrease in the second semester GPA continuously increases the probability of halting

for all models except Random Forest. The GNB, LR, and SVC models have smooth response

curves since these models compute halt-probability using continuously differentiable functions.

In contrast, RF has discrete breaks that appear random; the jagged response line for the Random

Forest model is likely associated with the underlying non-linear random partitioning technique it

utilizes. The black horizontal line at 0.5 indicates the cut-off threshold determining if the model

predicts if a student will halt or graduate. If the obtained halt probability is less than the threshold

(0.5) the prediction is graduate, otherwise, the models’ prediction for the output is halt. As it is

shown in the figure, for a GPA less than 1.5, all models except Random Forest predict the student

halts enrollment.

As a point of comparison, student records are mined to find FTIC students who maintained a

minimum predefined GPA for three of their first four semesters, but had a single-semester drop

in GPA below 2.0 (the drop in GPA is permitted to occur in any of their first four semesters). A

summary of the records, including counts and halt percentages, is provided in Table 2.7. As the

table indicates, of students that maintained a GPA over 3.5 for three of the four semesters, while

having a single semester drop in GPA, only 14.8% halted. As the minimum GPA over the three

semesters is lowered, the halting rate increases. For students that had a minimum GPA between

3.0 and 3.25, with one semester below 2.0, 33.5% would eventually halt. Cumulatively, over all

students that had a minimum GPA above 3.0, 30.6% percent would halt. The 14.8% halt rate for

students with a minimum GPA above 3.5 is much smaller than the class probabilities indicated by

the machine-learning models. While not a direct comparison, the stark distinction suggests that
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Table 2.7: Graduation rates for students with a single-semester drop in GPA.

Min GPA Halt Graduate Total Halt Rate Cumulative Halt Rate

3.5 9 52 61 14.8% 14.8%
3.25 33 92 125 37.5% 26.4%
3.00 93 211 304 33.5% 30.6%
2.75 187 368 555 37.5% 33.7%
2.50 341 601 942 39.8% 36.2%
2.25 515 816 1331 44.73% 38.7%

traditional machine-learning models are unable to address such cases of grade fluctuations.

2.4 Conclusion

In this chapter, different machine learning techniques were applied to UCF student record data to

discuss shortcomings of previous studies in predicting student final outcomes from two different

aspects: (1) the machine learning methods, and (2) the features that these models are trained

by. In the first study, different prediction models were developed to predict if a student will halt

enrollment or graduate using the cumulative number of A’s, B’s, C’s, D’s, F ’s, and W ’s. Based

on the inputs and output of the model, these models assume that halting is in response to academic

performance. This assumption is wrong since in many cases the decision to halt could be due

to other factors such as financial issues, lack of support, etc. Furthermore, the obtained results

indicated that these models are sensitive to the time when predictions are made. Based on the

results, the more semesters fed into the training set, the higher the halt-accuracy. While early

predictions may have low prediction accuracy, a late prediction may not provide enough time for

at-risk students to improve their performance. Therefore, finding an optimal time for making the

prediction is another limitation for these models. In the second study, similar machine learning

models were developed to predict students’ graduation/halt status, but instead of using cumulative

grade counts over the semesters, the semester grade-count was used as the input for the model. The

lack of significant improvements in the results implies that these models are not able to capture the
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patterns of students’ academic-performance (e.g., decreasing or increasing) over their academic

careers. Finally, in the third study, the six machine learning models used students’ semester GPA

as inputs to predict if students will graduate or halt enrollment. The first goal of this study was

to investigate the performance of GPA as input for the machine learning models in predicting

students’ final outcomes and compare it with the grade-count feature used in the previous studies.

The results indicated that the machine learning models trained by grade-count have higher accuracy

(total, graduate, and halt accuracy) when compared to the models built by GPA. In other words, the

grade-count variable is a better feature in predicting halt when compared to GPA. The second goal

of this study was to analyze the impact of grade fluctuation on model accuracy. Results illustrated

that using GPA as inputs for machine learning models is challenging, since a change in students’

semester GPA that could be because of internal and external factors can impact model prediction

significantly. In chapter 4 of this dissertation, a Hidden Markov Model is applied to propose a new

academic feature in predicting students’ performance to tackle this shortcoming.
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CHAPTER 3

ACADEMIC DATA RECORDS

UCF is a public university located in Orlando, Florida. With almost 72,000 students from 50

states and 144 countries, UCF has one of the largest undergraduate student bodies in the United

States [68]. Opened in 1968 as Florida Technological University, the university was later renamed

to the University of Central Florida in 1978. In addition to the main campus, UCF has several

other campus locations. These include: Cocoa, Daytona Beach, Ocala, Kissimmee, Palm Bay, and

Leesburg. UCF is composed of 13 colleges that offer 231 different degree programs, including 103

bachelor’s, 91 Master’s, 34 doctoral, and 3 specialist programs [68].

The studies presented in this dissertation make use of anonymized undergraduate student

records collected from the University of Central Florida (UCF) between the years 2008 to 2017;

as such, some time is spent describing the available data and features unique to UCF’s student

body. Next, this chapter provides a description of common measures that are used to evaluate stu-

dent academic performance (i.e., course grade, graduate/halt, etc), with a brief analysis correlating

demographic features to final academic outcomes. After analyzing students’ financial aid status

and its correlation to their academic performance, the limitations of the introduced data set are

discussed.

3.1 UCF Student Data Records

The data set used in this dissertation is collected and provided by the Institutional Knowledge Man-

agement (IKM) department at UCF. The data set includes records covering approximately 170,000

students over a ten-year period from 2008 to 2017. IKM’s mission is to inform and guide UCF in

operational and executive decisions by collecting, organizing, interpreting, and reporting institu-

tional data and providing advanced analysis through scientific research [69]. IKM’s core activities

43



Table 3.1: Variables and corresponding descriptions in the Admission Demographics table

Variables Descriptions
Identifier Unique identifier for student
Gender Male, Female

Ethnicity White, Black, Hispanic, Asian, Multi, Hawaii/Pac
Birth date YYYY-MM-DD

First generation in College Binary
Admission type FTIC, Transfer

High school GPA e.g. 3.5
Cip code1 e.g. 14.3501

State of Primary Residence e.g. Florida

are divided into four categories: (1) providing UCF faculty, staff, and leadership with data and anal-

ysis with the aim of supporting students, personnel, and academic programs; (2) preparing reports

about UCF facilities, budgeting, students, and expenditures; (3) providing insights on research,

faculty, and students in order to support performance goals strategic and enrollment management;

and (4) responding to surveys which support UCF’s recognition and ranking in U.S. News and

World Report, World University Rankings, and so on.

The student records data set provided by IKM contains a wide variety of information about stu-

dents at UCF, including but not limited to: demographic information, admission information for

enrolled students, bachelor degrees awarded, courses taken by students at UCF, and Free Applica-

tion for Federal Student Aid (FAFSA) reported family income. All this information is organized

into seven different MySQL data tables. These tables together with their corresponding data values

are summarized below:

Admission Demographics: This table provides self-reported demographic and admission in-

formation for students who have enrolled at UCF. Details of variables for this table are summarized

in Table 3.1. Key features include: gender, race/ethnicity, birth date, and admission type. In re-

gards to race and ethnicity, these values are collapsed into a single field. As such, for Hispanic

students, additional race information is not available.

Degrees Awarded: This table contains all information regarding bachelor’s degrees awarded.

44



Table 3.2: Variables and corresponding descriptions in the Degrees Awarded table

Variables Descriptions
Identifier Unique identifier for student

Academic Career Undergraduate
Degree BA, BDES, BM, BS

Term Awarded e.g. Fall 2009
Degree College e.g. College of Science

STEM2 Flag Binary
Degree GPA e.g. 3.5

This includes double majors and minors, which are denoted both by their Classification of Instruc-

tional Programs (CIP) code, their nominal degree name, and affiliated college. Data regarding

master’s and doctoral degrees is not included. The corresponding variables are shown in Table 3.2.

UCF Courses Taken: This table contains information about all courses taken by students for

each semester they are enrolled at UCF; these courses include both undergraduate and graduate-

level courses, some of which might correspond to requirements of 5-year BS/MS degrees. Ta-

ble 3.3 lists the variables in the UCF Courses Taken table. Courses taken at other universities or

community colleges are not included.

Table 3.3: Variables and corresponding descriptions in the UCF Courses Taken

Variables Descriptions

Identifier Unique identifier for student

Course number e.g. MAC2147

Course letter grade e.g. A and C

Course section type Class lecture, Online

Course credits e.g. 3

Enrollment term e.g. Fall 2009

Cip code e.g. 14.3501

Course campus location e.g. Main campus

Term Enrollment: Students’ term-to-term enrollment information, include their major,
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Table 3.4: Variables and corresponding descriptions in the Term Enrollment table

Variables Descriptions
Identifier Unique identifier for student

Academic Career Undergraduate
Academic Level Freshman, Sophomore, Junior, Senior
Enrollment term e.g. Fall 2009

Previous enrollment term e.g. Summer 2009
Term GPA e.g. 3.5

Cumulative term GPA e.g. 3.5
Cip code e.g. 14.3501

Pell Grant3 Dollar amount

semester GPA, academic level, and other variables are provided in Table 3.4. This table is par-

tially based on summary data derived from course data (e.g. GPA, academic level).

Family Income: Students’ family income by financial year (if provided via FAFSA) is reported

in this table.

Table 3.5: Variables and corresponding descriptions in the Family Income Taken table

Variables Descriptions

Identifier Unique identifier for student

Financial year YYYY

Family income Dollar amount

Student Involvement: For all students, this table indicates whether each student has partici-

pated in a program listed in the Table 3.6.
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Table 3.6: Variables and corresponding descriptions in the Student Involvement table

Variables Descriptions

Identifier Unique identifier for student

Participation term e.g. Fall 2009

Recreation Wellness Center Binary

Undergraduate Research Binary

Experiential Learning Binary

Peer Tutoring Binary

Test Credits: While courses taken at other universities are not included in the student data

records, this table includes detailed information regarding student test scores and any credit earned

in each registered course. Course credit may be transferred or resulted from Advanced Placement

exams.

Table 3.7: Variables and corresponding descriptions in the Test Credits table

Variables Descriptions

Identifier Unique identifier for student

Course title e.g. Composition I

Course prefix e.g. ENC

Course number e.g. 1101

Earned Credit Flag Binary

Test score e.g. 95

3.2 UCF study body demographics

The University of Central Florida is a relatively diverse university, drawing from various stu-

dent populations covering a wide range of socioeconomic statuses, admission types, genders,

race/ethnicities, etc. Table 3.8 provides students’ self-reported gender and ethnicity information

47



along with their admission type (FTIC and transfer). As indicated by the table, the majority of the

student population at UCF are transfer students (59%). This indicates UCF is a common destina-

tion for students who wish to transfer from community colleges to universities.

Like most public institutions, women constitute the majority; 56% of students during the 10

past years have been female, while the rest identify as male (44%). And while most students (55%)

self-report as white, the percentages of Hispanic and African-American students are quite large at

(24%) and (11%), respectively. The other group in the table covers American-Indian, Asian, Na-

tive Hawaiian, and Multi-racial students that constitute (24%) of UCF. When compared to national

statistics, the average percentage of Hispanic students at American universities between the years

of 2010 and 2016 is reported to be 16% [70]. UCF, with 24% of its student body self-reported as

Hispanic, has a significantly higher proportion when compared to the national average. Accord-

ingly, UCF has recently been designated to be a Hispanic serving institution by the US Department

of Education [71]. While other universities such as the University of California, Los Angeles and

University of California, Berkeley have a large population of Hispanic students (19.7% and 14.1%),

these universities are not considered as Hispanic serving institutions. Another factor used to de-

termine if a university is considered to be a Hispanic serving institution is the fraction of Hispanic

students who receive financial aid. On this basis, the ratio of Hispanic students with low family

income and first-generation students at UCF allows the university to be designated to be a Hispanic

serving institution by the US Department of Education. Such key characteristics indicate that UCF

has significantly different student demographics when compared to other universities in the United

States, even when compared to local higher education institutions. For example, Rollins College,

a private liberal arts college in Winter Park, FL, has a lower fraction of Hispanic students (19%)

and a higher median family income when compared to UCF ($123,400 vs $94,500); on this basis,

Rollins College is not considered to be a Hispanic serving institution. Given UCF’s unique study

body demographics, some findings reported in this dissertation may not apply to other universities

as demographic factors may influence student academic performances.
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Table 3.8: Students’ demographic distribution at UCF over 10 years

Students demographic Percentage
Female 56%
Male 44%

First-Time-in-College 41%
Transfer 59%
White 55%

Hispanic 24%
African-Am. 11%

Other4 10%

3.3 Academic Performance and Outcomes

As mentioned earlier in this chapter, the data set includes student course performance and final ed-

ucational outcomes. Given that this dissertation aims to analyze students’ academic performance

and outcomes, this section provides details to provide context regarding academic performance at

UCF. First, and foremost, UCF has an estimated graduation rate of 75%; this value does not dis-

tinguish between admission type (FTIC and transfer), sex (male and female), and race/ethnicity.

Additionally, it is worth noting that all students who have completed their program are consid-

ered as a graduate, regardless of the time taken to complete their degree program. In contrast, a

student is considered to halt if he/she does not register for three consecutive semesters at UCF.

Based on federal regulations, American universities typically use the six-year graduation rate to

report statistics regarding their students’ final educational outcomes (graduate/halt). A program’s

graduation rate is defined as the percentage of first-time-in-college (FTIC) students who complete

the program within 150% of the standard enrollment time for their degree [72]. For a four-year

degree program, students who earn their degrees within six years are considered graduates, hence

the name six-year graduation rate. Using the IKM supplied data set, the six-year graduation rate

at UCF for first-time-in-college (FTIC) students starting in 2008 is 71.2%, with 28.8% of students

graduating in more than six years or halting enrollment. Given that the majority of students at UCF

are transfer students, and a large portion is also part-time [73], the six-year graduation rate is not
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Figure 3.1: Distribution over students’ GPA at UCF

necessarily an accurate or representative reflection of the academic outcomes at UCF.

These academic data records include course grades for every student (see Table 3.3). Figure 3.1

provides the distribution of grades over every student at UCF. Based on the figure, the grade distri-

bution is positively skewed, with the probability of getting A, B, C, D, F , and W grades at UCF

being 44.7%, 31.8%, 13.7%, 3.1%, 3.5%, and 3.2% respectively. Figure 3.2 illustrates the same

kind of distribution but separated by students that graduate and students that halt. As the figure

indicates, the student grade distribution is strongly tied to final academic success outcomes (grad-

uate/halt). Based on the figure, the probability of getting A or B in any given course for students

who complete their program at UCF is, on average, greater than the same probabilities for students

who halt enrollment. Also, students who halt enrollment at UCF earn C, D, and F grades with

higher probabilities while also withdrawing more often when compared to students who graduate.

Keep in mind that a W grade is not an academic grade and is not considered when calculating

GPA; this is particularly relevant because students often withdraw for non-academic reasons. For

example, students without sufficient financial aid or funding may be forced to work to earn money

and support themselves. In a study by Lijuan and Rey [74] the researchers showed that there is

a significant relationship between student family income and withdrawal rates. Another common
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non-academic reason for withdrawing includes medical issues. Based on Figure 3.2, while W

grades are not directly tied to academic performance, students who halt enrollment tend to have a

higher probability of registering a W grade when compared to students who graduate.

A hypothesis chi-squared test was conducted to assess if the difference between grade dis-

tributions for students who graduate (N=73682) and students who halt (N=33189) enrollment is

statistically significant. The null (Ho) and alternative (HA) hypotheses are as follows:

Ho: Both graduated and halted students have the same grade distribution.

HA: Graduated and halted students have different grade distributions.

The null hypothesis in this test states that the grade distribution for both halting and graduating

students is the same. On the other hand, the alternative hypothesis is that both groups of students

have different grade distributions. The obtained p-value (1 × 10−8) for the test rejects the null

hypothesis test and indicates that the difference is statistically significant. Therefore, halting and

grade distribution have a strong correlation at UCF. There is research that support this conclusion

at other universities as well [75, 76, 77]. For example, Bail et al. [75] show that students’ semester

GPA is a significant factor in predicting students’ graduation rates. In another paper, Bolden et.

al [78] conducted a study based on a data set collected from three universities, including Case

Western Reserve University, Transylvania University, and St. Martins’s University, to investigate

the factors that impact students’ academic success. Their results indicated that DFW grades are

an important predictor of student retention, persistence, and success. Furthermore, they indicated

that students who had a lower SAT/ACT score and lower high school GPAs are more likely to get

DFW grades in colleges.

Since a part of this dissertation focuses on students’ academic performance trajectories, it is

useful to investigate how students’ grade distributions change over time. Figure 3.3 shows the

grade distribution for students at various academic levels, including Freshman, Sophomore, Junior,
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Figure 3.2: Grade distribution over students at UCF for graduated and halted students

and Senior. Similar to other universities, these academic levels are defined according to the number

of course credits that students earn over their academic careers. At UCF, these academic levels

are defined based on the indicated criteria on the passed course credits in Table 3.9. Based on

the figure, while seniors have the highest chance (45%) to earn A grades in any given semester,

freshman students are the least likely (36%) to get A grades.

A Chi-square post-hoc hypothesis test was conducted to see if the grade distribution differs be-

tween students with different academic levels. The null hypothesis test is that the grade distribution

among all academic levels is the same. The alternative hypothesis states that grade distribution for

at least one of the academic levels differs from the others. The obtained p-value of all tests between

possible pairs of academic levels is 0, indicating that students with different academic levels have

different grade distributions. For example, seniors (N=344394) statistically are more likely to get

A grades when compared to freshman (N=76316). On the other hand, freshman are more likely

to earn Bs (34% and 31% for freshman and senior students, respectively), Cs (17% and 13% for

freshman and senior students,), and F s (6% and 2%) grades when compared to seniors. These

findings are supported by research conducted by Addus et. al [79], where they showed that the

number of students with low GPAs decreases from freshman year to senior year. Two commonly
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Figure 3.3: Grade distribution over students’ academic levels at UCF

Table 3.9: Definition for different students’ academic levels at UCF

Academic level Number of credits
Freshman 0-29

Sophomore 30-59
Junior 60-89
Senior + 90

proposed reasons for these differences in GPA grade distributions of freshman and senior students

is that seniors have adapted to their academic environment and also take courses more aligned with

their academic interests. Alternatively, poor-performing students may have been filtered out and

already halted.

Figure 3.4 compares grade distributions for students at different academic levels during the Fall

(a), Spring (b), and Summer (c) semesters. Based on the figure, students with different academic

levels have similar grade distributions, except for W grades, during the Fall and Spring semesters.

As an example, during the Fall and Spring semesters, seniors are most likely to get A grades,

followed by sophomores, juniors, and freshmen, respectively. These similarities are seen for B,

C, D, and F grades. However, with regard to W grades during Fall semesters, sophomores are

more likely to withdraw from courses when compared to freshmen students; the opposite pattern

is observed during Spring semesters for these two groups of students. Furthermore, by comparing
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(a) (b)

(c)

Figure 3.4: Grade distribution over students’ academic levels in the Fall (a), Spring (b), and Sum-
mer (c) semesters

the grade distributions between all semesters, it is seen that students at different academic levels

have different patterns in getting C, D, and F grades during Summer semesters when compared to

Fall and Spring semesters.

3.4 Financial aid and academic outcomes

Like most universities, the annual family income of UCF students varies widely, as shown in Fig-

ure 3.5. Many studies use student family income as a demographic factor to model and better

understand academic outcomes [80, 81, 82]. These studies have shown that students with lower

family incomes are more likely to halt enrollment. The corresponding drop in graduation rates

can be traced to a variety of reasons. For example, about 25% of first-generation students are

low-income, and around 90% of them halt enrollment at colleges. Based on research conducted

by Accredited Schools Online [83], parents of first-generation students are less likely to be sympa-

thetic to the issues and stresses that their children have in college. These students usually have less
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Figure 3.5: 5th-95th distribution of annual family income averaged over each students academic
career

support from their parents for selecting the right college and major, applying for financial aid, and

so on. Also, students who come from a family with low income are less likely to have professional

and personal mentors who help them through challenges that they may have during their academic

careers.

Figure 3.6 illustrates the connection between family income and graduation/halting for students

at UCF. As the figure suggests, students who halt enrollment have a lower mean annual family in-

come ($52798) when compared to students who graduate ($59712). A t-test hypothesis test is

conducted to see if the mean of annual family income between these two groups is statistically

significant. The null hypothesis in the test says that students who halt enrollment have the same

average annual family income as the students who graduate. However, the alternative hypothesis

states that the average annual family income differs between students who halt and students who

graduate. The obtained p-value (4.8× 10−80) indicates that students who graduate (N=77342) sta-

tistically have a higher family income than students who halt enrollment (N=24136). Therefore,

by assigning financial aid to students who come from families with low incomes, university pol-

icymakers may improve graduation rates in universities for cases in which the reasons for halting
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Figure 3.6: Average annual income for graduated and halted students

are due to economic barriers.

3.5 Limitations

The IKM data set, while comprehensive, still has several limitations that constrained the width

and depth of the studies presented in this dissertation. Explaining such limitations is crucial as it

guides towards more practical data collection and organization, leading to more informed analysis

and thus producing better insights. For example, the data set under consideration did not include

academic and demographic information on students who halted enrollment and left school with-

out a degree. Such information, if present, could improve the analysis of students’ performance,

their academic patterns (including GPA, enrollment, etc.), and the corresponding consequences on

their outcomes. Moreover, for students who transferred to UCF from community colleges or other

universities, records of their academic performance, such as transcripts and GPAs corresponding

to their previous institutions, were not included. This data could reveal invaluable information on

students’ academic backgrounds and enrollment behavior upon their admission to UCF, and there-

fore, enable more accurate, timely, and informed analysis. This would help universities support

students and prevent potential halts.
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The data set also lacks critical information in terms of students’ financial and demographic

status. Student family income and financial status data are provided via FAFSA, and therefore, if a

student has not applied for this application, the student’s yearly family income is reported as zero.

The lack of student Expected Family Contribution (EFC) information is another shortcoming of

the existing data set. EFC is an indicator of students’ eligibility for receiving federal financial aid.

Having information on both students’ EFC and their family income provided by FAFSA can help

in studying the impact of students’ financial status on their academic performance. Other issues

correspond to missing or misleading information in the data-set as related to self-reported demo-

graphic information, such as ethnicity/race and gender. For example, there is no clear distinction

between race and ethnicity; while Hispanic is an ethnicity, it is recorded as a race in the data set.

Also, for gender, a non-binary identity is not included in the self-reported application, which could

affect the research findings on the impact of gender on students’ academic performance.

3.6 Conclusion

In this section, the data set that used in this dissertation was introduced. These students’ records

were collected by Institutional Knowledge Management during the years 2008 to 2017. As ex-

plained, the data set contains useful information regarding student demographics and academic

features. Also, the chapters provided some statistics about UCF students. The findings from stu-

dents’ academic analysis indicated that while 75% of students graduate from UCF, the remaining

25% halt enrollment. Furthermore, it was shown that grade distribution for these two categories

of students (graduated and halted) are statistically different. Also, we saw that students with dif-

ferent academic levels have different grade distributions when compared to each other. Finally,

the conducted analysis in this section illustrated that UCF is a unique university in two aspects:

first, most students enroll at UCF as transfer students, and second, UCF has a large population

of Hispanic students. This uniqueness may put limitations on how transferable the results of this

dissertation are, and as such, they might not apply to other universities. As an example, it was
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shown that the student’s family income, which is a known key demographic factor, is a significant

feature correlated to students’ academic performance, which can be traced to be a causal factor in

some cases.
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CHAPTER 4

APPLICATION OF HIDDEN MARKOV MODELS TO ANALYSIS STUDENTS’

ACADEMIC-PERFORMANCE TRAJECTORIES

Based on the National Student Clearinghouse Research Center, the six-year graduation rate for

students who initiated their college education in 2012 is only 58%, with 42% of students either

halting enrollment or taking longer than six years to graduate [1]. Halting college is broadly

understood to impose irreversible mental, financial, and time losses to students [84].

To date, numerous reasons have been identified to explain why students choose to halt their

education; they include financial problems, lack of interest in studies, lack of study progression,

and inadequate information and guidance [85]. In many cases, the reasoning is related to academic

performance; however, the decision to halt one’s education is not a straight line between perceived

poor grades and halting. As D. Shippee notes, poor grades may lead to the feeling of depression

[86], or lead students to shift career goals [87]. Thus, low academic performance can instead

be viewed as an underlying factor, predictor, or leading indicator of halting. Along these lines,

many studies have recognized GPA as a fair predictor or leading indicator of students persisting or

halting their academic career [21, 88, 20]. Zahedi et al. [21] investigated the relationship between

graduation rate and numerous variables, including gender, race, transfer status, major, number of

terms registered, and cumulative GPA. Their findings suggest that cumulative GPA is one of the

most powerful measures for predicting graduation. In a similar study, Pappas et al. [88] showed

that students’ cumulative GPA is a significant factor in identifying students at risk of dropping out

among computer science students. Although cumulative GPA is demonstrated to be a valuable

indicator and predictor of a students’ academic outcomes, the measure is a summary statistic. As

such, cumulative GPA does not convey how a student’s GPA evolved over time. Using cumulative

GPA as a predictive measure essentially ignores underlying patterns that could convey meaningful
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status changes.

To better understand, model, and characterize students at-risk of halting, I believe it is neces-

sary to mathematically model academic-performance trajectories. The desire to model academic

performance trajectories is driven by the following research questions:

Research question: Does a decrease in academic performance proportionally increase the

risk of halting?

Research question: If a student improves their academic performance does their gradu-

ation rate match those students that always performed well?

This study is aimed at analyzing students’ academic-performance trajectories to see if these

trajectories assist in answering the research questions above. To address the research questions, I

start by designing a Hidden Markov Model (HMM) to convert complex student academic records

to a compact discrete representation I denote as an academic-performance level. The HMM is

tuned using anonymized student records of 36261 first-time-in-college (FTIC) students. After ap-

plying the HMM, the resulting compact representation of the academic-performance trajectories is

grouped into meaningful clusters for analysis. Groups are compared and contrasted to understand

how academic-performance trajectories correlate to halting. Accordingly, the primary contribu-

tions of this chapter are: (1) a technique for generating a compact representation of a student’s

academic-performance trajectory and (2) an improved understanding of the relationship between

academic-performance trajectories and final academic outcomes.

4.1 Problem Statement

This chapter considers the problem of mathematically modeling the trajectory dynamics of a stu-

dent’s academic performance. The goal of addressing this problem is to identify a compact trajec-

tory representation of academic performance that enables the classification and clustering of un-

dergraduate students into meaningful groups. These groups will then be compared and contrasted

to explore the relationship between academic performance trajectories and final educational out-
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Figure 4.1: Representation of overall problem and solution methodology

comes, specifically halting. A pictorial representation of the overall problem and methodology is

provided in Figure 4.1.

Here, I start with the notional definition of an academic-performance trajectory which is a tem-

poral sequence of states indicating a student’s academic performance. A frequently encountered

category of academic performance trajectories is student transcripts; each semester corresponds to

a time-step t in a trajectory T̂i while courses are taken, and grades received each semester corre-

spond to trajectory states, X̂t. The challenge of working with such data is the dimensionality of

the representation – specifically all the combinations of courses and grades in X̂t.

The goal of this chapter is to identify a mapping T̂i → Ti that translates an academic perfor-

mance trajectory into a lower-dimensional representation Ti, where the state Xt at each semester

corresponds to an academic-performance level. As an example, consider a case in which each

student’s transcript is first converted to a sequence of grade counts given by the number of A’s,

B’s, C’s, D′/F ’s (combined), W ’s they received in a semester. One such tuple, (1,0,1,1,2), would
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indicate that in the corresponding semester, a student received the following marks: one A, no

B’s, one C, one D or F , and two withdrawals. Over an academic career, a semester-to-semester

sequence might look like the following:

(1, 0, 1, 1, 2), (2, 1, 1, 1, 0), (0, 3, 1, 0, 0), ..., (3, 1, 0, 0, 0).

A mapping of the full trajectory to a compact trajectory representation might be L3, L2, L2, ..., L1,

where each Li in the time-ordered sequence corresponds to a specified academic-performance level

(e.g. L1 is low, L2 is middle, and L3 is high).

Unlike prior studies, I explicitly assume the grades a student earns exist within a random pro-

cess whereby students’ course grades are not deterministic. As an analogy, in an imaginary multi-

verse, a student could take the same course one-hundred times and earn different scores each time.

Seemingly random processes or disturbances that might affect a student’s scores, and ultimately fi-

nal grade, can be due to external factors (e.g., illness the week of an exam) or internal factors (e.g.,

grading policies) related to the course. Accordingly, instead of each academic-performance level,

Li, being a straightforward mapping of the semester GPA, random processes and disturbances that

create a noisy GPA signal must be filtered to estimate the academic-performance level.

4.2 Methodology

In order to map full academic trajectories to a more compact representation, I develop and apply a

Hidden Markov Model (HMM). Here a brief modeling overview of the HMM is provided; a more

detailed description of the underlying models and algorithms s provided in chapter 5. Application

of HMMs to model students’ academic behaviors and performance has been documented in several

studies [51, 89, 90, 91, 92]. For example, in work by Kaser et al. [93], the authors apply an HMM

to examine the impact of students’ exploration strategies on learning. Their findings suggest that

exploration strategy is important to learning outcomes. Using a similar framework to these stud-
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ies, I develop and apply an HMM to model and understand the impact of academic-performance

trajectories and final educational outcomes.

In this section, I provide an overview of the Hidden Markov Model used in analyzing students’

academic-performance trajectories.

4.2.1 Representing Academic Performance using a Hidden Markov Model

As depicted in Figure 4.2, an HMM represents the dynamics of a system as it moves between

operating states or modes (e.g., Modes 1, 2, and 3 in the figure). When operating within a state

or mode, the system generates a mode-related output Oi at each time-step. For the problem under

consideration here, the modes correspond to the academic-performance level of a student, and the

observations refer to the student grade counts in any given semester. Because of the randomness

assumption stated in section 4.1, the grade counts observed might not map directly to the expected

academic-performance level of a student, and as such, I say the mode or academic-performance

level of a student is not directly observable from their grades. Instead, through a series of grade

observations, I can estimate or infer the most likely academic-performance level of the student in

any semester given the likelihood of such a sequence of mode transitions (i.e., trajectory).

Each Hidden Markov Model is initialized by a set of modes S = {s1, s2, . . . , sN}. Unlike any

other types of Markov models in which the modes are observable, in HMMs, modes are hidden;

that is, it is unknown at which mode the system dwells at any particular moment. After developing

an HMM, one application of an HMM is then to estimate a variable-length sequence of the hidden

modes estimates given a series of observations, O = o1, o2, . . . , oT , that are generated from the

modes. Within this framework, each HMM is defined by the following parameters: (1) A =

[ai,j] ∈ RNxN , a transition matrix containing the single-step probabilities by which a system moves

between modes; (2) B = bi(ot), an emission matrix describing the probability of generating each

observation ot when the system is in mode si; and (3) π, the initial probability distribution for the

system at its start.
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Figure 4.2: Representation of a simple Hidden Markov Model

The first step to build an HMM, known as the LEARNING STEP, is to estimate the optimal values

for the parameters λ = (A,B, π). The Baum-Welch algorithm, an expectation-maximization

algorithm, is used to estimate the optimal parameter-set λ∗. This algorithm takes initial guesses for

each of the parameters and iteratively improves the estimations of the parameters by computing

the likelihood of any sequence of observations given λ. After obtaining the optimal λ∗, the next

step is to predict the sequence of hidden modes for a given observation sequence. This step, known

as DECODING STEP uses the Viterbi algorithm, which takes observation sequences and λ∗ as input

and returns estimated hidden modes as the output.

In our case, the first challenge with utilizing an HMM is the dimensionality of the observable

outputs, i.e., grade counts. As described in section 4.1, each semester, I represent a student’s

academic performance according to a tuple with five elements, in which the first, second, and third

elements are integers indicating the number of courses with A, B, and C grades. The fourth and

fifth elements are variables indicating the number of D or F grades, and how many courses the
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student has withdrawn from. Under the assumption that the grade counts earned each semester

are dependent (e.g., the number of A’s earned is correlated to the number of B’s, C’s, etc.), it is

reasonable to consider each unique grade-tuple to be a possible observation. Within the data-set

under consideration, over 687 unique grade combinations in a semester have been observed. The

most common grade combination was (4,0,0,0,0), which occurred 5.8% of the time. Meanwhile,

there are over 20 grade combinations that occur only once, for example (1,1,1,0,4).

Given a large number of grade combinations, the wide distribution spread, and the relative

sparseness in which many cases occur, it is necessary to perform a partial reduction in the di-

mensionality of the output space. Instead of each output being a tuple of unconstrained counts,

elements of the grade-tuple are capped. The grade-tuple is adjusted to contain the number of A’s,

B’s, and C’s up to a maximum value of 3. Furthermore, instead of storing the number of D/F and

W grades, these values are converted to binary variables. In this new representation, the original

grade-tuple (5, 0, 2, 0, 3) for a student who had registered for 10 classes would be converted to

(3, 0, 2, 0, 1). Thus, because students do not typically register for more than 5 classes, and because

there is a strong correlation between grades, the impact of clipping is believed to be limited. After

applying the new reduction, the total number of unique observations is reduced to 216 grade-tuples.

Within the HMM framework, the next step is to specify a predetermined number of modes

for the model; again, each mode corresponds to an academic-performance level. The inclusion of

each additional state increases the required number of parameters used to define the model (i.e.,

size of λ∗); it is critical to balance over-fitting (too many parameters) and model coarseness (too

few parameters). For a model with N and M outputs, the total number of parameters within an

HMM to be tuned is N(N + M − 2) + N ; the tuned parameters correspond to a probability

transition matrix, the emission probability for each grade tuple when operating in a state, and the

initial state distribution. Through a combination of managing the number of modes and the number

of grade-tuples represented, I can ensure there is sufficient data to tune the parameters.

As a rough initialization, students are classified based on their last semester’s cumulative GPAs
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Table 4.1: Cumulative GPA for the four academic-performance levels obtained by the hierarchical
clustering method

Level number Cumulative GPA
1 CGPA≤2.5
2 2.5<CGPA≤3
3 3.0<CGPA≤3.5
4 3.5<CGPA≤4.0

(CGPA) into eight academic-performance levels. The first level corresponds to students with a

CGPA less than 2.0; level 2 includes students with a CGPA between 2.0 and 2.25, level 3 in-

cludes students with a CGPA between 2.25 and 2.5, and so on for higher levels. Next, for each

academic-performance level, the distribution over grades including A, B, C, DF , and W was

computed. Since the grade distributions observed over adjacent academic-performance levels were

quite close, a round of aggregation over academic-performance levels was initiated using their pair-

wise distance. Based on [94], the distance between two Multinomial distributions, ∆, is computed

with the following equation:

4 sin2(∆/2) = (
√
pA −

√
p′A) + ...+ (

√
pW −

√
p′W )

In the above equation, pA through pW corresponds to the probability of gradeA through gradeW in

a given academic-performance level. Given the pairwise distances between academic-performance

levels and using the hierarchical clustering method, the eight different academic-performance lev-

els were further grouped into four main levels. The resulting four academic-performance levels

are considered as the hidden states of the proposed HMM. The cumulative GPAs associated with

these states are shown in Table 4.1.

Based on an HMM model with 4 academic-performance levels and 216 possible grade-tuples,

it is possible to provide examples of the desired input and output of the HMM model; see Table 4.2.

In the table, student number 1 has enrolled in four semesters and has four grade-tuples recorded

in their academic history. In the first semester, there are no courses with A, B, or C grades as

66



Table 4.2: Example students’ grade-tuple sequences and corresponding estimated academic-
performance level sequences

Student Grade-tuple Seq. Academic-per. Seq.
1 00011,10100,00211,00011 1,1,1,1
2 11110,11200,21001,13000 2,2,2,2
3 22000,32000,30100 3,3,3
4 30000,31000,30000 4,4,4
5 30000,30000,00010,00010 4,4,1,1

the first three digits are all zero. The fourth and fifth digits in the grade-tuple indicate that the

student has grades DF and W in the first semester. The grade-tuple for the rest of the semesters

is explained in the same manner. The estimated academic-performance level for this student in

all enrolled semesters is 1. As it is shown in the table, while students number 1 through 4 have

consistent academic-performance levels during their academic careers, the academic-performance

level for student number 5 changed from 4 to 1 in their third semester.

4.2.2 Initialization and Training

For this particular problem, the process for initializing and training the HMM is complex, espe-

cially given the total number of parameters that define the emission distributions (i.e., 4 states ×

216 possible grade-tuple outputs).

First, I described the process for providing an initial guess for the smaller 4x4 transition matrix,

which has 12 linearly independent parameters (out of 16 total). To identify an initial guess for

HMM transition matrix, students’ transcripts are analyzed to estimate how their GPAs moved

between the four levels identified in Table 4.1 – this is equivalent to assuming a student GPA

directly maps to an academic performance level (removing the randomness assertion stated earlier).
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The matrix below provides the resulting initial transition matrix (percentage scale):

Initial guess for A =



81.81 17.10 1.02 0.07

7.90 78.43 13.52 0.15

0.74 8.54 84.44 6.28

0.34 1.00 10.32 88.34


The distribution of students’ academic-performance in their first semester is considered as an

initial guess for the vector π. The matrix below shows the initial guess for π (percentage scale):

Initial guess for π =

[
20.14 19.07 33.50 27.29

]

As it was explained earlier, an HMM observation in this study for a student in a given semester

is defined as a tuple with five elements. Elements 1 to 3 store the number of courses with grades

A, B, and C, respectively, and elements 4 and 5 are binary variables, determining if the student

has D/F and W grades in that semester. In order to find an initial guess for the emission matrix,

it is supposed that elements of the observed grade-tuples (i.e. the grade-counts) are independent of

each other, with each coming from a Poisson distribution (in the tuning process, the independence

assumption between grade counts is removed). Accordingly, the Poisson parameters describing

the numbers of A, B, C, etc. grades earned by students in each academic level can be learned from

academic data records. Using the Poisson distributions and their parameters, for each academic-

performance level, the probability of observing each grade-tuple, i.e., the grades counts in each

tuple, is computed using a joint but separable Poisson probability density function. Since there

is a total of 216 different grade-tuple combinations in our data set, the initial emission matrix

has four rows (corresponding to the four hidden states) and 216 columns (corresponding to the

216 observations). Due to space limitations, instead of showing the initial emission matrix with

864 parameters, the expected values (EV) of the counts for each grade across the 216 possible
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observations are computed. The results are shown in the following matrix:

Initial EV(grade) =



0.393 0.834 0.894 0.559 0.224

0.817 1.322 0.852 0.250 0.128

1.477 1.387 0.462 0.087 0.074

2.342 0.756 0.095 0.012 0.033


In the above matrix, rows 1 through 4 correspond to academic-performance levels 1 to 4, while

columns 1 to 5 provide the expected value for the number of courses with an A, B, C, D/F , and

W grade each semester. For example, for students in academic-performance level 3 (the third row),

in each semester, the students are expected to earn 1.477 A’s, 1.387 B’s, and 0.462 C’s.

After initializing HMM parameters, the next step is to estimate their optimal value using the

Baum-Weltch algorithm. The optimal estimates, obtained after 20 iterations for algorithm conver-

gence, are listed below:

A =



86.11 10.93 2.44 0.52

8.50 80.00 11.41 0.09

0.29 7.58 84.90 7.23

0.02 0.02 5.64 94.32



EV(grade) =



0.306 0.661 0.861 0.606 0.290

0.783 1.470 0.907 0.211 0.097

1.765 1.421 0.302 0.038 0.055

2.554 0.459 0.023 0.002 0.020


π =

[
12.99 36.74 35.97 14.30

]
Again, instead of providing the probability of observing each of the 864 possible grade-tuples, the

expected earned grades is reported.
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4.3 Analysis

The trained values of the HMM reported in the methodology helps to analyze academic-

performance trajectories. Based on the estimated transition matrix A, most students maintain

their academic-performance level (mode) from one semester to the next. Looking at the diago-

nal of the matrix, 86.11% of students in academic-performance level 1 in semester t will remain

at the same academic-performance level in semester t + 1. These probabilities for students in

academic-performance levels 2, 3, and 4 are 80.00%, 84.90%, and 94.32%, respectively. Based

on these values, we are able to assert, with the exception of performance-level 1, that increasing

performance-levels are increasingly stable, so a student in performance-level 4 is more likely to

remain at the same performance-level when compared to a student in performance-level 2 or 3.

Matrix EV(grade) provides the expected values for grade counts using the estimated emission

matrix. As illustrated in the matrix, students in academic-performance level 4 on average have

more courses with A grades compared to the students in academic-performance level 1 (2.554 >

0.306). Technically, while W grades are not used to compute semester GPAs, the last column of

the matrix EV(grade) indicates there is a significant relationship between W grades and students’

academic-performance levels. Based on the columns, students with academic-performance level

1 are more likely to withdraw from courses in any given semester compared to students in other

academic-performance levels (0.290 > 0.097 > 0.055 > 0.020). Finally, matrix π provides an

estimate of the distribution of academic-performance levels for students’ first semester. Based

on the matrix, most students start their academic careers at academic-performance levels 2 and 3

(36.74%+35.79%).

Figure 4.3 depicts the distribution of students’ academic-performance level at UCF. Levels 1

through 4 correspond to the students who maintained a consistent academic-performance level over

all enrolled semesters. The group Other corresponds to the students who had a change between

academic-performance levels during their academic career at UCF. The synthetic student number

5 in Table 4.2 is one such example for this category. This student has an academic-performance
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Figure 4.3: Distribution over students’ academic-performance level at UCF

level of 4 in their first two semesters and then change to academic-performance level 1 in their

third semester. As reported in the figure, 44.1% of students change academic-performance levels

during their academic careers.

Table 4.3 compares distributions over academic-performance levels for students with different

genders. As the table suggests, female students are more likely to have a academic-performance

level of 4 compared to male students (7.9%<14.3%). Also, female students are associated with

academic-performance level 1 with less probability compared to male students (8.7%<15.5%)1.

Based on these results, there is a significant correlation between students’ gender and their

academic-performance levels at UCF, where, female students on average have a higher academic-

performance level compared to male students. These results confirm previous findings obtained

by Masic et al. [95], in which female students on average have a higher performance than male

students.
1Conducted chi-squared test demonstrates that the difference between academic-performance levels distributions

for female and male students is statistically significant (p-value=0).
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Table 4.3: Gender distribution for students with different academic-performance levels at UCF

Level 1 Level 2 Level 3 Level 4 Other
Female 8.7% 12.8% 21.0% 14.3% 43.2%
Male 15.5% 16.4% 17.0% 7.9% 43.2%

Table 4.4: Race distribution for students with different academic-performance levels at UCF

Level 1 Level 2 Level 3 Level 4 Other
White 10.7% 14.1% 19.8% 12.7% 42.7%

Hispanic 13.0% 14.4% 19.0% 9.9% 43.7%
African-Am. 16.1% 17.7% 15.0% 4.9% 46.3%
Other race 12.7% 13.5% 18.1% 12.1% 43.6%

Table 4.4 shows academic-performance level distributions for students with different

race/ethnicity. As illustrated in the table, White students have the highest rates of be-

ing in academic-performance level 4, followed by Hispanic students and African-Am. stu-

dents, respectively (4.9%<9.9%<12.7%). Also, self-reported white students are less likely to

have an academic-performance level of 1 compared to Hispanic and African-Am. students

(10.7%<13.0%<16.1%)2. These findings are aligned with statistics reported by the U.S depart-

ment of education [96], which show there exists an academic performance gap between students

of different ethnicities and races. This academic gap indicates that white students have the highest

academic performance- in terms of degree awarded rate-, followed by Hispanic students, followed

by American-Am. students.

Of particular interest to this paper is the Other group, which consists of students whose

academic-performance changes levels during their academic career. Among these students, 75.2%

switch their academic-performance levels only once, 20.5% switch their academic-performance

levels twice, and 4.3% change their academic-performance levels more than 2 times. The distri-

bution of switching types for students with one switch is summarized in Table 4.5. Based on the

table, the more common switches between academic-performance levels corresponds to level 3

→level 4 (28.4%), level 2 →level 3 (27.6%), and level 2 →level 1 (21.1%). For students with
2Conducted chi-squared test demonstrates that the difference between academic-performance levels distributions

for students with different races is statistically significant (p-value=0).
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Table 4.5: Distribution of switching types for students with one switch in academic-performance
level

Switch Ratio (N) Switch Ratio (N)
level 1 →level 2 2.6% (313) level 3 →level 1 0.2% (29)
level 1 →level 3 1.2% (139) level 3 →level 2 13.1% (1566)
level 1 →level 4 0.5% (63) level 3 →level 4 28.4% (3416)
level 2 →level 1 21.1% (2540) level 4 →level 1 0.0% (1)
level 2 →level 3 27.6% (3317) level 4 →level 2 0.0% (0)
level 2 →level 4 0.0% (0) level 4 →level 3 5.3% (636)

Table 4.6: Comparing halt rates between students with no switches in academic-performance level
and one switch in academic-performance level

Staying in Halt rate (N) Switching Halt rate (N)

Level 1 97.0% (4146)
level 1 →level 2 8.9% (313)
level 1 →level 3 6.5% (139)
level 1 →level 4 4.8% (63)

Level 2 39.8% (4933)
level 2 →level 1 72.0% (2540)
level 2 →level 3 4.3% (3317)
level 2 →level 4 −

Level 3 20.6% (6896)
level 3 →level 1 72.4% (29)
level 3 →level 2 8.7% (1566)
level 3 →level 4 2.0% (3416)

Level 4 11.8% (4295)
level 4 →level 1 100% (1)
level 4 →level 2 −
level 4 →level 3 3.5% (636)

one switch in their academic-performance level, 60.3% improve their academic-performance lev-

els, while 39.6% worsen. For the group with two switches, the percentages of students ultimately

improving and worsening their academic-performance level are 41.1% and 15.7%, respectively.

Moreover, 43.2% of these students go back to their initial academic-performance level after two

switches (for example, level 3 →level 2 →level 3).

Table 4.6 compares the halt rate for a subset of academic-performance level trajectories. Col-

umn Staying in corresponds to students who kept a consistent academic-performance level. As the

corresponding halt rate column suggests, the higher the academic performance level, the lower the

halt rate (97.0% > 39.8% > 20.6% > 11.8%). Furthermore, it is seen that students that switch
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academic-performance levels from level 1 to other levels had a substantially decreased halt rate

(from 97.0% to 8.9%, 6.5%, and 4.8% for levels 2, 3, and 4). Also, switching from any level to

level 1 increases the halt rate significantly. For example, all students whose academic-performance

levels changed from 4 to 1 left school without a degree. The halt rate for students that switched

from level 3 to 1, and from level 2 to 1 are 72.4% and 72.0%. However, there are surprising

results for students starting at academic-performance level 3, where it is observed that students

who decrease to academic-performance level 2 have a lower halt rate than if than students that had

remained at level 3 (20.6%>8.7%). The conducted proportion hypothesis test suggested that the

difference is statistically significant (p-value= 4.75 × e−28). A similar pattern is observed for stu-

dents whose academic-performance levels are changed from 4 to 3. When combined, this evidence

implies that switching from a high academic-performance level to a lower academic-performance

level does not necessarily result in a higher halt rate. Another surprising result emerges from the

grouping and analysis of the academic trajectories that involve improving academic performance.

For students that improve their academic performance, their halt rate is substantially lower than

those students that maintained a consistent academic performance level. For example, the halt rate

for students who transitioned from level 2 to level 3 is lower than those students who were always

at level 3 (4.3% < 20.6%). The conducted proportion hypothesis test suggested that the difference

is statistically significant (p-value= 4.98 × e−102). Even students that transitioned from level 1 to

level 2 have a lower halt rate than those students consistently in level 4.

4.4 Conclusion and limitations

In this chapter, a new academic feature corresponding to academic-performance levels, was in-

troduced using a Hidden Markov Model. Then, the students’ academic-performance trajectories

were analyzed to investigate their correlations to the students’ final academic outcomes in terms

of halt rates. Unlike traditional statistical methodologies, the proposed approach is able to provide

a standard point of reference for comparing a student’s GPA both across their enrolled semesters
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and to other students. The proposed HMM model takes the sequence of course grades over multi-

ple semesters and returns the sequence of estimated academic-performance levels. The estimated

HMM parameters illustrate that while W grades are not involved in computing students’ GPA,

there is a significant relationship between students’ academic-performance level and withdrawing

from courses. Also, by tracking students’ transitions between four main academic-performance

levels, it was observed that a significant portion of students (44.1%) switch between academic-

performance levels during their education.

Furthermore, analyzing and comparing the halt rate for students with consistent academic

performance levels, evidence suggests that students who constantly maintain a low academic-

performance level are more likely to leave school without a degree. Therefore, the following

findings are the answers to the mentioned research questions at the beginning of this chapter:

Finding: For students with a change in their academic-performance level, it was shown

that switching from any academic-performance levels to level 1 increases the halt rate sub-

stantially.

Findings: The higher academic-performance level, the lower is the halt rate.

Findings: Any switch from level 1 to other level, substantially decrease in halt rate.

Findings: Any switch from other levels to level 1, substantially increase in halt rate.

Findings: Switching from a high academic-performance level to a low academic perfor-

mance level does not necessarily increase the halt rate.

Findings: Students that improve their academic performance levels, decrease their halt

rate below students that maintain consistent levels.

As discussed in this chapter, one of the main challenges of HMMs correspond to the dimension-

ality of the observations. In order to tackle this problem, two different approaches were used in this

chapter. First, an upper limit was considered on the elements of the grade-tuple which restricted

the number of A’s, B’s, and C’s to the maximum of 3 and transformed the number of D/F ’s

and W ’s grades to binary variables. Second, since the probability of some grade combinations is
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zero, each unique grade-tuple was considered as one possible HMM observation. This assumption

decreased the total number of unique observations to 216 (from 687). Although leveraging these

problem-specific features helped reduce the size of the problem that was addressed in this chapter,

in general, such conditions may not always exist. For a model with N states and M observation, the

total number of parameters within an HMM to be tuned is equal to N(N+M−2)+N, as such, high

dimensionality can affect the accuracy of an HMM model in the majority of settings. In Chapter

6, an alternative approach is proposed to tackle this problem.
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CHAPTER 5

HIDDEN MARKOV MODELS: MODELING AND IMPLEMENTATION

Markov models are commonly used to model systems and processes that exhibit stochastic dy-

namics, specifically systems and processes that switch between states or operating modes. When

representing a system as a Markov model, modeling allows for probabilistic switching between

states over each time-step according to static probability distributions. Falling within the gen-

eral branch of mathematics of stochastic processes, Markov models are defined by a number of

unique properties that simplify their representation, thereby allowing for tractability when spe-

cial cases are considered, specifically, the observability of system states. In the standard Markov

model (sometimes called a Markov chain), modeling assumes that the state of the system is fully-

observable and known at all times. In alternative forms, the system state may be modeled as

partially-observable or even completely hidden so that operating states are not directly known.

The usage and application of fully-observable, partially-observable, and hidden Markov models

are problem-dependent. Regardless, when learning model parameters for a Markov model (e.g.

switching probabilities) from data, or when estimating the current state of a system from observ-

able data, the hidden Markov model (HMM) is more challenging to interpret than the standard and

the partially observable Markov model, since the dynamics of the underlying system in the HMM

is unknown and must be inferred.

In this chapter, after briefly introducing and reviewing the hidden Markov model, the mathe-

matical and algorithmic implementations of the Forward algorithm, the Backward Algorithm, the

Baum-Welch algorithm, and the Viterbi algorithm are discussed. These algorithms are necessary

when learning model parameters or estimating system states based on observed data. While the

mathematical derivations of these algorithms are well-known, the computational implementation

of the algorithms presents unique challenges due to numeric underflow (i.e. extremely small num-
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bers). And while numerous techniques have sought to overcome the underflow challenge by calcu-

lating probabilities in the log space and applying the log-sum-exponential trick, the contribution of

this chapter is the presentation of a simpler solution based on unit normalization of probabilities.

The benefit of a normalization approach is that it is simple while ensuring that state probabilities

never reach the numerical tolerance of computer systems. An additional contribution of this chap-

ter and the subsequent chapter is the pseudocode and software implementation in Python. The

software implementation is flexible enough to implement the Multivariate Poisson hidden Markov

models in chapter 6, making it the first known implementation of this kind.

5.1 Mathematical representations of Markov models

A graphical representation of a simple Markov model with three observable states (e.g., states 1, 2,

and 3) is illustrated in Figure 5.1. For an arbitrary Markov model, the set of N available states the

system can operate in is denoted by S = {s1, s2, . . . , sN}. Assuming the system evolves randomly,

at each time-step t the random variable Xt, indicating the current state of the system, draws from

S; accordingly, xt references an instantiation of the random variable. Accordingly, as depicted in

the figure the state of Markov model at each time-step t, denoted xt, is completely observable from

t = 0 until when the system is terminated. In the figure, the transition probabilities between states

are indicted by the values ai,j , which refer to the probability that the system switches from state

i to state j at any given time-step. For example, if at time-step t the system is in state 1 (so that

xt = s1), the system will remain in state 1 (xt+1 = s1) with the probability of a1,1 or will switch to

state 2 (xt+1 = s2) with the probability of a1,2 at time-step t+1. Since each value ai,j indicates the

probability of p(Xt+1 = sj|Xt = si), the laws of probability require that for an N -state Markov

model
∑N

j=1 ai,j = 1 ∀i ∈ {1, . . . , N}.

Standard Markov models have two key properties that significantly simplify their represen-

tation, along with associated calculations. The first, known as the Markovian property, as-

sumes that the probability of switching to any particular state is dependent solely on the cur-
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Figure 5.1: Representation of a simple Markov Chain

rent state, and not prior states that preceded it [97]. In other words, the future state has no rela-

tionship with the past. This property is mathematically represented by the probability equation

P (Xt = xt|x1, x2, ..., xt−1) = P (Xt = xt|xt−1). Additionally, Markov chains assume static tran-

sition probabilities so that ai,j = p(Xt+1 = xj|Xt = si) ∀t.

For a Markov model the current state of a system can described by a state vector u ∈ RN ,

where ui(t) refers to the probability that the system is operating in state i at time-step t. That is

to say, ui(t) = P (Xt = si). When an observation is made, whereby the state of the system is

observed to be in an arbitrary state i, then the state vector distribution collapses into an indicator

vector so that ui(t) = 1, while uj(t) = 0 ∀j ̸= i and j ∈ {1, . . . . , N}. When this representation

of the probabilistic state of the system is combined the Markovian property and static transition

probabilities, ai,j , the one-step dynamics of a Markov model, describing the flow of probabilities

between states in time, can be written using the equation u(t+1) = ATu(t) where A = [ai,j]. The

one-step transition equation can be extended to calculate the state distribution u(t + n) n−steps
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Table 5.1: Components of each Markov chain model

Component Description
S = {s1, s2, ..., sN} The set of N states

A = [ai,j] Transition matrix A ∈ RN , where each ai,j in-
dicates the single-step probability by which a
system moves from state i to state j

π = [π1, π2, ..., πN ]
T Initial state distribution where each πi describes

the probability that the system begins in state i
at time-step t = 1.

after starting with an initial distribution u(t), resulting in the equation u(t+ n) = (An)Tu(t).

The study of Markov models is often interested in calculating the long-term or steady-state

probabilities associated with a particular model. That is to say, calculating limt→∞ u(t) or solving

for an Eigenvectors ν that satisfies the equation ν = ATν; for many Markov models the long-term

probabilities are the same solution to the Eigenvalue problem. In this dissertation focusing on

the academic performance of students, long-term probabilities and steady-state probabilities are

of limited usefulness and not considered; given that students typically enroll in a university for

a fixed number of semesters, the notion of long-term probabilities does not apply. Instead, it is

more relevant to consider the initial state of students when entering a university and the ending

state of students, whether it be graduating or halting according to 6-year criteria used to evaluate

universities. Within the context of Markov models, the initial state distribution is denoted π ∈ RN ,

where the ith term πi = P (X1 = si).

A summary of the relevant parameters describing a standard Markov model, along with their

corresponding descriptions is summarized in Table 5.1.

5.2 Parameter learning for a Markov model

In many cases, the initial modeling of a system requires learning the Markov model parameters de-

scribed in Table 5.1 using historical data. For the most part, this process is not particularly difficult,

as the maximum likelihood estimate (MLE) of the parameters, A and π, are essentially calculated
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using a counting procedure. The learning process begins with a historical data set D with R state

sequences of arbitrary length, D = {D1, D2, . . . , DR}. As denoted, Dr = {xr1, xr2, xr3.., xrT} rep-

resenting the rth sequence, which is of length T , contains the observed state of the system at

each time-step. The first step in the learning process is to identify the total number of possible

states, N , which is given by the number of unique states observed in the historical data such that

N = card(
⋃R

r=1Dr).

The initial state distribution π and state transition matrix A are estimated using the maximum

likelihood estimate. Notionally for an arbitrary parameter θ, the maximum likelihood estimate θ̂

satisfies θ̂ = argmaxθP (D|θ), where D corresponds to observed data and θ is in an allowable set

Θ. Calculating the MLE of π using P (D|π) starts by assuming that data samples are independent,

and that the initial state distribution can be estimated with the first state, xr, of each sequence Dr.

Accordingly, the joint probability over the observed data set D can be expanded so that

P (D|π) = P ({D1, D2, . . . , DR}|π) =
R∏

r=1

P (Dr|π) =
R∏

r=1

p(xr1|π). (5.1)

Equation 5.1 can be rewritten according to the number of times each initial state is observed to

occur over all the state sequences. So if Ci is a count denoting the number of times state i is

observed at the beginning of the R state sequences in the set D, then Ci = card(r|xr1 = i). The

probability formula in Equation 5.1 can then be expressed as the product of the probability of each

initial state i being observed Ci times so that

P (D|π) =
R∏

r=1

p(xr1|π) =
N∏
i=1

p(i|π)Ci =
N∏
i=1

πi
Ci

Since argmaxxf(x) = argmaxx ln f(x), it follows that for the standard Markov model

argmaxπP (D|πo) = argmaxπ
∑N

i=1Ci lnπi. Ultimately, solving for the maximum likelihood
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estimate of π requires solving the following optimization program:

min
πo

N∑
i=1

Ci ln πi

s.t.
N∑
i=1

πi = 1

πi ≥ 0

(5.2)

The solution to the optimization problem in Equation 5.2 can be computed by taking the partial

derivatives of the corresponding Lagrange equation,

L(π, λ, µ) =
N∑
i=1

Ci ln πi − λ
N∑
i=1

(πi − 1)−
N∑
i=1

µiπi,

in terms of the decision variables πi and setting them equal to 0. For a given πi, solving for

∂L(π,λ,µ)
∂πi

= 0 yields Ci/πi − λ − µi = 0. Assuming Ci > 0, and given the requirement that the

Lagrange variables satisfy λ ≥ 0 and µi ≥ 0, then it follows that πi > 0. With this knowledge,

according to the complementary slackness condition µi = 0 since µiπi = 0 ∀i. In which case,

πi = Ci/λ, (5.3)

while noting that λ is still unknown. However, because π is a probability distribution, such that

N∑
i=1

πi = 1, (5.4)

when substituting Equation 5.3 into Equation 5.4, we are left with
∑N

i=1Ci/λ = 1, which implies

λ =
∑N

i=1Ci = R. If follows then that πi = Ci/R. In other words, the maximum likelihood

estimator of π is given by counting the number of times that state i appears first in each sequence

divided by the total number of sample sequences. In the degenerate case when there are no obser-

vations in which a sequence starts with state i so that Ci = 0, then when following the convention
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that 0 ln 0 = 0, it is implied that πi = 0.

Following a similar derivation, the maximum likelihood estimation for the probability of tran-

sitioning from state i to state j can be calculated. Essentially the same process is repeated for a

given state i by identifying and extracting all states sequences pairs that pass through state i and

jump to another state. In this case, the maximum likelihood estimation for the ith row of the tran-

sition matrix A is obtained by the summation over the number of times that system is observed to

switch from state i to state j, and then normalizing by the total number of transitions from state i

to all states. In other words,

âi,j =
Counter(i→ j)∑
k∈S Counter(i→ k)

(5.5)

5.3 Mathematical representations of hidden Markov models

As depicted in Figure 5.2, similar to the standard Markov models, a hidden Markov model repre-

sents the dynamics of a system as it moves between operating states or modes (e.g., state 1, state

2, and state 3 in the figure). When operating within a state, the system generates a state-dependent

output ot at each time-step t; this output can be deterministic or random, however, in most cases,

the output is drawn from a distribution. Unlike standard Markov models in which the state of the

system is visible (xt in Figure 5.1 is known), in the case of HMMs, the states are not directly

observable, and as such, they can only be inferred by observing the sequence of generated outputs.

Like with the standard Markov model, a hidden Markov model is associated the parameters

S, A, and π. Again, S = {s1, s2, ..., sN} represents the set of N possible states in the system

model, A = [ai,j] ∈ RNxN is the transition matrix, where each ai,j denotes the probability of

transitioning from state i to state j at any given time-step (i.e. si → sj), and π corresponds to the

initial state distribution. In addition to these parameters, each state i is associated with an emission

distribution, bi(o). That is to say, as a system moves between states over T time-steps it produces

a sequence of observation O = o1, o2, ..., oT . In the most general form, when a system is operating

in a specific state si at time-step t, the output ot is generated according to a unique probability

83



Figure 5.2: Representation of a simple Hidden Markov Model

distribution denoted as bi(o), whereby bi(ot) corresponds to the probability/likelihood of generated

the observation. The emission distribution, bi(o), typically refers to a probability mass function

or probability density function depending on if the emission distribution is discrete or continuous.

When grouped together, the individual state-dependent emission distributions form the parameter

B, such that B = {b1(o), b2(o), . . . , bN(o)} A summary of the parameter set characterizing a

hidden Markov model, along with the corresponding descriptions, is provided in Table 5.2.

As an extension of the standard Markov model, HMMs maintain a similar version of the Marko-

vian property: the probability of a future hidden state only depends on the current hidden state, as

such the probability of a future hidden state is independent of past hidden states. HMMs have an

additional independence assumption associated with observed values, whereby any observation at

time-step t is only a function of the current state xt generating the observation, and therefore is
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Table 5.2: Components of each hidden Markov model

Component Description
S = s1, s2, ..., sN Set of N operating states

A = [ai,j] s.t. A ∈ RNxN Transition matrix A, where each ai,j indicates
the single-step probability by which a system
moves from state i to state j, i.e. P (qt+1 =
sj|qt = si). Each row of matrix A forms a dis-
tribution such that

∑N
j=1 ai,j = 1 ∀i

π = [π1, π2, ..., πN ]
T Initial distribution π. Each πi corresponds to

the probability that the system begins in state i.
Also,

∑N
i=1 πi = 1

B = {b1(o), . . . , bi(o), . . . , bN(o)} An set of emission distributions describing the
conditional probability of observation o at any
time-step t generated from any particular state i

Table 5.3: Difference between Markov chain and Hidden Markov models in terms of model pa-
rameters

Model Q A B π
Markov Chain ×

Hidden Markov Model

independent of all other states {x1, . . . , xT}\xt and observations {o1, . . . , oT}\ot. In other words:

P (ot|x1, x2, ..., xT , o1, o2, ..., oT ) = P (ot|xt)

Table 5.3 highlights the differences between the standard Markov model and the hidden Markov

model in terms of the model parameters. As mentioned before, the difference between these two

models is in the state visibility. Because the states are not visible for HMMs, the states can only be

estimated based on the state-dependent emission associated with the parameterB. So while for the

standard Markov model the state transition matrix can be estimated through direction observations

(recall Equation 5.5), for hidden Markov models, an additional step of estimating the current state

at each time-step is required in order to estimate the transition matrix A. It follows, that only once

a state estimate is available at each time-step can the emission distribution set B be estimated.

However, the process of estimating the current state requires an initial guess of both A and B. This
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engenders in a cyclic procedure where the best estimate of the current state, along with A and B,

are iteratively updated until they all converge.

With the structure of the hidden Markov model described, the next step is to document the

algorithms used in practice when iteratively learning the parameters of a hidden Markov model and

when applying hidden Markov models to estimate states at each time step. Performing these two

tasks requires addressing the following three fundamental problems, each with its corresponding

algorithm:

• Problem 1 (Likelihood): Given an HMM with assumed parameters λ = (A,B, π) and an

observation sequences O, computed the likelihood P (O|λ).

Algorithm: Forward

• Problem 2 (Estimating States): Given an HMM with assumed parameters λ = (A,B, π)

and an observation sequences O, estimate the most probable sequence of hidden states.

Algorithm: Viterbi

• Problem 3 (Learning Parameters): Given set of a set of observation sequences and as-

sumed number of states n, estimate the hidden Markov model parameters λ = (A,B, π).

Algorithm: Baum-Welch

5.4 Likelihood calculations for hidden Markov models

The problem of state estimation and parameter learning for a hidden Markov model begins by

addressing the likelihood problem, which corresponds to computing the likelihood probability

P (O|λ) given a HMM with the parameter set λ = (A,B, π) and observation sequence O. Because

each state is mutually exclusive, applying the Law of Total Probability, the likelihood function can

be decomposed based on all possible terminal states, xT , as follows:

P (O|λ) =
N∑
i=1

P (O, xT = i|λ)
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The algorithm for computing the likelihood function, commonly called the Forward algorithm, is

used to calculate each of the terms P (O, xT = i|λ). It begins by defining probability value αi(t) as

the probability of observing the sequence of observations o1, . . . , ot and ending in state i at time-

step t. The corresponding probability definition is αi(t) = P (o1, . . . , ot, xt = i|λ). Recognizing

that P (O, xT = i|λ) = αi(T ), the likelihood function can be rewritten as

P (O|λ) =
N∑
i=1

αi(T )

A detailed derivation and explanation of αi(t) can be read in a number of resources on the topic

here: [98]. The goal of this chapter is to explore the programming implementation of calculating

αi(t), with the goal of adjusting it as needed to suit a generalized implementation of HMMs.

More specifically, one objective of this dissertation is to develop, program, and validate a HMM

implementation that allows for state-dependent emission distributions to be modeled as a Poisson

distribution (see chapter 7). Based on the scope of this dissertation, the calculation for αi(t) is now

presented without significant discussion.

Calculation of αi(t) begins with the initialization equation for αi(1) = P (o1, xt = i|λ) given

by

αi(1) = πibi(o1), for 1 ≤ i ≤ N (5.6)

where π refers to the initial starting distribution for the state of the system. In most cases the true

value of π is unknown, and as such an estimate is provided. To calculate αi(t) for subsequent

time-steps, the updated equation

αj(t) =
N∑
i=1

αi(t− 1)ai,jbj(ot), for 2 < t ≤ T and 1 ≤ j ≤ N (5.7)

is applied. As stated, Equation 5.6 can be calculated without encountering numerical underflow is-

sues as long as each of the initial state probabilities πi and state-observation probabilities bi(o1) are
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within numerical tolerances. However, the iterative forward calculation for Equation 5.7 leads to

underflow issues as the probability of an observation sequence approaches zero when the sequence

is longer regardless of the ending state. That is to say P (o1..ot|λ) → 0 as t grows; even sequences

with lengths less than 10 can produce underflow issues for small systems.

Closely associated with the Forward Algorithm is the Backward Algorithm, which seeks to

calculate βi(t) = P (ot+1, . . . , oT |λ, xt = i). So instead of providing the probability of observing

a sequence of emissions from time-step 1 to time-step t while passing through state i so that

xt = si, the Backward Algorithm calculates the probability of observing the remaining sequence

of emissions from time-step t + 1 to time-step T , given that the system terminates at xt = si.

The benefit of calculating βi(t) is that when combined with αi(t) it becomes possible to calculate

γi(t) = P (xt = si|o1, . . . , oT , λ), corresponding to the total probability of being in a given state i

at any given time, t. It is important to note, that while γi(t) can be used to calculate the most likely

state at any instance, that is not equivalent to calculating the most likely state sequence given a

series of observations. The process for calculating βi(t) begins by initialization βi(T ) = 1 for all

states i. Next, the backward induction calculation is given by

βi(t) =
N∑
j=1

= βj(t+ 1)ai,jbj(ot+1). (5.8)

The calculation of γi(t) follows by applying Bayes Law and independence between observations,

so that

γi(t) = P (xt = si|o1, . . . , oT , λ) =
P (xt = si, o1, . . . , oT |λ)

P (o1, . . . , oT |λ)
=

αi(t)βi(t)∑N
j=1 αj(t)βj(t)

Like with the Forward Algorithm, the calculations associated with βi(t) and γi(t) often result

in underflow issues whereby the products of the probability values quickly reach the numerical

tolerances (i.e. the dynamic range) of computing systems as the number time-steps and states

increases.
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5.5 State estimation for hidden Markov models

Since the state of a hidden Markov model is not directly observable, it is necessary to infer the

most likely state sequence using available observations; this problem is commonly referred to

as decoding. For hidden Markov models, the decoding task is accomplished using the Viterbi

algorithm. The foundation of the Viterbi algorithm begins by defining the term δi(t) where

δi(t) = max
x1,...,xt−1

P (x1, . . . , xt−1, xt = si, o1, . . . , ot|λ) (5.9)

corresponds to the probability of the most likely partial state sequence x1, . . . , xt−1 that results

in the observation sequence o1, . . . , ot. While it is theoretically possible that Equation 5.9 could

be used iteratively over all possible options when finding the optimal state sequence, such an im-

plementation is practically infeasible given that the number of combinations grows exponentially

with the number of states, observations, and time-steps. The Viterbi algorithm utilizes a dynamic

programming approach to significantly reduce the decision-space that is explored. Essentially, the

Viterbi algorithm uses all optimal state sequences up to a prior time-step and state in order to find

the optimal state sequence to the considered state at the current time-step. Through this inductive

reasoning, it is possible to find the optimal state sequence over all time-steps.

The Viterbi algorithm is initialized with

δi(0) = πibi(o1) ∀i ∈ {1, . . . , N}.

The following recursion step is then used to construct the set of N optimal sequences up to each

state i at time-step t ∈ {2, . . . , T} stored in ψi(t):

δj(t+ 1) = max
i∈{1,...,N}

δi(t− 1)ai,jbj(ot)

ψj(t) = argmax
i∈{1,...,N}

δi(t− 1)ai,jbj(ot)
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At termination, the probability corresponding to the optimal state sequence, P ∗, and the optimal

end-state, x∗(T ) is given by

P ∗ = max
i∈{1,...,N}

δi(T )

x(T )∗ = argmax
i∈{1,...,N}

δi(T )

Starting from the optimal end-state x(T )∗, the full optimal state-sequence can be extracted by

back-tracking through ψj(t), with the equation

x(t)∗ = ψx(t+1)∗(t+ 1), t = T − 1, T − 2, . . . , 1,

which is essentially an application of the Principle of Optimality.

Once again, as with the Forward and Backward algorithms, the Viterbi algorithm is vulnerable

to underflow issues associated with propagating probabilities during the recursion step.

5.6 Parameter learning for a Hidden Markov model

Learning the parameter set λ = (A,B, π) is a complex, yet well-documented process. Without a

clear determination of the state at each time-step the estimates of A, B, and π – which all reference

the states in some manner – can only be inferred from probabilistic observations. Complicating

the learning of model parameters is that the corresponding optimization has no guarantees of con-

vexity, as such, it is possible that there exist multiple optimal solutions to the maximum likelihood

estimates of A, B, and π.

For a hidden Markov model, the process for learning the parameter set λ makes use of

the Baum-Welch algorithm, a special case of the expectation-maximization algorithm. The

expectation-maximization algorithm is an iterative process that is best understood by the two

named steps:
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Expectation Estimate the missing and latent variables in

the data set (i.e. the current state of the sys-

tem at each time-step).

Maximization Maximize the parameters of the model in the

presence of the data (i.e. the parameter set λ).

Following these two steps repeatedly. First, using an initial guess for the parameter set λ the like-

lihood of the hidden states associated with an observation sequence is estimated. Next, using the

estimated hidden states the estimate of the parameter set λ is updated. This process of estimating

the hidden states, followed by updating the estimate of the parameter set λ is repeated until there

is convergence.

The expectation step begins by calculating two quantities: (1) the likelihood of being in state i

at time-step t given an observed sequenceO = {o1, . . . , oT}; and (2) the likelihood of transitioning

from state i to state j at time-step t given the same observed sequence O. The first quantity

corresponds to γi(t) described in section 5.4. The later quantity is introduced here, and denoted as

ξi,j(t) where

ξi,j(t) =
P (xt = si, xt+1 = sj, O|λ)

P (O|λ)

=
αi(t)ai,jβj(t+ 1)bj(ot+1)∑N

k=1

∑N
w=1 P (xt = sk, xt+1 = sw, O|λ)

=
αi(t)ai,jβj(t+ 1)bj(ot+1)∑N

k=1

∑N
w=1 αk(t)ak,wβw(t+ 1)bw(ot+1)

Each of these quantities is based on the current estimate of the parameter-set λ, which gets updated

over multiple iterations of the expectation-maximization process.

Next, utilizing the quantities γi(t) and ξi,j(t), in the maximization step the current estimated

parameters π̂, Â, and B̂ are updated. The updated estimated for π̂ comes directly from γi(t); as

πi = P (x1 = si|O, λ) it follows that

π̂i = γi(1). (5.10)

The calculation for the estimated transition matrix Â = [âi,j] follows a process similar to maxi-
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mum likelihood estimation detailed in section 5.2. Instead of calculating the maximum likelihood

estimate âi,j according to the notional equation

âij =
Counter(i→ j)∑
q∈QCounter(i→ q)

the Baum-Welch algorithm accounts for the uncertainty in the state estimate. As such, the estimate

equation for âi,j is given by

âi,j =
Expected number of state transition from i to j

Expected number of state transition from i
=

∑T−1
t=1 ξi,j(t)∑T−1

t=1

∑N
k=1 ξi,k(t)

, (5.11)

which can be understood as a weighted average based on the probability of passing between two

state.

In the case of estimating the state-dependent emission distributionsB = {b1(o), . . . , bN(o)} the

process is dependent on the underlying distribution. Regardless, this step still requires the max-

imization of a likelihood function corresponding to the probability of generating an observation

based on the underlying probability distribution. The process for deriving the distribution parame-

ters, θi, for an arbitrary state state-distribution bi(o) can be understood by first considering the case

when it is assumed that the state sequence at each time-step, x(t), is known. In this case, solving

for the optimal distribution parameters θ∗i is simply given by θ∗i = argmaxθi P (Osi|θi) where Osi

is the set of observations when the system is known to be in state i, so that Osi = {ot|xt = si}. For

a hidden Markov model, because the current state of the system is unknown, instead of optimizing

P (Osi |θi) directly, a weighted optimization is considered where the weightings are given by the

probability that the observation is generated from state i. Accordingly,
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θ∗i = argmax
θi

∑T
t=1 P (ot|θi)P (xt = si|O)∑T

t=1 P (xt = si|O)
(5.12)

= argmax
θi

T∑
t=1

P (ot|θi)γi(t) (5.13)

= argmax
θi

T∑
t=1

b(ot|θi)γi(t) (5.14)

since P (xt = si|O) = γi(t), and the denominator can be ignored as it is a constant value that

does not affect the optimal solution. Unlike the previous calculations discussed in this chapter,

solving for the optimal distribution parameters θi for each state-dependent distribution bi(o) does

not typically induce underflow.

5.7 Computational implementation of HMM algorithms

In the previous sections, the underlying calculations associated with hidden Markov models were

discussed. Despite their mathematical derivations, [99, 50], the previously discussed algorithms do

not work in practice. The primary weakness is traced to the Forward and Backward algorithms in

which it is common for the equations to have numeric underflow issues as the probabilities become

increasingly small. Once underflow occurs, then all subsequent calculations as part of the Baum-

Welch algorithm, and subsequently, the Viterbi algorithm, fails. In the next sections, the problem

of underflow is resolved using two techniques. The first technique utilizes log-based calculations

along with the log-sum-exponential trick. The second technique, which is shown to require simpler

calculations, is based on the inclusion of a normalization step.

5.7.1 Reformulating HMM in log scale to resolve the underflow issue

As noted before, the primary reason that the implementations of HMMs fail is that the probability

values exceed the dynamic range of most computers when performing calculations, thereby result-
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ing in the underflow. A common solution to address the underflow problem is to reformulate all

equations in a log-scale space, followed by using the log-sum-exp trick. While these approaches

are commonly used, this section contributes explicit pseudocode used as part of programming

implementations.

Working in the log-space begins by calculating log(αj(1)). From Equation 5.6 it follows that

log(αj(1)) = log(πi) + log(bi(o1)). Furthermore, from Equation 5.7

Lαj(t) = log(αt(j))

= log

(
N∑
i=1

αt−1(i)ai,jbj(ot)

)

= log

(
N∑
i=1

elog(αi(t−1)ai,jbj(ot))

)

= log

(
N∑
i=1

elog(αi(t−1))+log(ai,j)+log(bj(ot))

)
(5.15)

While the term log(αi(t − 1)) + log(ai,j) + log(bj(ot)) can be calculated without difficulty, it is

often a large negative number (e.g. << −500), so that when computing the exponential in the

formula above, the result is an extremely small value (e.g. << e500 = 7.124576e − 218). In the

literature, a commonly used solution for this is known as the log-sum-exp trick. As an example,

suppose that the aim is to calculate log
∑N

i=1 exp(xi). The following equation shows how this trick

works:

log

(
N∑
i=1

exp(xi)

)
= log

(
N∑
i=1

exp(xi − y) exp(y)

)

= log

(
exp(y)

N∑
i=1

exp(xi − y)

)

= y + log

(
N∑
i=1

exp(xi − y)

)

∼ y when all other xi − y << 0
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The key to the above equation is that the best value for y is y = max{xi}. In this case, even

if all xi values are large-magnitude negative numbers, the effect of arithmetic underflow can be

mitigated. As an example, suppose we have the following numbers: x1 = −2510, x2 = −2500,

and x3 = −2515. In this case, y = −2500, therefore, there are no difficulties in computing the

following equation:

log

(
N∑
i=1

exp(xi)

)
= y + log

(
N∑
i=1

exp(xi − y)

)

= −2500 + log (exp(−10) + exp(0) + exp(−15))

= −2500 + 0.00001984933

= −2499.99998015

Thus, when calculating Lαj(t) in Equation 5.15, the final step requires application of the

log-sum-exp trick to term
∑N

i=1 exp (log(αi(t− 1)) + log(ai,j) + log(bj(ot))), where each xi =

log(αi(t− 1))+ log(ai,j)+ log(bj(ot)). The same approach is used when computing the backward

probabilities in Equation 5.8. After computing the log values for the α and β, the next step is to
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compute the ξi,j(t) and γj(t) in log scale using the following equations:

log ξi,j(t) = log

(
αi(t)ai,jbj(ot+1)βj(t+ 1)∑N

k=1 αk(T )

)

= logαi(t) + log aij + log bj(ot+1) + log βt+1(j)− log

(
N∑
k=1

αk(T )

)

= logαi(t) + log aij + log bj(ot+1) + log βt+1(j)− log

(
N∑
k=1

elogαk(T )

)

and

log γi(t) = log

(
αi(t)βi(t)∑N
k=1 αk(T )

)

= logαi(t) + log βi(t)− log

(
N∑
k=1

αk(t)

)

= logαi(t) + log βi(t)− log

(
N∑
k=1

elogαk(t)

)

As with αi(t) and βi(t), the log-sum-trick is applied when calculating log ξi,j(t) and log γt(j). The

exponential of each of the terms are then calculated to generate the values for ξi,j(t) and γt(j) that

are used as part of the maximization-step to generate estimates for A, B, and π using the equations

and process described in section 5.4.

5.7.2 Normalizing the forward and backward probabilities

An alternative approach to resolve the underflow issue is to normalize the forward and backward

probabilities at each time-step. While normalizing αi(t) and βi(t) results in different values, the

end result when calculating ζi,j(t) and γi,j(t) remains the same. As such, the normalization tech-

nique does not affect the maximize-step when estimating the parameter set λ = (A,B, π).

Let ᾱi(t) correspond to the normalized value of αi(t) so that for ĉα(t) =
∑N

i=1 αi(t), ᾱi(t) =

αi(t)/ĉα(t). Similarly, β̄i(t) is introduced at the normalized value of βi(t) scaled by the coefficients

ĉβ(t). When computing γt(j) and ξi,j(t), the usage of ᾱi(t) and β̄i(t) in place of αi(t) and βi(t)
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does not affect the resulting values. This is demonstrated below:

ᾱi(t)β̄i(t)∑N
j=1 ᾱj(t)β̄j(t)

=
αi(t)/ĉα(t)βi(t)/ĉβ(t)∑N
j=1 αj(t)/ĉα(t)βj(t)/ĉβ(t)

=

1
ĉα(t)ĉβ(t)

αi(t)βi(t)

1
ĉα(t)ĉβ(t)

∑N
j=1 αj(t)βj(t)

=
αi(t)βi(t)∑N
j=1 αj(t)βj(t)

= γi(t)

(5.16)

and

ᾱi(t)ai,jβ̄j(t+ 1)bj(ot+1)∑N
k=1

∑N
w=1 ᾱk(t)ak,wβ̄w(t+ 1)bw(ot+1)

=
αi(t)/ĉα(t)ai,jβj(t+ 1)/ĉβ(t)bj(ot+1)∑N

k=1

∑N
w=1 αk(t)/ĉα(t)ak,wβw(t+ 1)/ĉβ(t)bw(ot+1)

=

1
ĉα(t)ĉβ(t)

αi(t)ai,jβj(t+ 1)bj(ot+1)

1
ĉα(t)ĉβ(t)

∑N
k=1

∑N
w=1 αk(t)ak,wβw(t+ 1)bw(ot+1)

=
αi(t)ai,jβj(t+ 1)bj(ot+1)∑N

k=1

∑N
w=1 αk(t)ak,wβw(t+ 1)bw(ot+1)

= ξi,j(t)

(5.17)

5.8 Psuedocode implementation

In this section, the pseudocode for the Baum-Welch algorithm is presented. In support of the

Baum-Welch algorithm, the Forward and Backward algorithms are also presented using the nor-

malization technique described in subsection 5.7.2. When training a hidden Markov model using

the Baum-Welch algorithm it is assumed that a large set of R observations O = {O1, . . . , OR}

are available. While traditional pseudocode for the Baum-Welch algorithm is typically written in

a generic form, the pseudocode provided here assumes the pseudocode will be implemented in the

Python programming language using the NumPy library. As such, Python-specific functions like

einsum are used to represent the summations in Equation 5.16, and Equation 5.17. Additionally,
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the pseudocode is written to indicate sections of code that benefit from utilizing the multipro-

cessing module or standard list comprehension to speed up calculations. List comprehension and

multiprocessing.Pool.starmap() are interchangeable where ever a list comprehension statement is

listed within an OpenPool loop.

First, pseudocode for the Baum-Welch algorithm is presented. The algorithm takes as its input

a set of observations O, an initial estimate for the HMM parameters A, B, and π, and the desired

number of iterations. The output of the Baum-Welch algorithm is an updated estimate for A,

B, and π. The first set of statement focus on calculating αr(t), βr(t), γr(t), and ξr(t) for the

rth observation sequence. For observation Or of length T , the dimension of each variable are as

follows: αr ∈ RN×T , βr ∈ RN×T , γr ∈ RN×T , and ξr ∈ RN×N×T .

Algorithm 1 Baum-Welch algorithm
1: function BW(O, A,B, π,I)
2: for i = 0 to I do
3: OpenPool (NumCores) do
4: P⃗=[PROBOBSSTATE(O,B) for O ∈ O]
5: α⃗=[CALCALPHA(A, π, P ) for P ∈ P⃗ ]
6: β⃗=[CALCBETA(A,P ) for P ∈ P⃗ ]
7: γ⃗=[CALCGAMMA(α, β) for α, β ∈ α⃗, β⃗]
8: ξ⃗=[CALCXI(A,α, β, P ) for α, β, P ∈ α⃗, β⃗, P⃗ ]
9: ClosePool

10: Anum = [ξ.sum(axis=2) for ξ ∈ ξ⃗ ].sum(axis=0)
11: A = (AT

num/Anum.sum(axis=1))T

12: B=[UPDATEEMISSION(i,O, γ⃗) for i ∈ {1, . . . , N}]
13: π = [γ(0) for γ ∈ γ⃗].sum(axis=0)
14: π = π/R
15: end for
16: return A,B, π
17: end function

In computing each αr, βr, and ξr it is beneficial to have ready the probability of an observation

conditioned a given state, i.e. bi(ot) = P (ot|si). As such, these probabilities are precomputed in

line 4 of Algorithm 1 for all states and stored in a matrix P r ∈ RN×T , where each pi,t = P (ot|si)

is calculated using the function PROBOBSSTATE(O,B). The general structure of the function call
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PROBOBSSTATE(O,B) is provided below. The update function UPDATEEMISSION(i,O, γ⃗) for the

emission distributions remains unique to the distribution type, as such, it is not specified here.

Algorithm 2 Calculate State Dependent Probability of Observations
1: function PROBOBSSTATE(O,B)
2: for t = 1 to T do
3: for i = 1 to N do
4: P [i, t] = bi(ot)
5: end for
6: end for
7: return P
8: end function

When implementing Equation 5.10 and Equation 5.11 to update π and A, minor adjustments

to the equations are required to account for training over the complete set of R observations. The

adjustment essential computes a weighted average over the R samples. Accordingly,

π̂i =

∑R
r=1 γ

r
i (1)

R
(5.18)

and

âi,j =

∑R
r=1

∑T−1
t=1 ξ

r
i,j(t)∑R

r=1

∑T−1
t=1

∑N
k=1 ξ

r
i,k(t)

, (5.19)

where γri (t) and ξri (t) correspond to the Rth observation sequence. However, because the denomi-

nator in Equation 5.19 serves as normalization to ensure a proper distribution, its calculation is not

necessary. Instead, the normalization can be performed after calculating all the numerator values;

these steps occur on lines 10-11 in Algorithm 1. Similarly, calculation of the numerator values in

Algorithm 3-Algorithm 6 are denoted by the subscript num.

5.9 Conclusion

This chapter was aimed at introducing the concept of the hidden Markov model (HMM), a com-

mon approach that is used to model stochastic systems. Different sections of this chapter dis-
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Algorithm 3 Forward algorithm
1: function CALCALPHA(A,π,P )
2: αnum =EINSUM(’i, i→ i’,π,P [:, 0])
3: α[:, 0] = αnum/αnum.sum()
4: for i = 1 to T do
5: αnum =EINSUM(’j, ji, i→ i’,α[:, t− 1],A,P [:, t])
6: α[:, t] = αnum/αnum.sum()
7: end for
8: return α
9: end function

Algorithm 4 Backward algorithm
1: function CALCBETA(A,P )
2: beta[:,0]=1/N
3: P=FLIPLR(P)
4: for t = 1 to T do
5: βnum =EINSUM(’j, ij, j → i’,β[:, tb− 1],A,P [:, tb− 1])
6: β[:, tb] = βnum/βnum.sum()
7: end for
8: return FLIPLR(β)
9: end function

Algorithm 5 Gamma Calculation
1: function CALCGAMMA(α,β)
2: γnum=EINSUM(’it, it→ it’,α,β)
3: γ=EINSUM(’it, t→ it’,γnum,1/γnum.sum(axis=0))
4: return γ
5: end function

Algorithm 6 Xi Calculation
1: function CALCXI(A,α,β,P )
2: ξnum=EINSUM(’it, ij, jt, jt→ ijt’,α[:, 0 : −1],A,β[:, 1 :],P [:, 1 :])
3: ξ=EINSUM(’ijt, t→ ijt’, ξnum,1/ξnum.sum(axis=(0,1)))
4: return ξ
5: end function
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cussed the main HMM algorithms, including the Forward algorithm, the Backward algorithm, the

Baum-Welch algorithm, and the Viterbi algorithm. Furthermore, it was explained that while the

mathematical formulation of these algorithms is obvious, there exist some challenges (i.e., under-

flow) with the computational implementation. Finally, the two introduced approaches, including

the log-sum-exponential trick and the log space formulation were explained as solutions to tackle

the computation limitations.
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CHAPTER 6

PERFORMANCE COMPARISON BETWEEN MULTIVARIATE POISSON HMM AND

BASIC HMM

In chapter 2, machine learning techniques were applied and evaluated on their ability to predict

and model halting rates of undergraduate students when considering academic grade measures.

One of the major findings of the chapter was that predictions based on grade-counts proved to

be more informative than predictions using GPA measures. Additionally, another study in the

chapter also indicated that existing machine learning models struggle to account for deviations in

academic performance on a semester-to-semester basis. As such, models appeared to significantly

over-classify regularly high-performing students with one poor-performing semester as more likely

to halt. To overcome this shortcoming, chapter 4 proposes a basic categorical hidden Markov

model to model and link academic performance to final academic outcomes. While able to provide

insights into halting, the chapter highlighted that a large number of parameters is required to define

the model, which would be prohibitive when applying the machine learning technique at smaller

institutions with less available training data (in this case student records).

In order to develop a more concise HMM that accurately reflects the academic performance

levels of students, this chapter proposes the development and application of a Multivariate Poisson

HMM (MPHMM) leveraging the computation framework described in chapter 5. In this chapter,

after developing the necessary equations for the implementation of a Multivariate Poisson HMM,

the benefits of the proposed HMM are compared to the basic categorical HMM using simulation.

The MPHMM is shown to outperform basic HMMs when working with Poisson generated state-

dependent observations.
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6.1 Hidden Markov Model Variants

HMMs can be used to model various classes of problems according to their underlying data struc-

ture and emission types. Here, underlying data structures and emission types refer to observation

type (e.g., discrete or continuous), observation dimension (e.g., univariate or multivariate), and

associated distribution (e.g., Gaussian, categorical, Poisson). For example, an HMM can gener-

ate observations from a univariate random variable coming from a finite categorical distribution.

With this, the categorical distribution is representative of a discrete probability distribution with k

items in the sample space [97] defined by the probability mass function (PMF) f(X = i) = pi,

where pi is the probability of observing event i. The use of univariate categorical emissions as

part of hidden Markov modeling is quite common and finds appropriate support through numerous

programming libraries (e.g Python’s sklearn.hmm.MultinomialHMM); accordingly, chapter 4 used

existing libraries when modeling academic performance levels. One major shortcoming of existing

categorical HMM software implementations is that they typically do not allow for explicit model-

ing of multivariate categorical emissions. As another common HMM emission model makes use of

Gaussian distributions. In this case, the corresponding HMM observations are continuous values

where the likelihood of an observation (x) is computed using the probability density function of

the Gaussian distribution

f(x) =
1

π
√
2π
exp(−(x− µ)2

2σ2
)

where each hidden state is associated with its own µ and σ. Like categorical

HMM, Gaussian HMM finds broad support through software implementations (e.g Python’s

sklearn.hmm.GaussianHMM), which in fact allow for both univariate and multivariate emission

models.

Given the various emission models, it is often important to select the correct emission type

corresponding to the problem under consideration, doing so allows for faster learning of model

parameters and improved accuracy when estimating hidden states. To provide evidence for these
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assertions and to support the subsequent development and utilization of a Poisson HMM a brief

case study is provided here. In the case study, a set of random values, xi, are generated from a

Poisson distribution with a known distribution parameter (e.g., µ=2). The generated data is then

fit to two different distribution models: a Poisson distribution and a categorical distribution. While

it should be expected that both the Poisson and categorical models can fit the generated data, the

benefits of each are not explicitly clear. The aim, therefore, is to investigate which of these two

distributions provides a better fit for a given fixed-size training data set. Here, the fit is measured

by the chi-square distances between the actual Poisson distribution that generated the data and fit

distributions.

Fitting a Poisson distribution to a data set requires estimating the µ parameter of the distri-

bution. For a given sample of N independently generated observation data xi for i = 1, ..., N ,

this process makes use of the maximum likelihood equation. This process begins by asserting the

underlying probability distribution

p(xi) = e−µµ
xi

xi!
, 1 ≤ xi ≤ N (6.1)

and defining the likelihood function based on the set of observation data

L(µ|x1, . . . , xN) =
N∏
i=1

(
e−µ µxi

xi!
) = e−µN µ

∑N
i=1 xi

N∏
i=1

xi

.

Because all xi are known to be non-negative (with at least one value being positive for a suffi-

ciently large set), the optimal parameter estimate µ̂ > 0 can be solved by treating the problem as

unconstrained optimization. Taking the natural log of the likelihood function

lnL(µ) = −µN +
N∑
i=1

xiln(µ)− ln(
N∏
i=1

xi) (6.2)
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and setting the derivative to 0
dL

dµ
= −N +

N∑
i=1

xi
1

µ
= 0

yields the following solution:

µ̂ =

∑N
i=1 xi
N

(6.3)

Accordingly, based on the maximum likelihood approach, the µ parameter for the estimated Pois-

son distribution is obtained by taking the average of all generated observations.

In the case of estimating the parameters p1, . . . , pN for a categorical distribution of size k, the

process follows that provided in section 5.2. The result is a frequentist solution where probabilities

for each emission are in proportion to the relative frequency in which they are observed in the

training data set. In other words, given a set of N training observations, the optimal estimate for

the probability of each observation xi is given by

p̂(xi) =
# of xi in the training set

N
(6.4)

Fit comparison between the estimated distributions (i.e. categorical and Poisson) with the true

Poisson distribution is not without some complications. The original Poisson distribution has infi-

nite support, while categorical distributions are defined over finite sample spaces. As such, there

is no standard or equitable means for calculating the distances between the estimated distributions

and the original Poisson distribution. To overcome this issue, all distributions are represented as

truncated finite distributions based on the largest observed value xmax in the training data set, where

xmax = max{x1, . . . , xN}. To represent the generating Poisson distribution as a finite truncated

Poisson distribution, the first step is to calculate the probability of each possible observation over

the range [0, xmax], which is computed using the µ parameter and the probability mass function in

Equation 6.1. The intermediate result is a set of probabilities P̃ (µ) = {p̃(0|µ), ..., p̃(xmax|µ)}.

To form a proper distribution, the probabilities must be rescaled so that they sum to 1. Ac-

cordingly, let P (µ) = {p(0|µ), ..., p(xmax|µ)} represent the corresponding the rescaled truncated
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distribution where each p(i|µ) = p̃(i|µ)/
∑N

j=1 p̃(j|µ). Using the same strategy, the empiri-

cally estimated Poisson distribution is represented as a categorical distribution with probabilities

P (µ̂) = {p(0|µ̂), ..., p(xmax|µ̂)}, where µ̂ corresponds to the optimal estimate of µ.

The distances between the original transformed truncated Poisson distribution P (µ) =

{p(0|µ), ..., p(xmax|µ)} and one of the estimated distribution P est is calculated using the chi-square

distance (C.D.) given by

C.D. =
xmax∑
i=0

(p(i|µ)− pest(i))2

p(i|µ)
. (6.5)

In Equation 6.5, the values pest(i) are taken from P (µ̂) of the Poisson estimate or correspond to

p̂(xi) of the empirical categorical distribution calculated using Equation 6.4.

Following the generation of sample training data sets based on µ = 2, 5, and 9, the chi-square

distances between the actual and estimated distributions are calculated according to Equation 6.5.

Figure 6.1 plots the chi-square distances (in log scale) between the transformed (true) Poisson

distribution with the estimated Poisson distribution and the estimated categorical distribution. As

indicated by the results in the figure, for all µ values and sample sizes, the chi-square distance

between the estimated Poisson distribution and the actual Poisson distribution is at least an order

magnitude smaller than the empirically estimated categorical distribution. Furthermore, when fit-

ting a Poisson distribution, a categorical distribution requires almost 100x more data to achieve an

equivalent fit as an estimated Poisson model.

To better understand the benefits of using a Poisson model, Figure 6.2 provides the 10th −

90th percentile box plots for the chi-square distances (in log scale) between a generating Poisson

distribution (µ = 5) with the estimated Poisson distribution and estimated categorical distribution.

For each sample size, 1000 different data sets are generated to compare the mean, median, and

variance of the computed distances. From the figure, it is observable that for each training sample

size the Poisson distribution model outperforms the categorical distribution model in terms of the

mean (green points) and median (orange lines) of the chi-square distances. On the other hand,

the distances for the categorical distributions have smaller variances compared to distances for the
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Figure 6.1: The chi-square distance (in log scale) between the converted main Poisson distribution
with the converted estimated Poisson distribution and estimated categorical distribution

Poisson distributions, as indicated by the smaller inter-quartile ranges.

Based on the results presented in Figure 6.1 and Figure 6.2, utilizing a Poisson distribution

model for Poisson data is significantly preferred over a categorical distribution model as it is able

to achieve the same level of accuracy using a fraction of the training data. So although there exist

libraries that provide for HMM implementations using categorical distributions, there is a real

benefit to developing software for a Poisson HMM.

Findings: When data points are generated from a Poisson distribution, fewer samples are

needed when fitting a Poisson distribution compared to a categorical distribution

6.2 Multivariate Poisson Hidden Markov Model

In chapter 4, a basic HMM using categorical emissions is used to model the dynamics of a student’s

academic performance level over their academic career. As part of the modeling process, student

grade-counts are mapped to possible observation tuples. The problem with this approach is that the

number of possible unique grade-count observations is large, and as such, the number of parameters
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Figure 6.2: Box plot for the chi-square distance (in log scale) between the converted main Poisson
distribution with the converted estimated Poisson distribution and estimated categorical distribu-
tion

that are required to be estimated grows quickly. To tackle the dimensionality problem caused by the

large number of grade combinations, an upper limit on the tuple elements representing the grade-

counts is proposed so that the maximum number for A’s, B’s, and C’s put in a tuple is capped at

3. Furthermore, instead of storing the number of D/F and W grades, these values were converted

into binary variables, with 1 indicating that at least one such grade exists in the student’s semester

grades. Through this compression process, the total number of possible observations decreased

from 687 to 216. However, even with the compression, the number of parameters required to

model academic performance levels is high and likely requires large data sets in order to train.

In this chapter, a combination of two different approaches is used to tackle the HMM dimen-

sionality problem. First, instead of converting grades tuples to unique observations as part of

categorical distributions, the grade tuples are represented using a multivariate distribution in which

a multivariate observation output corresponds to a tuple composed of grade-counts (e.g. number

of A’s, number of B’s). A schematic of such an HMM is illustrated in Figure 6.3 where each ob-
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Figure 6.3: Representation of a multivariate Hidden Markov Model

servation is a five-dimensional variable. In the construction of a multivariate HMM, it is assumed

that the elements of each observation are mutually independent; note, however, the distribution

parameters over the multivariate are linked through the state.

Representing grade-counts as a multivariate does not reduce the number of parameters in itself,

especially when still using categorical emissions. However, if each element of the multivariate is

represented by a Poisson distribution, then each distribution can be described by a single parameter.

As demonstrated in section 6.1, if the underlying data does in fact come from a Poisson distribution,

then utilizing a Poisson emission model will require significantly fewer data to learn the model

parameters than the equivalent categorical distribution.

As evidence to support the usage of a Poisson emission for grade-counts as part of a multi-

variate emission model, the empirical distribution of the number of A’s students earn in a given

semester is shown in Figure 6.4. The empirical distribution closely matches the shape of the Pois-

son distribution. Accordingly, a chi-square hypothesis test is conducted to check the compatibility

of the Poisson distribution to students’ grade counts (i.e., the number of A’s). The null hypothesis

of this test states that the number of A’s that students earn each semester follows a Poisson distri-

bution with µ = 1.623. On the other hand, the alternative hypothesis states that the number of A’s

does not have the Poisson distribution. In order to perform the chi-square hypothesis test, the ex-
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Figure 6.4: Probability density function for the Poisson distribution fitted on number of A grades

pected and observed counts are capped at 5, so that all events greater than or equal to 5 are binned

together. The resulting p-value=0.99987651 > .01 (N = 334177) indicates that the null hypoth-

esis cannot be rejected. Hypothesis testing, when applied to the number of B’s, C’s, D/F ’s, and

W ’s, also failed to reject the corresponding null hypothesis that the grade-counts follow a Poisson

distribution. Therefore, it is likely that an HMM that utilizes Poisson emissions could improve

the results, however, such an assertion must be tested and validated on real student data for each

state-dependent emission (see chapter 7).

In order to model semester grade-count using a multivariate Poisson distribution, the next step

is to embed the Poisson probability density function into the HMM software implementation dis-

cussed in chapter 5. The primary difference between a categorical HMM and the Poisson HMM is

in the representation of the emission distribution used when computing the likelihood of particular

observations being generated from each of the hidden states. Specifically, the function PROBOB-

SSTATE(O,B) described in the pseudocode is adjusted. Recalling that O represents an observation

sequence, and B is a set of state-dependent emission distributions, the probability of a state i gen-

erating an observation ot at time-step t is denoted by bi(ot). Now because ot is assumed to be an
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independent multivariate, the probability bi(ot) is given by the product

bi(ot) =
K∏
k=1

bi,k(ot,k) (6.6)

where bi,k(ot,k) represents the probability distribution of the emission’s kth feature. For a Poisson

multivariate, it follows that

bi,k(ot,k) = e−µi,k × µ
ot,k
i

ot,k!
(6.7)

where µi,k is the Poisson parameter for the kth feature of state i’s emission.

Considering this replacement, it is necessary to use the Poisson probability calculations in both

the Baum-Welch and Viterbi algorithms separately. In other words, bi(ot) in Algorithm 2 should

be replaced with Equation 6.6 and Equation 6.7 in the corresponding equations when computing

α (Equation 5.6 and Equation 5.7) and β (Equation 5.8), γ (E-step), and ξ (E-step) in the Baum-

Welch algorithm.

Estimating the parameters of the emission distributions as part M-step requires adjusting the

update equations based on a Poisson distribution. Following a similar structure of the likelihood

function in Equation 6.2 and Equation 6.3, along with the generalized update equation for the

parameters of a state-dependent emission distribution Equation 5.12 the update for the Poisson

parameter µi,k for the kth feature of state i’s emission is

µi,k =

∑T
t=1 αi(t)βi(t)ot,k∑T

t=1 αi(t)βi(t)
(6.8)

In updating each µi,k in Equation 6.8, it is worth noting that following the pseudocode in the previ-

ous chapters, all these equations are computed using the normalized α and β to prevent underflow.
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6.3 Viterbi algorithm performance comparison between basic HMM and MPHMM

As shown earlier in this chapter, it is beneficial to select a probability distribution that matches the

underlying data set in order to minimize the required size of the training data. The implication

of such a result is that when constructing the HMMs, matching the emission distributions to the

data will improve performance when learning parameters as part of the Baum-Welch algorithm. In

this section, the benefits of using a Poisson emission distribution are explored in the context of the

Viterbi algorithm. The corresponding research question is as follows:

Research question: Is there any performance differences when estimating hidden states

between a multivariate Poisson HMM and a basic categorical HMM?

In order to address this research question, a multivariate Poisson HMM and a basic categorical

HMM will be used to estimate the hidden state of a system based on a set of observations. The

HMM that is more accurately able to identify the true state of the system is the better model. To

perform this experiment synthetic test data, which includes matched state sequences and observa-

tion sequences, must be generated. The first step is to generate state sequences based on a common

transition matrix A and initial state distribution π. For this study, the following parameters are uti-

lized (with values represented as percentages) when generating state sequences.

A =



81.81 17.10 1.02 0.07

7.90 78.43 13.52 0.15

0.74 8.54 84.44 6.28

0.34 1.00 10.32 88.34



π =

[
20.14 19.07 33.50 27.29

]
Next state-dependent observations for each of the state sequences are generated. Here, the

observations are assumed to be generated from a five-dimensional multivariate Poisson distribution
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with the following Poisson parameters:

States Poisson Parameters (µ) =



0.398 0.837 0.905 1.036 0.316

0.835 1.360 0.859 0.326 0.156

1.570 1.430 0.463 0.101 0.083

2.840 0.766 0.095 0.013 0.037


In the matrix, rows and columns correspond to states and observation vector dimensions, respec-

tively. For example, if the system is in state 1, the first, second, third, fourth, fifth elements of the

observation are generated from a Poisson distribution with the mean of 0.398, 0.837, 0.905, 1.036,

and 0.316, respectively.

A MPHMM (based on the proposed adjustments in section 6.2) is able to interpret the generated

observations directly when performing the state-estimation step, however, the categorical HMM

assumes a different observation structure. Using the compression procedure described in chapter 4

every combination of the Poisson multivariate is mapped to a single observation, which when

taken together forms a categorical distribution with 216 possible univariate observations (again,

these map to the same observations in chapter 4). The probabilities for each possible observation

are derived from the original Poisson distributions.

The above procedure is repeated to generate eight different data sets, each of them containing

5000 matched to state and observation sequences; and the length of sequences for these eight data

sets is 3, 4, 5, 6, 7, 8, 9, and 10. For both the basic categorical HMM and MPHMM, the Viterbi al-

gorithm is applied to the observation sequence to estimate the hidden states. The estimated hidden

states are compared to the actual (generated) hidden states to compute the estimation accuracy for

both models.

Two different approaches are used to compute the performance of the Viterbi algorithm for

the basic HMM and MPHMM. In the first approach, after calculating the percentage of incorrect

estimates or misestimates for each sequence, the average of the percentages over all the 5000 se-
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Table 6.1: Computing estimation accuracy for the Viterbi algorithm using the mean misestimation
percentage method

Sample Actual states Estimated states # Misestimations % Misestimations

1 2,2,2,3,3 2,2,2,2,3 1 20%
2 1,1,2,2,2 1,1,2,2,2 0 0%
. . . . .
. . . . .
. . . . .

5000 1,2,2,1,2 2,2,2,2,2 2 40%

Table 6.2: Computing estimation accuracy for the Viterbi algorithm using the mean mis-estimation
percentage method

Sample Actual states Estimated states Sum abs. estimations err. Mean abs. estimations err.

1 1,1,1,3,1 1,1,1,1,2 |3-1|+|1-2|=3 60%
2 1,1,2,2,2 1,1,2,2,2 0 0%
. . . . .
. . . . .
. . . . .

5000 1,2,2,1,2 2,2,2,2,2 |1-2|+|1-2|=2 40%

quences is computed. Then, 1-mean(% misestimates) is reported as the accuracy of HMM model

when using the Viterbi algorithm. Table 6.1 provides an example of how this approach works when

computing estimation accuracy for the Viterbi algorithm when the length of the state and observa-

tion sequences are 5. For example, for sample 1, only one state-estimation is incorrect, indicated

by the bold number. Since the state sequence length is 5, then the misestimation percentage for

this sample is 20%. Figure 6.5 shows the Accuracy (1-%misestimation) of the Viterbi algorithm

for both the basic HMM and MPHMM for sequences with different lengths. As is illustrated in

the figure, when increasing the length of sequences, accuracy when applying the Viterbi algorithm

for both basic HMM and MPHMM increases. Furthermore, for all data sets, the MPHMM outper-

forms the basic HMM when estimating the true hidden state; and while the average difference in

accuracy is limited to between 3%-4%, the difference is consistent.
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Figure 6.5: Accuracy (1-%misestimation) of the Viterbi algorithm for both the basic HMM and
MPHMM for sequences with different lengths

As an alternative approach to assess accuracy, the mean absolute error in estimates is consid-

ered. Table 6.2 provides an example application of the mean absolute error when computing the

estimation accuracy of the competing HMMs. For each state sequence, after calculating the sum of

absolute error, the obtained value is divided by the length of the state sequence. Then, an average

is taken over all mean absolute errors to compute the mean absolute error over all the samples. By

subtracting the value from 1, the estimation accuracy is computed for each HMM. For example, for

sample one, while the fourth actual state is 3, the estimated state according to the Viterbi algorithm

is 1. Thus, the absolute error for this state estimate is |3-1|=2. For the fifth state, the absolute error

is 1, therefore, the sum absolute error for the first state sequence is calculated to be 3. After di-

viding the sum absolute error by the length of the sequence (5 in this example), the mean absolute

error for this sample is 60%. Figure 6.6 reports the accuracy (1-%abs. error) for both the basic

HMM and MPHMM when applying the Viterbi algorithm for sequences with different lengths.

Similar to the previous accuracy evaluation, the MPHMM model performs slightly better than the

basic HMM in estimating hidden states for all state sequences with different lengths. Furthermore,
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Figure 6.6: Accuracy (1-%abs. error) of the Viterbi algorithm for both the basic HMM and
MPHMM for sequences with different lengths

the same pattern is seen in this figure, whereby when increasing the length of the sequences, the

accuracy of the models and Viterbi algorithm will be improved for both applied HMMs.

Findings: MPHMM outperforms the basic HMM in terms of state estimation accuracy

when observations are generated from a Poisson distribution.

As a final note, while the performance of the MPHMM in estimating the hidden state is only

marginally better than the basic HMM, it is likely that an improved parameter estimation step will

have a greater impact on the accuracy of the decoding step. That is to say, improving the parameter

estimation through the usage of a MPHMM allows for better performance in the decoding step.

6.4 Conclusion

This chapter was aimed at comparing the performance of the learning and estimation steps asso-

ciated with the basic HMM and MPHMM. Using simulation, it was shown that when data points

are generated from a Poisson distribution, fewer samples are needed when fitting a Poisson dis-

tribution compared to when a categorical distribution is fitted. In this chapter, after introducing
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the Multivariate Poisson Hidden Markov model, its implementation was discussed in the context

of the pseudocode provided in chapter 5. Then, the Viterbi algorithms of the basic HMM and

MPHMM were applied to the observation sequences which were generated from Poisson distribu-

tions. The two different estimation accuracy comparisons between the basic HMM and MPHMM

indicated that when observation sequences are generated from a Poisson distribution, the MPHMM

outperforms the basic HMM in terms of hidden state estimation accuracy. In the next chapter, the

performance of these two HMMs is compared when applied to the UCF student records data.
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CHAPTER 7

APPLICATION OF MULTIVARIATE POISSON HIDDEN MARKOV MODELS IN

EDUCATIONAL DATA MINING

In the previous chapter, the performance of the basic Hidden Markov Model (HMM) and the

Multivariate Poisson Hidden Markov Model (MPHMM) were compared using simulations. In this

section, the goal is to apply the proposed MPHHM to the UCF data and answer the following

research question:

Research question: Is there any differences between the obtained results from the multi-

variate Poisson HMM and the basic HMM using the UCF data?

Similar to the basic HMM in chapter 4, in this section, the developed MPHMM takes the

sequence of students’ grade tuple as inputs to estimate students’ academic-performance levels. In

the basic HMM, each unique grade tuple was converted to an integer to accommodate a categorical

emission matrix; the MPHMM allows using the original observation vectors (the grade tuples) as

it can take multidimensional inputs. After applying the Baum-Welch algorithm, the following

estimations are obtained for both Basic HMM and MPHMM parameters:

A(Basic HMM) =



86.11 10.93 2.44 0.52

8.50 80.00 11.41 0.09

0.29 7.58 84.90 7.23

0.02 0.02 5.64 94.32


, A(MPHMM) =



70.61 25.52 2.94 0.93

9.65 78.79 11.55 0.01

0.08 8.51 84.27 7.14

0.10 0.00 7.46 92.44


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EV (Grade)(Basic HMM) =



0.306 0.661 0.861 0.606 0.290

0.783 1.470 0.907 0.211 0.097

1.765 1.421 0.302 0.038 0.055

2.554 0.459 0.023 0.002 0.020



µ(MPHMM) =



0.176 0.422 0.732 1.523 0.613

0.724 1.424 0.981 0.289 0.123

1.813 1.494 0.294 0.033 0.055

3.254 0.440 0.021 0.002 0.019



π(Basic HMM) =

[
12.99 36.74 35.97 14.30

]
, π(MPHMM) =

[
7.78 40.20 38.29 13.73

]

As in the basic HMM discussed in Chapter 4, rows 1 through 4 of the matrix A(MPHMM) cor-

respond to academic-performance levels 1 to 4 (percentage scale). Based on the estimated tran-

sition matrix A(MPHMM) and the main diagonal, most of the students maintain their academic per-

formance levels from one semester to the next. Furthermore, based on these numbers, students

in academic-performance level 4 are more likely to maintain their academic-performance levels

when compared to other students. These results, in general, are similar to those obtained from

the basic HMM, however, there are some differences between the transition matrices for the ba-

sic HMM and MPHMM for students with academic-performance level 1. The MPHMM suggests

a lower chance for students in this level to maintain their performance from one semester to the

next (70.61%) when compared to the basic HMM (86.11%). While the transition probability from

academic-performance level 1 to academic-performance levels 3 and 4 are similar between the two

models, it is more likely for students in academic-performance level 1 to switch to the academic-

performance level 2 based on the MPHMM when compared to the basic HMM (25.52%>10.93%).

The differences between the basic HMM and the MPHMM on transition probabilities for other

119



academic-performance levels are negligible (within 2%).

In matrix µ(MPHMM), rows 1 through 4 correspond to academic-performance levels 1 to 4, and

columns 1 to 5 provide the expected value for the number of courses with anA,B, C,D/F , andW

grade each semester. In the basic HMM applied in Chapter 4, since the emission matrix had 216

columns, the expected values of different grades EV (Grade)(Basic HMM) were computed for each

state. Comparing matrix µ(MPHMM) with matrix EV (Grade)(Basic HMM), we find that the Poisson

parameters for the D/F ’s and W ’s grades are higher than the expected values for those grades in

the EV (Grade)(Basic HMM). This is because in the basic HMM, the number of D/F and W grades

were transferred to binary variables. Furthermore, since there is no constraint on the number of

grades in the MPHMM, for academic-performance level 4, the mean number of A grades is higher

in µ(MPHMM) (3.254) compared to that of EV (Grade)(Basic HMM) (2.554).

Matrix π(MPHMM) (percentage scale) indicates that the probability of students starting their aca-

demic careers in performance levels 1, 2, 3, and 4 are 7.78%, 40.20%, 38.29%, and 13.73%,

respectively. While the probability of starting school with academic-performance level 4 (13.73%)

is close to that of the basic HMM (14.30%), this percentage differs between the two models for

other levels. For example, the basic HMM suggests a relatively higher chance for students to start

their career at UCF with academic performance level 1 (12.99% in basic HMM versus 7.78% in

MPHMM).

Table 7.1 illustrates the distribution of students’ academic-performance levels at UCF for the

MPHMM and basic HMM. Similar to the basic HMM, the MPHMM suggest that most of the

students change their academic-performance level during their academic careers (Other group).

Comparing performance level distributions for the two models, although the percentages of stu-

dents with academic-performance levels 2, 3, and 4 are similar (the differences are within 2%),

the percentages of students in academic-performance level 1 and in the Other group differ no-

tably. The basic HMM puts 11.4% of students in academic-performance level 1, while that num-

ber is only around 4.7% for the MPHMM. This result is aligned with the earlier observation that
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Table 7.1: Distribution of students’ academic-performance levels at UCF using the MPHMM and
basic HMM

Academic-performance level Basic HMM MPHMM
level 1 11.4% 4.7%
level 2 13.6% 12.3%
level 3 19.1% 17.9%
level 4 11.8% 10.8%
Other 44.1% 54.3%

students with academic-performance level 1 are less likely to keep their academic performance

levels from one semester to the next in the MPHMM model when compared to the basic HMM

(70.61%<86.11%). In general, the numbers on the main diagonal of the MPHMM transition ma-

trix are smaller than those of the basic HMM, meaning students are less able to maintain their

performance levels, and thus more students are classified under the Other group in the HPHMM

model.

In the rest of this section, the academic behavior of students who switch their academic-

performance level is investigated and the results are compared to that of the basic HMM. Among

students in the Other group, 66.2% change their academic performance levels once, 22.7%

change their academic performance levels twice, and the remaining students (11.1%) switch their

academic-performance level more than 2 times. Compared with the results from the basic HMM,

the MPHMM suggest a smaller number of single switch (66.2% vs 75.2% in Basic HMM) stu-

dents and a larger number of double switches in academic-performance levels. Furthermore, it

is more likely for students to have more than 2 switches in the MPHMM when compared to the

basic HMM (11.1%>4.3%). Table 7.2 shows the distribution of switching types for students with

one switch in academic-performance level using the MPHMM and the basic HMM. Similar to the

results from the basic HMM, the three most common switches between academic-performance

levels correspond to level 3 →level 4 (26.3%), level 2 →level 3 (25.6%), and level 2 →level 1

(24.8%). For students who change their academic performance levels once, 53.5% improve their

academic-performance levels and 46.5% of students decrease to a lower academic-performance
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Table 7.2: Distribution of switching types for students with one switch in academic-performance
level using the MPHMM and the basic HMM

Switch Basic HMM MPHMM (N) Switch Basic HMM MPHMM (N)
level 1 →level 2 2.6% (313) 1.4% (178) level 3 →level 1 0.2% (29) 0.0% (0)
level 1 →level 3 1.2% (139) 0.1% (18) level 3 →level 2 13.1% (1566) 14.2% (1846)
level 1 →level 4 0.5% (63) 0.1% (18) level 3 →level 4 28.4% (3416) 26.3% (3429)
level 2 →level 1 21.1% (2540) 24.8% (3230) level 4 →level 1 0.0% (1) 0.1% (14)
level 2 →level 3 27.6% (3317) 25.6% (3333) level 4 →level 2 0.0% (0) 0.0% (0)
level 2 →level 4 0.0% (0) 0.0% (0) level 4 →level 3 5.3% (636) 7.4% (967)

level. These percentages for the basic HMM were 60.3% and 39.6%, respectively.

Figure 7.1 compares the distribution of academic-performance switches between the MPHMM

and the basic HMM. A chi-square hypothesis test was conducted to see if these two distributions

differ from each other statistically. The null hypothesis is that the academic performance level

switches obtained by both models have the same distributions, and the alternative hypothesis con-

veys that the mentioned distributions differ from each other. The obtained p-value is close to 1,

meaning the null hypothesis cannot be rejected.

Table 7.3 illustrates the halt rates for students with zero or one switches in their academic-

performance levels for both MPHMM and the basic HMM. As expected and similar to the re-

sults obtained by the basic HMM, the MPHMM suggests that students with higher academic-

performance levels have lower halt rates (100.0%> 47.2%> 21.3%> 12.7%). Also, any switches

from level 1 to the other levels result in a reduction in halt rates (from 100.0% to 64.6%, 22.2%,

and 11.1% for levels 2, 3, and 4, respectively). These decreases are less significant when com-

pared to the decreases obtained from the basic HMM (from 100.0% to 8.9% for switching to level

2, to 6.5% for switching to level 3, and to 4.8% for switching to level 4). Furthermore, based on

the table, students who switch to level 1 show an increase in their halt rate. For example, for the

MPHMM, the halt rates for students who switched their academic-performance level from 4 to 1 is

increased from 12.7% to 85.7%. These percentages from the basic HMM are 11.8% and 100.0%,

respectively. Based on the results, while there are some differences in the percentage of students

falling within each category, both the MPHMM and the basic HMM show similar trends for all
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Figure 7.1: Distribution over academic performance level switches using the MPHMM and basic
HMM

main features.

Interestingly, similar to the basic HMM, switching from a high academic-performance level to a

lower academic-performance level does not necessarily result in a higher halt rate in the MPHMM.

For example, students who switch from academic-performance level 4 to 3 have a lower halt rate

when compared to students who remain in academic performance level 4 (3.8%<12.7%). The

conducted proportion hypothesis test suggested that the difference is statistically significant (p-

value= 2.36 × e−15). These numbers for the basic HMM are 3.5% and 11.8%, respectively. A

similar trend is observed for students who change their academic-performance level from 3 to 2.

Another surprising observation is that students who improve their academic-performance from a

low level to a higher level have a smaller halt rate when compared to students who consistently

performed at the corresponding higher level. For example, students who change their academic-

performance level from 3 to 4 have a lower halt rate when compared to students who were always

at performance at level 4 (2.2%<12.7%) The conducted proportion hypothesis test suggested that
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Table 7.3: Comparing halt rates between students with no switches in academic-performance level
and one switch in academic-performance level using the MPHMM and the basic HMM

Staying in Basic HMM (N) MPHMM (N) Switching Basic HMM MPHMM

Level 1 97.0% (4146) 100.0% (1722)
level 1 →level 2 8.9% 64.6%
level 1 →level 3 6.5% 22.2%
level 1 →level 4 4.8% 11.1%

Level 2 39.8% (4933) 47.2% (4444)
level 2 →level 1 72.0% 97.2%
level 2 →level 3 4.3% 4.4%
level 2 →level 4 − −

Level 3 20.6% (6896) 21.3% (6503)
level 3 →level 1 72.4% −
level 3 →level 2 8.7% 13.0%
level 3 →level 4 2.0% 2.2%

Level 4 11.8% (4295) 12.7% (3903)
level 4 →level 1 100.0% 85.7%
level 4 →level 2 − −
level 4 →level 3 3.5% 3.8%

the difference is statistically significant (p-value= 1.04 × e−62). These two interesting results are

aligned with those obtained from the basic HMM in chapter 4.

However, there are some differences between the results of these models. For example, based

on the MPHMM, students who switch from level 1 to level 3 have a similar halt rate when com-

pared to students who stay in academic-performance level 3 (22.2% vs 21.3%). The conducted

proportion hypothesis test suggested that the difference is not statistically significant (p-value=

0.924). The values for the results obtained by the basic HMM are 6.5% and 20.6%, respectively,

which are not close to each other. Also, the conducted proportion hypothesis test suggested that

the difference is statistically significant (p-value= 4.21× e−5).

Finding 1: While there are some numerical differences between the results obtained by

the MPHMM and the basic HMM, both models provide the same answer to the research

questions in Chapter 4.

Finding 2: The hypothesis tests indicate that there is no statistically significant difference

between the results from the MPHMM and the basic HMM.

124



7.1 HMM observations distribution

As discussed earlier in this section, the number of A grades that students get each semester follows

a Poisson distribution. In this section, it is determined if a similar distribution is observed for stu-

dents with different academic-performance levels. As an example, we investigate the distribution

over the number of A, B, C, DF , and W grades for students with academic-performance levels 2.

Figure 7.2 illustrates the results obtained from the basic HMM, showing a Poisson distribution for

each of the grades. For example, for students with the academic-performance level 2, the number

of A grades that students get in each semester has a Poisson distribution with µ = 0.77. This

parameter for grades B, C, DF , and W is 1.53, 0.92, 0.25, and 0.11 respectively. The chi-square

hypothesis tests (N = 34971) are conducted for all the grade distributions to find if the distribu-

tions are truly Poisson. The null hypothesis is that the distribution of each grade is Poisson, and

the alternative hypothesis is that the distributions are not Poisson. The obtained p-values of the

hypothesis tests for all grades are close to 1, meaning the null hypothesis cannot be rejected, and

the number of grades follows Poisson distributions.

Figure 7.3 shows the same results but for the MPHMM. Similar to the distributions obtained

from the basic HMM, the grade count distributions for all grades of level 2 students are Poisson

in the MPHHM. A similar chi-square hypothesis test is conducted with p-values close to 1, mean-

ing the number of different grades follows a Poisson distribution. Given these results and since

the observations have a Poisson distribution, using MPHMM is expected to improve the model

performance for both the Baum-Welch and Viterbi algorithms.

7.2 Advantages of the proposed student academic-performance level over traditional crite-

ria in predicting student performance

As mentioned in the introduction, the main goal of this dissertation is to answer the following

research question:
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Figure 7.2: Distribution over the number of A, B, C, DF , and W grades for students with
academic-performance level 2 obtained by the basic HMM

Figure 7.3: Distribution over the number of A, B, C, DF , and W grades for students with
academic-performance level 2 obtained by the MPHMM
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Research question: Does the proposed academic feature (student academic-performance

level) outperform traditional features (i.e., semester GPA) in predicting whether students

halt or graduate?

In the rest of this section, two different studies are conducted to answer this question by com-

paring the accuracy of the new proposed academic feature and the traditional features in predicting

whether students graduate or halt.

Performance comparison between the proposed academic feature and traditional features in

predicting students’ final outcomes. In the first study, four different logistic regression models

are created to predict whether students halt or graduate. For the inputs, the first model takes stu-

dent GPA, the second model takes clustered GPA, the third model takes academic-performance

level from the basic HMM, and the fourth and last model takes academic-performance levels from

the MPHMM. The prediction accuracy of these models is then compared to investigate the perfor-

mances of the input features.

Logistic Regression: GPA Input

In previous studies, semester GPA has been considered one of the main predictors of student aca-

demic performance [10, 65, 66]. In a study closely related to this chapter, Gershenfeld et. al [67]

applied a set of logistic regression models to predict if undergraduate students graduate within six

years. Their results indicated that a low first-semester GPA is a significant factor in explaining why

students do not graduate within six years.

As a benchmark, in this section, student GPAs are used through the first four semesters as

inputs to the logistic regression to identify students who are at risk of halting. The student’s GPA

in each of the four semesters is represented by one independent variable. The dependent variable

for each student is a binary indicator showing if the student halts or graduates. Considering this

setup, the following formula computes the halting probability for each student using their GPA

in each semester. In the formula, GPAi refers to students’ GPAs for semester i, and Bi is the
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corresponding coefficient estimated by the logistic regression in the training step.

P (halt)GPA =
eB0+B1×GPA1+B2×GPA2+B3×GPA3+B4×GPA4

eB0+B1×GPA1+B2×GPA2+B3×GPA3+B4×GPA4 + 1

Logistic Regression: Clustered GPA Input

One shortcoming of the approach presented in the previous study is that it might over-weigh

semester-to-semester fluctuations in student GPA, which are not considered an indicator of sig-

nificant performance changes in general. Some recent studies have used clustering approaches to

categorize students based on their GPA and then investigate the relationship between GPA cate-

gories and their academic performance [100, 5, 101]. This approach results in a more smooth and

robust academic-performance trajectory for students.

The clustering begins by considering each data point as a separate cluster. Then, it performs

the following phases in multiple iterations: (1) identifying the two clusters which are close to each

other and (2) merging the two most similar clusters. By applying this approach, the UCF student

GPAs are clustered into four different levels which are used as inputs for the logistics regression

model to predict students’ halt rate. These different GPA levels are shown in Table 7.4. Similar to

the logistics regression in the previous model, the first four semesters are used to train the model

and estimate the coefficient values in the following equation. The equation is then used to estimate

the halting probability for each student. In the formula, GPALi and Bi are student GPA levels in

semester i and the corresponding coefficient, respectively.

P (halt)GPAL =
eB0+B1×GPAL1+B2×GPAL2+B3×GPAL3+B4×GPAL4

eB0+B1×GPAL1+B2×GPAL2+B3×GPAL3+B4×GPAL4 + 1
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Table 7.4: Semester GPA levels obtained by hierarchical clustering

Level number Cumulative GPA
1 GPA≤2.5
2 2.5<GPA≤3
3 3.0<GPA≤3.5
4 3.5<GPA≤4.0

Logistic Regression: Performance-Level Input HMM\MPHMM

Finally, in this section, the students’ academic-performance levels are estimated using the basic

Hidden Markov Model and the Multivariate Poisson Hidden Markov Model, and then fed as inputs

to a logistic regression model to predict at-risk students. Similar to the clustered GPA model, this

model is less sensitive to normal fluctuations in students’ academic performance. That said, these

two approaches have some important differences as well.

The first difference between these models and the previous GPA-based models is that in previ-

ous models, the logistic regressions were trained based on academic features that were directly ob-

servable (GPA). However, in the models studied in this section, the inputs to the logistic regression

(student academic-performance levels) are hidden states that are estimated based on observations

(the number of A, B, C, D/F , and W grades).

The second difference is that in the first and second logistic regression models, the academic

feature in one semester (GPA) was only representative of a student’s performance in that specific

semester, and was independent of student performance in other semesters. However, in the mod-

els trained by HMMs, student academic performance level for each semester is estimated based

on student performance in the previous and following semesters. Therefore, student academic-

performance trajectories in these models are smoother than those in the previously discussed mod-

els. Table 7.4 indicates the inputs and output of these four different logistic regression models.
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Table 7.5: Inputs and output of three different logistic regression models to identify at-risk students

Model number Models inputs Models output
1 Semester GPA

Graduate/Halt
2 Semester GPA levels obtained by the hierarchical clustering
3 Academic-performance level estimated by the basic HMM
4 Academic-performance level estimated by the MPHMM

Table 7.6: The results of the four different logistic regression models used to predict student aca-
demic performance

Models Model by GPA Model by Clustering Basic HMM MPHMM

Total Accuracy 69.6% 65.7% 64.6% 66.4%
Halt-Accuracy 65.8% 68.8% 78.6% 77.2%

Graduate-Accuracy 70.3% 65.2% 63.4% 64.6%
F1 Score 37.4 35.6 38.0 38.7

Models evaluation

In this section, the four logistics regression models presented in the four previous studies are com-

pared based on their accuracy in predicting if students halt enrollment. The results of these four lo-

gistic regression models are summarized in Table 7.6. Based on the table, models 3 and 4 (in which

the inputs are student academic-performance level, estimated by the basic HMM and MPHMM)

offer higher accuracy in predicting enrollment halt (78.6% and 77.2%, respectively) than the mod-

els trained by semester GPA (65.8%) and clustered GPA (68.8%). Also, Figure 7.4 demonstrates

that logistic regressions that are built based on the variables created by the HMMs have higher

AUC-ROC curves than models created based on traditional features. These results suggest that

academic performance level outperforms the traditional features used in the literature in predicting

student final outcomes (graduating or halting).

Findings: the proposed student academic-performance level outperforms traditional fea-

tures in identifying at-risk students.

Performance comparison between models trained by the proposed academic feature and

GPA when there is fluctuation in student performance. In Chapter 2, it was shown that using
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Figure 7.4: AUC - ROC Curve for the four different logistic regression models

semester GPA as input for logistic regression to predict if students halt or graduate could be chal-

lenging when there are fluctuations in GPA trajectories. While many of these semester-to-semester

fluctuations in GPA may be normal or exceptions, logistic regression and other machine learning

models consider them significant indicators of student change in academic performance, which in

many cases is misleading. Table 2.6 provided an example of a student with four GPA records, out

of which only one was significantly low (Records: 3.55, 1.3, 3.6, 3.4). Machine learning models

classified this student as halt despite overall high performance.

In this study, a similar experiment was designed to find if machine learning models behave

differently when trained by academic-performance levels obtained by the MPHMM. Figure 7.5

shows the impact of student GPA fluctuations on logistic regression prediction trained by stu-

dent academic performance level (MPHMM). In the figure, the semester GPA sequences for two

students are shown. Similar to the example in chapter 2, while these two students have similar

semester GPAs in semesters 1, 3, and 4, their second semester GPA differs significantly (3.75 ver-
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Figure 7.5: Impact of student GPA change on logistic regression prediction trained by student
academic-performance level (MPHMM)

sus 1.33). Since the MPHMM works with grade tuples as its inputs, for each student and each

semester, the corresponding number of A, B, C, DF , and W grades are computed and fed into

the model. For example, student 1 has a GPA of 3.5 in the first semester. The corresponding grade

tuple of that semester is (2,2,0 0,0) for (A,B,C,DF ,W ), respectively. Using the MPHMM, the

estimated academic-performance level from semester 1 to semester 4 for the first and second stu-

dents are (2,2,2,2) and (1,1,2,2), respectively. Using these estimated academic-performance levels

as input in the logistic regression, the resulting halt probability for student 1 is 31.1%, implying

that this student will graduate and not halt. Unlike the result from GPA-based models, the second

student is also considered to graduate, with a halting probability of 32.2%.

These two studies indicate the superior accuracy of the proposed academic-performance level

feature when compared to traditional GPA-based features in predicting student performance. This

improved accuracy mainly resulted from the inherent integration and correlation between records

in different semesters, which are captured by the HMM and MPHMM. This provides a more

robust outlook on student performance by preventing normal semester-to-semester fluctuations

from warping results.

Findings: The proposed academic-performance level outperforms GPA in halt prediction
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models in the cases where there are fluctuations in student performance.

7.3 Conclusion

In the first section of this chapter, the performance of MPHMM was compared against the basic

HMM using UCF record data. The Baum-Welch algorithm was used to estimate model parame-

ters, and the results suggested that both models show a similar trend when it comes to transition

probability between different levels. The conducted hypothesis tests indicated that there is no

statistically significant difference between the results obtained from these models. Despite the

similarities, there were few cases where the two models suggested different results; for example,

the probability of a student switching from level 1 to other levels is higher in the MPHMM than in

the basic HMM. This also results in more students being classified as Other (referring to students

who switch their academic level at least once) in the MPHMM.

In the second section of this chapter, two different studies were used to assess the prediction

accuracy of the academic-performance level against traditional GPA-based features. In the first

study, four different logistic regression models were implemented to compare the performance of

the proposed academic-performance level to semester GPA in predicting if students graduate or

halt. The first and second models used semester GPA and GPA clusters, respectively, as inputs in

the logistic regression model, whereas the third and fourth models were fed by student academic-

performance levels obtained from the basic HMM and MPHMM, respectively. Results indicated

that the proposed academic-performance level outperforms the traditional GPA-based feature in

identifying students who halt enrollment. The second study was to emphasize the importance

of input features in logistic regression prediction accuracy. When training the logistic regression

model with semester-to-semester GPA, the model was unable to identify which grade fluctuations

were relevant in identifying at-risk students; that is, when a more integrated input was provided

(academic-performance level), the model could distinguish between negligible and relevant grade

fluctuations, and as such provide a better prediction.
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CHAPTER 8

CONCLUSION

In order to improve graduation rates and decrease halt rates in universities and higher education

institutions, it is critical to understand academic and demographic factors that correlate to student

academic performance. The importance of such factors in predicting students’ halt/graduate status,

and the advantage of recent statistics and data mining tools in facilitating such predictions, has

stimulated a large body of scientific research known as Educational Data Mining (EDM). Among

students’ academic features, many studies in the field of EDM have identified students’ grade point

averages (GPAs) and course grades as the most important factors affecting halt rates [9].

The first objective of this dissertation was to assess the strengths and weaknesses of common

machine learning techniques as their traditional inputs for modeling the impact of academic per-

formance on student graduation rates. After the shortcomings of the traditional inputs (i.e., GPA)

were discussed, an alternative feature was introduced to overcome the identified limitations; this

was the second objective of the research. The formulation and fundamental concept of the basic

empirical hidden Markov model algorithm was discussed to provide a clear step-by-step thought

process on why and how this alternative approach was developed. After proposing a new academic

feature called student academic-performance level, the third objective was to identify the relation-

ship between student academic-performance level and student halt rate. These results highlighted

an important limitation of the basic HMM, which was its low accuracy for the cases where data

was generated from a Poisson distribution. As the fourth objective of this research, a Multivariate

Poisson Hidden Markov Model (MPHMM) was developed to overcome this limitation.

In the rest of this chapter, section 8.1 to section 8.4 provides a summary of this thesis’ con-

tribution corresponding with the four objectives, and section 8.5 discusses the limitations of this

dissertation and proposes avenues for future research.
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8.1 Limitations of machine learning models and traditional features in EDM

As mentioned earlier, GPA and course grades have been considered important academic features

for machine learning models to predict student outcomes. In this dissertation, the limitations of

previous studies in predicting whether a student halts or graduates was analyzed from two points

of view: (1) limitations in the machine learning techniques, and (2) the features that these models

were built off of.

Six different machine learning models, including Random Forest, Support Vector classifier,

Logistic Regression, Gaussian Naive Bayes classifier, Gradient Boosting, and K-Nearest Neighbor,

were applied to UCF student records to predict if students graduated or halted enrollment. In the

first study, the mentioned machine learning models used the cumulative number of A, B, C, D,

F , and W grades that a student obtained over their first two academic semesters as the input to

predict if the student will halt enrollment or ultimately graduate. One main limitation common

to many of these models is the timing of when the predictions are made. While early predictions

after one or two semesters may have low prediction accuracy, a late prediction may not provide

sufficient time to intervene with at-risk students. The conducted analysis indicated that the more

semester grade-data used in the training set, the higher the model accuracy. Therefore, balancing

the trade-off between early detection against improved model accuracy is challenging.

In the second study, a similar model was developed, but instead of using cumulative grade

counts over multiple semesters, semester grade counts served as input for the prediction model.

While the previous cumulative grade-count models had six inputs, a model using this input struc-

ture based on N semesters will now have 6N inputs. The same six machine learning models were

applied based on the new input structure. One advantage of these models over the previous models

is that the new models could determine in which semester a specific student had better performance.

The obtained results illustrated that there is no significant improvement in results compared to the

results from the previous models. Such a finding shows that if two students have the same cumu-

lative GPA, even if they have different grade patterns (i.e., high-to-low and low-to-high), they will
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have the same probability of halting based on these models. In fact, these models do not consider

the impact of patterns in students’ academic performance (e.g., decreasing or increasing grades) on

their final academic outcomes. In other words, these models assume that a student’s performance

in each semester is independent of the student’s performance in other semesters.

In the third study, the same six machine learning techniques were used to predict whether

students graduate or halt, however, semester GPA was considered as the input instead of grade-

count. The obtained results indicated that grade-count is a more accurate input feature than GPA

in predicting if a student would graduate or halt. Such a result was expected as a greater number of

input features (6 for the grade-count and 1 for GPA) results in higher model accuracy. Furthermore,

this study used GPA data of two different students to investigate how fluctuations in GPA could

impact model accuracy. The first student had high GPAs (more than 3.4) in four semesters. On

the other hand, the second student had high GPAs for three semesters but had a drop in GPA

in the second semester (1.3). All six machine learning models classified student 1 as graduated

and student 2 as halted. In other words, having a low GPA among three high GPAs caused the

second student to be classified as halted. Therefore, as another limitation, using GPA as the input

for the machine learning model is challenging since it could not distinguish between normal and

significant changes in student academic performance.

8.2 Proposing student academic-performance level using HMM as an alternative to tradi-

tional features

In Chapter 2, the limitations of traditional features (i.e., semester GPA) in predicting student per-

formance is investigated. In this dissertation, academic-performance level, a new academic feature,

was introduced as an alternative to GPA that is used in literature as an important indicator of stu-

dent outcomes. Proposing this new academic feature is considered as the first contribution of this

dissertation. Unlike traditional statistical methodologies, the proposed approach is able to provide

a standard point of reference for comparing a student’s GPA both across their enrolled semesters
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and to other students.

In this study, the Hidden Markov Model (HMM) (an unsupervised learning technique) was

proposed to define student academic-performance level. Markov models are commonly used to

model systems and processes that exhibit stochastic dynamics, specifically systems and processes

that switch between states or operating modes. However, in the Hidden Markov model, unlike

other Markov models, the statuses of states are hidden, and the aim is to estimate the hidden states

based on the sequence of observations which are generated from the hidden state. In this study,

the proposed HMM takes the sequence of course grades tuple over multiple semesters (the HMM

observation) and returns the sequence of estimated academic-performance levels (HMM hidden

states). The course grade tuples consist of the number of A, B, C, DF (combined), and W grades

a student receives in a semester.

As the first finding of this study, it was shown that while W grades are not considered when

computing student GPA, there is a significant correlation between withdrawing from a course and

academic-performance level. Also, results indicated that students who consistently keep a low

academic-performance level are more likely to halt enrollment than other students. Furthermore,

the higher the academic-performance level, the lower the halt rate. Analyzing the halt rate for

students who change their academic-performance level provided other results. For example, stu-

dents who increase their academic-performance levels from the lowest level to other levels will

have a significant decrease in their halt rates. Finally, this study had two surprising results. First,

switching from a high academic-performance level to a low academic performance level does not

necessarily increase the halt rate. Second, students that improve their academic performance have

halt rates below students that maintain consistent levels.
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8.3 Developing a Multivariate Poisson Hidden Markov model for analyzing students’

academic-performance trajectories

In Chapter 4 of this dissertation, a basic empirical HMM was developed to propose a new feature,

called academic performance level, as an alternative to traditional features (i.e., GPA) that were

commonly used to predict student performance. Despite the novelty of the proposed feature, the

chapter highlighted that a large number of parameters are required to properly formulate the model,

which would be prohibitive when applying this machine learning technique at smaller institutions

with less available training data. It was found that since the number of grades students earn each

semester follows a Poisson distribution, the development of a Multivariate Poisson Hidden Markov

Model (MPHMM) could overcome the observed limitation. As such, the second contribution of

this dissertation was the development of the necessary equations for implementing the Multivariate

Poisson HMM, which to the best of the author’s knowledge, had not been investigated in literature

previously. A simulation model was used in Chapter 6 to compare the benefits of the proposed

MPHMM to the basic categorical HMM. The findings of the simulation indicated the superior

performance of the MPHMM in terms of parameters and hidden state estimation when data points

are generated from a Poisson distribution.

In the second part of this chapter, the MPHMM was applied to UCF data to find if any dif-

ference exists between the results from the MPHMM and the basic empirical HMM in analyzing

student academic-performance trajectories. The findings showed that while there are some numer-

ical differences in student transition between different performance levels, both models suggest

the same general pattern. For example, the halt rates for students who switch their academic-

performance level from 4 to 1 was increased from 12.7% to 85.7% in the MPHMM. The percent-

ages for this in the basic HMM were 11.8% and 100.0%, respectively. In fact, a similar pattern of

significant halt rate increase was observed in both models, despite the minor numerical differences.
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8.4 Advantage of the proposed students’ academic-performance level over traditional ap-

proaches

As was mentioned earlier, as a contribution, this dissertation proposed an alternative to traditional

features used in predicting student outcomes. Two different studies were conducted to compare

the performance of the proposed academic feature and traditional features in predicting whether

students graduate or halt. In the first study, four logistic regression models were developed to

predict if students halt or graduate. For the models’ input, the first model used student GPA, the

second used cluster GPA, the third model used the academic-performance level obtained by the

basic HMM, and the last model used the academic-performance level from the MPHMM. While

the first two logistic regression models were built based on the observable (traditional) features,

the estimated hidden states (academic-performance levels) were used as inputs for models 3 and

4, which are not directly observable. Prediction accuracy indicated that the proposed academic-

performance level obtained by the HMMs outperforms traditional features in identifying students

who halt enrollment.

In Chapter 2, it was shown how using student semester GPA as input for machine learning

models in predicting whether students halt or graduate could be challenging when there are fluc-

tuations in students’ GPA trajectories. While many of these semester-to-semester fluctuations in

GPA might be normal or exceptions, logistic regression and other machine learning models con-

sider them significant indicators of changes in academic performance which, in many cases, is

misleading. In the chapter, two different students were selected that had the same GPA for their

first, third, and fourth semesters. However, student 2 had a lower GPA than student 1 in the sec-

ond semester. All applied machine learning models classified student 1 as graduated and student

2 as halted. Thus having one low GPA among three high GPAs caused student 2 to be classified

as halted. In the second study in Chapter 7, for the same two students, the corresponding grade

counts for each semester’s GPA were extracted. Then, after applying the MPHMM to estimate

academic-performance levels for students 1 and 2, logistic regression was trained based on the
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estimated academic-performance. In other words, the estimated hidden states from the MPHMM

fed into the logistic regression to predict if students 1 and 2 graduated or halted enrollment. Unlike

Chapter 2, in this section, both students were classified as halted, which implied that the proposed

academic-performance level outperforms GPA in the cases where there are fluctuations in student

performance. This finding provides a more robust outlook on student performance by taking into

account normal semester-to-semester fluctuations in their record history.

8.5 Limitations and future works

This study, like any other research, is not without limitations. One of its limitations is that it only

considers students’ semester-to-semester course grades to predict halt status. As explained in the

literature section, other academic factors like enrollment type (full-time and part-time) could also

significantly affect student performance. Since student enrollment types may change from one

semester to the next, including this feature in the proposed HMMs is logically possible. The only

barrier to this implementation is that unlike the number of grades that has a Poisson distribution,

the enrollment type follows a binary distribution (either full-time or part-time), and therefore a

multivariate HMM is needed to support different distributions for each observation dimension.

As an avenue for future research, an extension to the proposed MPHMM in this dissertation can

be developed with a 6-dimensional observation vector; dimensions 1 to 5 may correspond to the

number of A, B, C, DF , and W grades (with a Poisson distribution), and the sixth dimension

designating if a student is full-time or part-time (which follows a binary distribution).

In Chapters 4 and 7 of this dissertation, an arbitrary number (i.e., 4) was used for the number

of hidden states determining academic performance level. However, some studies have indicated

that the number of hidden states could impact model accuracy in terms of likelihood [102]. Based

on the literature, AIC and BIC are two popular criteria to determine the optimal values for the

number of hidden states. Therefore, finding an optimal value for the number of student academic-

performance levels (the hidden states) and comparing the new results with the obtained results in
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this dissertation could another future work.

In Chapter 7, it was shown that although both MPHMM and basic HMM show the same gen-

eral pattern in regards to student academic performance-level transitions, there are some numerical

differences between the results from the two models. Furthermore, those numerical differences

were more evident for students with academic-performance level 1. It is an interesting open ques-

tion for future research to investigate the reasons for such differences and advise on what factors

are driving a smaller or bigger gap in the obtained results. Those findings may lead to a deeper

understating of the MPHMM behavior and its advantages over the basic HMM.

In this dissertation, only the impact of a student changing academic-performance level on halt

rate was investigated. However, in reality, there are other factors that change from one semester to

the next that could impact student performance. For example, some students change their major,

which could be a significant factor in student halt rate. For instance, students who change their

major from engineering to business are more likely to have an increase in GPA, and thus a higher

chance of graduation. Therefore, as another avenue for future research, the impact of such factors

along with changes in students’ academic-performance levels on halt rates will be investigated.

The results obtained in this dissertation are based on data collected at the University of Cen-

tral Florida between 2008 and 2017. As was mentioned in Chapter 3, UCF is a unique university

in terms of students demographics (e.g., a significant portion of Hispanic and transfer students).

While UCF’s population size makes it a good candidate for doing educational research, this de-

mographic uniqueness may yield conclusions that are not representative of other universities. To

understand how universities’ different demographics impact student performance, future research

may apply the proposed HMMs to data from other universities and compare the results.

Furthermore, the data set used in this dissertation has some limitations. Explaining such limita-

tions is crucial as it guides towards more practical data collection and organization, leading to more

informed analysis and thus producing better insights. For example, the data set under considera-

tion did not include academic and demographic information on students who halted enrollment and
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left school without a degree. Such information, if present, could improve the analysis of students

performance, their academic patterns (including GPA, enrollment, etc.), and the corresponding

consequences on outcomes. Moreover, for students who transferred to UCF from community col-

leges or other universities, their academic performance such as transcripts and GPAs corresponding

to their previous institutions were not included.

The impact of the Covid-19 pandemic on higher education is another limitation of this disserta-

tion. The analysis conducted in this study is based on data collected before the pandemic. However,

as many papers suggested, the Covid-19 pandemic has affected higher education and student per-

formance significantly [103, 104]. For example, the University of Central Florida shifted grading

policy after the pandemic, allowing students to have satisfactory or unsatisfactory grades in place

of letter grades [105]. Due to the new grade structure, applying the proposed HMMs to post-Covid

student records could be impossible. Since the new grading policy may have caused some teachers

to grade more leniently than before, when applying the proposed HMMs to post-Covid student

record data, the results might be different from the results in this dissertation.

In this dissertation, six different machine learning models were used, with semester grade

counts as inputs, to predict if students graduate or halt enrollment. One aim of this study was

to investigate if these models could determine in which semester a specific student has a better

performance. The obtained results indicated that these models are not able to consider the impact

of patterns in student academic performance (e.g., decreasing or increasing) on student final out-

comes. Development of Recurrent Neural Network (RNN) models for this problem and comparing

its results to the results from the six applied machine learning models, could be considered another

idea for future studies.
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Sankhyā: the indian journal of statistics, pp. 401–406, 1946.

152
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