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ABSTRACT

As global energy sources transition towards renewable energy, the demand for sustainable
fuels has never been greater. The sheer scale of this transition will require numerous solutions to
accommodate for the diverse and complex situations worldwide. This dissertation will discuss 3
studies: the utilization of CO2 waste gas to produce fuels sustainably, characterizing biofuels for
efficient use in automobiles, and developing a solid, emissonless fuel intended for spaceflight but
also applicable on Earth.

The hydrogenation of CO; into value-added molecules could reduce greenhouse gas
emissions if waste stream CO> were captured for conversion. We found that atomic vacancies
induced in defect-laden hexagonal boron nitride (dh-BN) can activate the CO, molecule for
hydrogenation. Subsequent hydrogenation to formic acid (HCOOH) and methanol (CHsOH) occur
through vacancy-facilitated co-adsorption of hydrogen and CO». Boron and nitrogen are abundant
elements, making h-BN an attractive catalyst in the synthesis of value-added molecules,
facilitating efforts to reduce GHG emissions.

Biofuels could be vital in a sustainable fuel future. However, their implementation into
existing engines requires an understanding of their interactions with engine components at
temperature. The formation of carbon deposits on hot metal components can reduce engine
performance. Using a novel test rig and gasoline and diesel analog compounds, the degree of fuel
degradation to form carbon can be measured on various metal surfaces. Thus, we can screen for
low soot-forming biofuels as promising candidates surface on the market.

Historically, innovations in space exploration have led to immensely beneficial
applications on Earth. Currently, various limitations of power sources hinder the capacity for

regular and frequent space exploration. The ability to harvest heat for electrical power would



reduce the cost of long-distance and long-duration missions. Employing a regulated, self-
propagating, exothermic chemical reaction, we have devised a slow-burning reactant system

capable of generating heat at a harvestable rate.
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW

The globe’s massive energy demands are largely met today by the burning of oil, coal, and
natural gas. These three sources of energy, all derived from fossil fuels, power our electric grids,
providing electricity to residential, commercial and industrial buildings and the vast majority of
these fuels are used to power our various modes of transportation (Figure 1), including aviation,
automobiles, trucks, buses, and ships. However, fossil fuels are not a renewable energy source and
are not only depleting, but are detrimental to Earth’s atmosphere [1, 2], oceans [3], ecosystems [3,
4], biodiversity [5], habitual weather cycles [6] and directly to human health and nutrition [7, 8].
These detriments are either direct or indirect consequences of burning hydrocarbon fuel and
increasing levels of anthropogenic carbon dioxide in the atmosphere. Luckily, renewable energy
alternatives exist and advances in technology have successfully reduced the cost of these newer
power sources (i.e. solar, wind) below that of our conventional fuels.

However, transitioning so much of society’s current infrastructure away from
hydrocarbons and toward large-scale adoption of cleaner energies is an immense effort. The scale
of this problem indicates a variety of scientific solutions are needed, as one or a few may not
accommodate for diverse and complex situations and scenarios worldwide. While clean, green
energies are being deployed across the globe, the discovery of sustainable syntheses of
hydrocarbon fuels and utilization of biofuels may prove to be an important intermediate solution
for climate mitigation. The objective of the studies discussed in the dissertation will be to facilitate
progress in the areas of carbon dioxide conversion, biofuel usage in the automobile industry, and

alternative energy sources in the space industry.



U.S. Greenhouse Gas Emissions by Economic Sector,
1990-2019

8,000

6,000

4,000

2,000

Emissions (million metric tons of
carbon dioxide equivalent)

] l 1 [ ! |
1990 1995 2000 2005 2010 2015 2019
Year

@ Transportation @ Electricity generation @ Industry
@ Agriculture ® Commercial @ Residential
@ U.s. territories

Source: U.S. EPA's Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2019.
https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks

Figure 1: Sources of emissions by sector in the United States from 1990 to 2019. Image credit: EPA.

1.1 Catalytic Reduction of Carbon Dioxide

Research in carbon dioxide capture, utilization, and storage (CCUS) technologies have
increased steadily over the last decade in an attempt to address concerns of increasing CO>
emissions. While many carbon capture and storage (CCS) technologies intend to profit from
compressed COz, or to inject carbon dioxide into rock formations undergroud, returning them from
whence they came [9], carbon dioxide utilization can have significant benefits as well. CO2 has
garnered considerable scientific interest as a potential C1 source for fuel production. [10-12]
Carbon dioxide can be utilized in this way by carboxylation [12] or reduced via electrochemical

[13], homogeneous [14] and heterogeneous [15, 16] means. The conversion of some CO> into



useful, valuable compounds could provide a monetary incentive for emitters to implement such
technologies for profit and thus may increase manufacterer willingness to sequester carbon
dioxide.

A prospective catalyst for CO2 conversion is defect-laden hexagonal boron nitride (dh-
BN), an environmentally safe, low-cost, non-metal, heterogeneous catalyst that both chemisorbs

sufficiently large quantities of CO> on its surface and reduces it to methanol and formic acid.

1.1.1 Mechanocatalytic Activity of Boron Nitride

The crystal structure of pristine hexagonal boron nitride (h-BN) consists of layered sheets
of alternating boron and nitrogen atoms, held together by VVan der Waals forces (Figure 2). In its
pristine state, boron nitride is an inert catalyst posessing no calatytic activity. However, sites which
are catalytically active for hydrogenation (aka reduction) can be conveniently generated in the

material by mechanical grinding.
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Figure 2: Structure of the h-BN crystal lattice containing alternating nitrogen (blue) and boron (gray) atoms in
layered sheets.

Ball milling, or grinding, of the boron nitride sheets is accomplished by placing the material

in a vial to be rapidly shaken among milling media (ball bearings). As the media compressively
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impacts the h-BN powder, it acts to remove or rearrange atoms from the sheet arbitrarily, creating
random locations of an atomic vacancy or irregularity. These sites now host regions of either
electron deficiency or electron density as compared to the unaffected areas in the sheet. Figure 3
illustrates the variety of defect sites able to be produced by ball milling conditions. Density
functional theory (DFT) calculations indicate that propene and other olefins have the greatest
affinity for the Ng, Bn, VN, and Vg defect sites, with the boron vacancy (Vs) having the largest
affinity for both propene and hydrogen with binding energies of -3.69 eV and -4.95, respectively.

[17]
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Figure 3: Different types of defect sites that can be generated in the boron nitride, as calculated by density
functional theory (DFT). From the top left we have a boron nitrogen swap (B/N), Stone-Wales defect (SW), a
nitrogen substitution for a boron (Ng), a boron substitution for nitrogen (Bn), a carbon substituted for a nitrogen
(Cn), a carbon substituted for a boron (Cg), a nitrogen vacancy (Vn), and a boron vacancy (V). [17]

Following the creation of defect sites in a mixer mill, we have previously demonstrated
that the dh-BN is catalytically active for hydrogenation of propene if the catalyst is continually
subject to low-energy milling conditions in a second type of mill, a pebble mill. [17] A detailed
background of different milling styles are discussed in the following section titled

Mechanochemistry. The pebble mill subjects the dh-BN to plastic deformation as the ball bearings



impact the catalyst surface, somewhat similar to the impacts in the defect site creation stage using
the mixer mill. It is hypothesized that plastic deformation of the dh-BN sheets leads to fluctuations
in the binding energies of surface sites, inducing desorption of a substrate from a site. These
observations are similarly true for the hydrogenation of carbon dioxide over dh-BN, and neither
hydrogenation of propene nor CO2 has been able to be replicated under static (non-milling)
environments. However, if the catalyst is milled, the reduction of CO2 over dh-BN has been
demonstrated to produce high value products. Although dh-BN is best implemented in CO2-rich
conditions (namely, O.-free) [18] it could still be used to catalytically recycle this combustion
product back into fuel or valuable product at low temperatures if the CO is isolated first, or the

gas stream is oxygen deficient.

1.1.2 Mechanochemistry

The phenomenon of a mechanical action resulting in a chemical effect is known as
mechanochemistry. The first uses of mechanochemistry can be dated as far back as the striking of
rocks to produce a flame, though systematic implementation of mechanochemistry was first
reported by M. Carey Lea (1823-1897). Mechanochemistry is defined as “a branch of chemistry
dealing with the chemical and physiological changes of substances of all states of aggregation due
to influence of mechanical energy”. [19] By applying mechanical energy, reactions can be induced
in solids, providing a new path to synthesis.

The reaction of two chemicals in the solid phase has traditionally been performed in a
variety of ways. Solids are oftentimes dissolved first in an appropriate solvent, which results in the
introduction of an additional reagent. Solid-state reactions can be treated under elevated
temperature and pressure, though the lack of intimate contact, non-uniform size distribution of the
particles, and poor diffusion results in low efficiency. [20] In addition, such reactions are difficult
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to perform in large batches, and chemical syntheses can only be performed in small quantities.
However, implimenting mechanical action, agitation, or forces as part of the reaction procedure
allows for the mitigation of these effects and results in simple chemical reaction synthesis,
catalysis, and phase transformation.

Mechanochemical reactions can be performed within various types of ball mills. Each ball
mill consists of a particularly shaped container, or vial, inside of which ball bearings are placed.
When a mill is turned on, the motor causes the vial to undergo either shaking, rotation, spinning,
or a combination of these motions, which in turn cause the ball bearings to exhibit a particular
behavior in response. During a milling reaction, the chemical reagents within the vial encounter a
sufficiently large magnitude of force and kinetic energy from ball bearing contact, that a reaction
is forced. When performing such a reaction, there are many variables to consider when chosing
the ideal ball mill. The type of reaction, the physical phase and hardness of the reagents, the
quantity of material needing processing, and the modes of force required to achieve the desired
result are a few variables to consider when chosing the ideal reactor. Some of these parameters are
summarized in Table 1 for a mixer, pebble, attritor, and planetary mill. Additional details will be
provided for the mixer and pebble mills, since they are utilized in experiments discussed in this

dissertation.



Table 1: The mixer, pebble, attritor, and planetary mills are four examples of ball mills which can accomplish
mechanochemical reactions.

Fmax (N) Forces at Speed Loading -
Type Energy Class Work (RPM) Vil Scalability
Mixer ]
(Shaker) ’ ﬁ053 Corrslp;]ressmn 1200 , _zﬁog Low
Mill igh-energy ear vials/reactor
Pebble 329 . . .
Mill Low-energy Tumbling | Variable >1000 kg High
F Compression
Att|\/|ri||t|Or Hi ﬁ?nler Tumbling 4000 100 kg High
g 9y Shear
Centrifugal
Planetary N/A Compression 600 2509 Low
Mill 4 vials/reactor
Shear
1.1.2.1 Mixer Mill

The mixer (or shaker) mill is a common laboratory-scale mill with the smallest vial size.
As seen in Figure 4, the mill consists of an arm (or sometimes 2 arms), where a cylindrical vial
(Figure 5) is clamped, which rotates rapidly in a figure-eight motion. As the mill shakes the vial,

the media inside collide with the top, bottom, and sides of the vessel, forcefully impacting the

reactants.
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Figure 4: The shaker (mixer) mill with a clamped vial.



This type of mill is ideal for small-batch reactions on the order of a few grams, which is
convenient for exploratory, discovery, or qualitative reactions, although quantitative reactions can
also be performed. The stainless steel shaker mill vial is comprised of the cylindrical vial base, a
lid which houses an o-ring to seal in the reagents, a threaded screw cap (brass), and a small number
of milling media (ball bearings). The zirconia vial (white) is not threaded, and thus, the lid is placed
on top of the vial and is clamped down using a unique clamping mechanism made from hose
clamps. Both vials are gas-tight, but do not contain a gas inlet or outlet, and therefore have limited
atmospheric control. Due to the mechanism in which the mill delivers the impacts (shaking), the
mixer mill is ill-suited for large-scale industrial applications. Meaning, a proven successful
chemical reaction in a mixer mill must be achieved again in a pebble or attritor mill in order to be
scaled up to an industrial size, since large-scale versions of pebble and attritor mills do exist.
However, pebble and attritor mills are inconvenient for exploratory research due to the effort

required for set up and cleaning.

Figure 5: Shaker mill vials made out of stainless steel (left) and zirconia (right), both assembled and disassembeled
(disassembly in center). The stainless steel vial is sealed gas-tight using a screw cap (brass) while the zirconia vial
uses a unique clamp to compress the lid down onto an o-ring located on the vial itself.



1.1.2.2 Pebble Mill

The pebble (or roller) mill is an intermediate-sized mechanochemical reactor that can be
used for both laboratory- and industrial-scale applications. A laboratory-scale pebble mill is
pictured in Figure 6 and employs a gear and chain which rotates a horizontal-lying reaction vial.

As the vial (Figure 7) rotates about its long-axis, the media within it tumble along with the reagents.

Figure 6: A pebble mill reactor, consisting of a motor and chain, which rotates the vial and causes tumbling of the
ball bearings. The pebble mill vial is situatued within a heated bed with the capabilities for atmospheric control.

Solid, liquid, and gaseous reagents can be loaded within the pebble mill, since it is equipped
with a gas inlet and outlet. The vial is gas-tight and is outfitted with specialized filters (stainless
steel) to keep solids and liquids contained within the reaction vessel. Compared to the mixer mill,
the pebble mill vial is best suited for a large quantity of milling media (ball bearings) since the

bearings are tumbled and not shaken.
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Figure 7: A stainless steel (left) and alumina (right) pebble mill vial, with their respective ball bearings. Two
flanges (bottom) are used to close each end of the vial. Two filters (center in petri dish) are placed between the vial
end and a flange on each side to prohibit reagents from exiting the reaction zone. O-rings (orange) seal the vial at the
flange. Six bolts secure the flanges to the vial on each side. A threaded hole in the center of each flange accomodates
for a gas inlet and outlet.

1.1.2.3 Reactor Material and Media

Reaction vessels can be constructed out of a wide range of materials, so long as the desired
vial shape can be machined. A few examples of vial materials are shown in Figure 8. Changing
the vessel material can serve many purposes. For example, stainless steel reaction vessels tend to
cause metal contamination, which can be undesirable for catalytic reactions, since these metals can
act as catalysts themselves. For mechanical synthesis reactions, metal contamination may interfere
with characterization of the reaction products. Vial material can offer a selection of degrees of

hardness during milling. A vial of softer material such as acrylic may be desired to dampen the
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impact of the ball bearings, if a particular reaction calls for such conditions. Similarly, harder

materials such as tungsten carbide can be used to increase the impact force of ball bearings.

Figure 8: Mixer mill vials made from various materials (from left to right) stainless steel with “hourglass” interior,
stainless steel, acrylic with “hourglass” interior, acrylic, zirconia, tungsten carbide. Top image is a top view of the
vial interior.

Choice of material for milling media (ball bearings) can be of greater importance than the
material of the vessel itself. A wider selection of ball bearing materials are displayed in Figure 9.
The material of the ball will determine its density, and thus, higher density balls will have a larger
mass (assuming equal ball diameter). More massive bearings will impart a higher force with each
impact (Equation 1.1). The acceleration of the ball will remain constant and depends on mill design
specifications (i.e. shaking speed of arm).

F =ma (1.1)

In addition, bearings of different sizes (Figure 10) can be employed to target specific
impact force without changing the materials used. Reactions with high activation energies may
call for high-density bearings made of tungsten carbide or stainless steel. On the other hand, for

particle size reduction or mixing reagents within the vial, lighter media is ideal. Although the vial
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and ball bearing material typically match, there is nothing constraining the use of different material

ball and vial unless there is a possibility of contamination or damage of the equipment.

Stainless Steel Tungsten Carbide

Alumina

Zirconia

: Polypropylene Torlon PAI

Figure 9: Ball bearings (0.5 in diameter) in a variety of materials.

Figure 10: Ball bearings for any material come in various sizes. Here are a selection of sized bearings made from
stainless steel, and a single zirconia bearing (white). The largest 2 bearings are 0.75 in diameter.

A SPEX mixer mill clamp shakes at a speed of 1060 cycles/minute in a “figure-8” motion,
with a distance of 5.9 cm traveled by the vial in the x direction (the vial’s long axis) and 2.5 cm in
the y direction (along vial radius). Thus, in a single “shake”, the vial travels 11.8 ¢cm in the X

direction and 5 cm in the y direction. Using the discrete element method simulation software,
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EDEM, we can approximate the average acceleration of a ball bearing within a standard stainless
steel SPEX vial to be 212.36 m/s?. This average is taken over all paths traveled by a ball bearing,
including collisions with the side walls as well as collisions with the vial base and lid. Although
collisions of bearings traveling from end to end of the vial may have the highest acceleration, in
reality, side-wall collisions are extremely likely. Using this value of acceleration and implementing
Equation 1.1, the approximate impact force of a 0.5 in diameter ball bearing can be estimated for
a number of materials (Table 2). These estimations are for vial with dimensions like that of a

standard SPEX vial with an interior volume of 65 mL.

Table 2: The calculated impact force of a 0.5 diameter ball bearing of various materials, that can be achieved in a
65 mL volume mixer mill vial.

Material D(Z?;':;y Mass (g) Impact Force (N)
Polypropylene 0.91 0.98 208.05
Torlon PAI 141 151 321.37
PTFE 2.13 2.29 485.36
Alumina 3.88 4.16 882.62
Zirconia 6.02 6.46 1371.12
440C Stainless Steel 7.75 8.31 1765.15
Tungsten Carbide 17.16 18.41 3908.38

1.2 Biofuels

Implementing biofuels is an important means by which to bridge the gap in the transition
between fossil fuels and renewable energies. Although still hydrocarbon based, biofuels are
produced from plant and animal waste materials, resulting in net carbon emissions that can
potentially be near zero depending on crop choice. [21] A demand for biofuels would result in a
demand for plant biomass material and thus, an increase in plant growth; plants which, while alive,
would fascilitate uptake of atmospheric carbon dioxide by their natural life cycle and through soil
regeneration. [22] Despite the benefits of some CO. sequestration, biofuels still produce fewer

metric tons of CO» than that of gasoline combining all stages of production. [23] Figure 11 shows
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the improvement in those numbers as efficiency in biofuel production increases. It is important to
note that although biofuels are an important element of this story, electrification of vehicles still
outsurpasses biofuels in terms of lowest emissions, as shown in Figure 12.

Some bio-derived fuels, referred to as “drop-in” fuels, are similar enough to conventional
fuels that they can operate within current engine systems with no modifications. [24] Thus, they
are ideal candidates for swift adoption. Biogasoline, biodiesel, and fuel additives (bioethanol) can
all be produced from green wastes. However, each must be subject to the same characterizations
and screenings as conventional hydrocarbon fuel, since they will likely exhibit the traditional

problems associated with the burning of hydrocarbons.
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Figure 11: The emissions produced from typical corn ethanol without implementing efficient practices is less than
that of gasoline. With more efficient agricultural practices these emissions can be even further reduced.

One such problem is the tendency of hydrocarbons to thermally degrade to carbon at high

temperatures. Thermal degradation of conventional petroleum-derived fuels to form coke deposits
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has been a topic of study for decades. [25] Jet fuel has long been known to degrade to form soot
products, giving rise to problems in the aviation industry. [26] The chemical composition of
biofuels and novel additives may vary from that of conventional fuels, and it is desirable to
understand the effects they may have in a typical engine environment. Depending on the nature of
these compositional differences (Table 3), thermal degradation may increase or decrease,
especially with variations in compounds within different hydrocarbon classes (or functional
groups). [27] The integration of new biofuels into existing systems relies on the ability to rapidly
test and screen for promising biofuel candidates. It is desirable that testing for fuel properties such

as soot formation need not require exceedingly long sampling times.
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Figure 12: A comparison of gasoline-, biofuel-, and electically-powered vehicles. Gasoline emissions here include
oil extraction and refining as well as tailpipe emissions. Biofuels have a high potential for emissions reductions as
ethanol production efficiencies increase and responsible agriculture practices improve.
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Table 3: The differences between gasoline, diesel, biogas, and biodiesel compounds.

Gasoline Diesel Biogasoline Biodiesel
+C4-C12 *+C9-C25 +C6-C10 + Long-chain
+ Alkanes (paraffins) | « Long chain | < Short chain + Fatty acid esters
Composition | * Alkenes (olefins) « Aromatics | = Alcohols (ethanol)
* Cycloalkanes
(Naphthenes)
Petroleum Petroleum * Biomass (corn, » Vegetable oil
Source (crude oail) (crude oil) algae) ' * Animal fats
* Cellulosic plant
waste
_ * Already implemented in modern » Fewer emissions in production
Benefits engines * “Drop-in” fuels are engine-ready
* Non-renewable * Increase food prices
Dis- * Emissions from drilling « Deforestation for agriculture use
advantages * Emissions from combustion + Emissions from combustion

Space agencies are continually searching for innovative power solutions which would
enable more flexibility when planning missions. [28-32] Energy sources powering space missions
can range from highly energetic nuclear reactors to short-lifetime and low-output batteries (Figure
13). [33] Batteries are conventional and convenient, but require recharging if they are to be used
over the course of weeks or months. In addition, batteries may not contain sufficient outputs to
power all the instruments that may be desired on board, leaving scientists to prioritize some
scientific equipment over others. This is now another constraint in addition to weight restrictions.
Novel technologies such as regenerative fuel cells are a promising source of energy that could
further diversify fuel options. [33, 34] For the Artemis program, NASA plans to widen the scope
of their sustainable power generation through public prize competitions such as the Watts on the

Moon Challenge, [35] launched in 2021, which intends to solve the problem of powering sustained

1.3 Solid Pyrolant as an Energy Source for Space Missions

living on the Moon.
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Figure 13: The range of power output and lifetimes of various energy sources for spacecraft. [33]

The proper selection of a power system is dependent on a multitude of variables, including
the mission duration and the destination. Oftentimes, an energy source that has an appropriate
lifetime for a mission may not be a suitable choice for the destination, or vice-versa. For example,
solar arrays paired with lithium-ion batteries may operate well on missions as far as Mars, but this
power quickly diminishes with increasing distance. [36] To date, only the Juno spacecraft,
launched in 2011 to Jupiter, has successfully utilized solar panels to generate power at a distance
greater than Mars (Figure 14). [36] However, Lucy, JUICE, and the Europa Clipper will soon
travel to the Trojan asteroids, Jupiter, and Europa while utilizing large-area solar arrays to fuel
their batteries. For the Europa Clipper, these solar arrays will span about 100 feet in order to
receive sufficient sunlight. [37] Moreover, even some missions to the Moon and Mars may require
alternatives to solar power in order to overcome specific challenges, such as cold temperatures at
high altitudes, at the poles, or during winter season, as well as sunless locations. [38] Likewise,

manned missions to any destination will require power other than solar. [39]
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Figure 14: An illustration of NASA’s Juno spacecraft, exhibiting its large solar arrays. Image credit: NASA.

1.3.1 Radioisotope Thermoelectric Generators (RTGS)

Radioisotope thermoelectric generators (RTGs) have powered several long-range, long-
duration, and energy-intensive space missions, most of which are listed in Table 4. Pioneer 10-11,
Voyager 1-2, Galileo, Cassini, New Horizons (Figure 15), and Dragonfly have destinations to the
Jovian planets and beyond, which are too large of a distance from the sun for solar panels to operate
efficiently. The Ulysses spacecraft, whose mission was to collect data from the Sun’s poles,
required a gravity-assist maneuver around Jupiter in order to escape the plane of the Solar System.

[40] The detour to Jupiter ruled out the possibility of a solar-powered mission to study the Sun.
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Figure 15: An illustration of New Horizons, an example of a spacecraft powered by an RTG. Image credit: NASA.

RTGs provide a thermal fuel source that also maintains ideal equipment operating
temperatures onboard the craft. Their simple operation and low maintanence requirements make
them suitable for unmanned missions to the most extreme environments in space and on Earth.
RTGs operate continuously and independent of certain unavoidable circumstances such as

variations in sunlight, temperature, dust, and radiation. [39]
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Table 4: List of spacecraft powered by a radioisotope thermoelectric generator.

Spacecraft Mission Launch | Years | RTG Type Isotope Class
Destination Year Active

Apollo 12-17 | Moon 1969-72 SNAP-27 Pu-238 N/A

Pioneer 10 Jupiter 1972 31 SNAP-19 Pu-238 N/A

Pioneer 11 Jupiter/Saturn 1973 22 SNAP-19 Pu-238 N/A

Viking Landers | Mars 1975 mod. Pu-238 Flagship

1,2 SNAP-19

Voyager 1, 2 Interstellar Space 1977 43 MHW-RTG | Pu-238 Flagship

Galileo Jupiter 1989 14 GPHS-RTG | Pu-238 Flagship

Ulysses Sun 1990 19 GPHS-RTG | Pu-238 N/A

Cassini Saturn 1997 20 GPHS-RTG | Pu-238 Flagship

New Horizons | Pluto/Kuiper Belt 2006 15 GPHS-RTG | Pu-238 New Frontiers

Curiosity Mars 2011 10 MMRTG Pu-238 Flagship

Rover

Perserverance | Mars 2020 1 MMRTG Pu-238 Flagship

Rover

Dragonfly Saturn 2026 0 MMRTG Pu-238 New Frontiers
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CHAPTER 2: MECHANICALLY ENHANCED CATALYTIC REDUCTION
OF CARBON DIOXIDE OVER DEFECT HEXAGONAL BORON NITRIDE

This work is reprinted (adapted) with permission from K.L. Chagoya, D.J. Nash, T. Jiang,
D. Le, S. Alayoglu, K.B. Idrees, X. Zhang, O.K. Farha, J.K. Harper, T.S. Rahman, R.G. Blair,
Mechanically enhanced catalytic reduction of carbon dioxide over defect hexagonal boron nitride,
Sustainable Chemistry and Engineering (2021), 10.1021/acssuschemeng.0c06172. Copyright

2021 American Chemical Society.

2.1 Introduction

In the last decade, the large-scale release of carbon dioxide (COy) into the atmosphere has
resulted in great international concern for our climate and widespread action to curb its release.
Carbon dioxide is the main component of all combustion products produced in power generation
and transportation. As consumer demands increase, the production of CO, will also increase.
Global carbon dioxide emissions have been increasing, and each recent year yields a new record
high. In 2018, CO, emissions again hit a record high at 36.7 gigatons. [41] The emission reduction
of this greenhouse gas is of critical importance to the world climate. Popular approaches for the
reduction of CO emissions involve sequestration [42], electrochemical reduction [13], and
homogeneous [14] as well as heterogeneous [15, 16] reduction. However, each of these approaches
has disadvantages. Sequestration is limited to available space, electrochemical reduction is energy
intensive, homogeneous reduction utilizes catalysts that can be difficult to recover, and
heterogeneous catalysts are typically transition metal based. The most popular transition metals
(save iron) utilized are not abundant.

Here we present a new approach for decreasing CO2 emissions by implementing a

heterogeneous catalyst produced from abundant elements to chemically reduce waste CO> and
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produce valuable products. This approach facilitates reuse of the catalyst and allows the process
intensification needed for industrial utilization. Reduction of carbon dioxide to useful molecules
presents an attractive solution by providing economic incentive for capturing and utilizing CO>
instead of disincentives for CO release. This combination of both encourages CO: to be viewed
as a raw material and not as a waste gas.

Although carbon dioxide is a combustion product there are enthalpically favored pathways
to usable molecules. A reductant gas, such as hydrogen, that can be produced using renewable
energy offers a potential solution to realizing value-added molecules from CO,. Currently, most
hydrogen is produced by steam reforming, and advances in water splitting catalysts may make
hydrogen production greener. [43] The simplest reaction is the addition of molecular hydrogen

(H2) across a carbonyl bond (C=0) in CO>. This produces formic acid by Equation 2.1.

O

)k 2.1
O=—C=—0 + H—H ~— > HO H (2.1)
carbon dioxide hydrogen formic acid

The forward reaction is enthalpically favored below the boiling point of formic acid (-31.59
kJ/mol, 100.8 °C). The reverse reaction is favored above the boiling point of formic acid (-14.9
kJ/mol). Furthermore, reduction of formic acid to methanol (Equation 2.2) is favored below the

boiling point of formic acid (-99 kJ/mol) as well as above its boiling point (-64.1 kJ/mol).

(0]
-~ °
o H+ 2H—H — HO—cCH;, + 7~ Ny (2.2)
formic acid hydrogen methanol water
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A forthcoming paper shows that the reaction mechanism proceeds through the formation
of formic acid. [44] Hexagonal boron nitride has the potential to catalyze multiple reactions, as
multiple defect types are possible (Figure 16). These defects can produce quite different chemical
environments, from the Lewis acidity of a nitrogen vacancy (V) to the Lewis basicity of a boron
vacancy (V). In fact, boron nitride has been shown to be catalytically active for hydrogenation
under reductive conditions [17] and dehydrogenation under oxidative conditions. [45] Although
oxidative dehydrogenation may be due to B-O species formed in situ[46], both hydrogenation and
dehydrogenation take place on defect sites. [17, 45] We have found that these defect sites are active
for catalyzing the reactions outlined in Equations 2.1 and 2.2 with localized electronic structures
favoring CO2 binding and carbonyl bond activation. These defect sites are conveniently introduced

into the boron nitride structure via the application of mechanical force.
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Figure 16: Four defect structures in BN were studied. These are (from top left to bottom right): a boron vacancy
(Ve), a nitrogen vacancy (Vn), boron substitution for nitrogen (Bn), and 90° rotation of a BN bond, aka Stone-Wales
defect, (SW). Blue and pink spheres represent nitrogen and boron, respectively. The light-gray backgrounds indicate
the defect areas. As shown in Ref. 19, they are potential defected sites with affinity towards chemisorption. Table 8
summarizes binding energies calculated for CO; and H (this study) and those for ethane and propene. Because the

binding energy of CO; to nitrogen vacancies (V) is on par with olefin binding energies and strength of binding

energy of CO2 and H; are similar, the V site has been identified as the most likely catalytic site for olefin
hydrogenation.

The use of mechanical force to achieve CO; reduction to methane has been previously
demonstrated over MgO supported Ru/Ni/Fe catalysts. [47] Milling during hydrogenation was
demonstrated to reduce the activation energy of the process and increase the production of
methane. [47] This study found no advantage to pre-milling whereas we have found pre-milling
significantly reduces the induction period for the onset of catalysis. [17]

Reduction of carbon dioxide in this way provides an economic incentive for capture and
utilization of waste CO- as a profitable raw material. This could be instrumental in reducing CO>

atmospheric emissions while mitigating the costs associated with control of these emissions.

24



2.2 Experimental

2.2.1 Preparation of dh-BN

Pristine h-BN (PCTF5 grade) supplied by Saint-Gobain Ceramic Materials was dried under
dynamic vacuum at 400°C for 20 hours then transferred to an argon-filled glovebox. In a 65 mL
zirconia milling vial with (1) 20 mm diameter zirconia milling media (ball bearing), 3 g of dry h-
BN was milled for 1 hour in preparation for hydrogenation. For uptake experiments, milling times
ranged from 30 minutes to 4 hours. Milling was performed in an 8000M SPEX CertiPrep mill. All
milling vials were loaded under argon. A silicone o-ring and custom clamp were used to ensure
the vial was gas-tight during high energy activation. The boron nitride power is handled using

plastic tools to eliminate contact with metal.

2.2.2 Mechanocatalytic Batch-Mode Hydrogenation Reaction

CAUTION! Hydrogen presents a significant hazard. The flammability limit of hydrogen
in air is between 4 % and 75%. [48] Hydrogen burns with a blue nearly invisible flame.
Engineering controls and safe operating procedures must be in place before proceeding. In this
work all apparatus are thoroughly purged of air before admission of hydrogen. Hydrogen transfer
lines are composed of 303 stainless steel or nylon (which has a low hydrogen permeability [49]).
Hydrogen tanks have flash arrestors and excess flow valves between the regulator and the
application. During an experiment, all materials in the vicinity are either non-flammable or ignition
resistant.

In an argon-filled glovebox, 2.5 g of dh-BN was loaded into the stainless-steel batch-mode
reactor (Figures 17, 18, and 19) containing 440C stainless steel, spherical milling media (ball

bearings) of diameters and quantities: 19.1 mm (12), 12.7 mm (53) and 6.35 mm (86). The reactor
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was sealed using silicone o-rings, removed from the glovebox, and purged with food-grade carbon
dioxide. The reactor was then pressurized with food-grade CO2 and Hz at 20°C to a total pressure
of 685 kPa. The partial pressures of CO, and Hz were 393 kPa and 292 kPa, respectively.
Temperature was controlled using a CN3000 process controller and measured with 12 gauge K-
type thermocouple in a copper sheath held against the rotating reactor by the spring tension of the
thermocouple wire. Hydrogenation was performed at rotational speeds of 60 or 120 rpm at room

temperature (20°C), 120°C and 160°C.

Figure 17: The mechanical reactor used for this study allows gaseous reactants to be introduced in a batch or flow
configuration. Mechanical energy is supplied by rotation of the vessel (light gray) about rotary gas feedthroughs
(red) by chain and spherical media inside the reaction vessel. Heat is applied from below (yellow) and above (not
shown, mirror of below apparatus).
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Figure 18: The moving portion of the mechanical reactor (A) is in the center. The rotary feedthroughs (left and
right) are shown disassembled in D and E. A stainless steel fritted disc sits in a pocket machined in to the body and
is sealed with Viton O-rings (B&C). The K-type thermocouple is housed in a copper sheath and held against the
rotating mill body by the spring tension of the thermocouple wire (F). The rotary feedthrough bodies are held to the
rigid case by a collar clamp fatened to the case (G). Rotary motion is driven by a DC motor (I right). Motion is
transferred by chain and sprocket attached to the reactor end cap (H and A). The assembled mechanical and gas
feedfeedthroughs are shown in 1. The control electronics (J) include a Variac (left) to control current to the heating
element, a pulse width modulated DC speed controller (top middle) to control rotation speed, an Omega CN6000
temperature controller (middle bottom) and a MicoMod process controller (right).
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Figure 19: Batch-mode process and gas control topology is illustrated in this process and instrumentation diagram.
Mechanical agitation is controlled by a variable speed DC motor. The Omega CN3000 temperature controller with

K-type thermocouple on the reactor body is used for temperature control. Gas filters keep powdered catalysts from
entering the rotary feedthroughs. Inlet and outlet solenoid valves allow pressure control via a MicroMod process
controller with feedback from a pressure transducer. Process gases are introduced sequentially and the pressure is

monitored during the entire processing time. The reaction products can be analyzed by syringe sampling through the
sampling port or by venting through a sealed serum vial and GCMS analysis. Alternatively, a carbon trap can be

placed near the sampling port to capture and concentrate reaction products.

2.2.3 Plug Flow Hydrogenation Reaction

One gram of dh-BN was mixed with 15 grams of 1 mm alumina beads and placed in a plug
flow reactor (PFR). Reactions were performed at 20, 120, 200, 350, and 500 °C; 308.2 kPa, with
CO: flow of 5 sccm and hydrogen of 5 sccm. A gas hourly space velocity (GHSV) of 414 was
maintained for 17 hours. The product stream post-reactor was diluted with an argon flow of 13
sccm and this mixture was sampled every hour by gas sampling valve and analyzed using an
Agilent 6890 GC with an HP PLOT U 30m x 0.32mm x 10pum column. Product detection was

performed with an Agilent 5973N Mass Sensitive Detector (Figures 20 and 21).
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Figure 20: The plug flow reactor. Gas flow is from left to right. Center top is the furnace with packed bed installed.
Temperature hysteresis is mitigated through the use of a Variac to supply heating power via the process controller.
Three sheathed thermocouples (two front, one back) are connected in series to provide an average temperature
across the length of the packed bed. The gas stream is directed out of the hood in a stainless steel gas path to the gas
sampling valve of the Agilent gas chromatograph. GC vent gas is carried back to the hood via a stainless steel return
line. Gas back-pressure is controlled manually with the green knob. Gas flow is controlled manually with the black
knobs.
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Figure 21: The plug flow reactor used for this study consists of three Tylan mass flow controllers with CO2 (10
sccm max), H2 (10 sccm max), and Ar (50 sccm max). CO2 and H2 are introduced into a packed bed column
consisting of /2” 316 stainless steel tubing. All other gas tubing was 1/8” nylon. All gas connections are made with
Swagelok fittings as well as national pipe tapered (NPT). The bed is held at temperature in a furnace controlled by
an Omega CN9600 temperature controller with a sheathed K-type thermocouple for temperature feedback. A gas
filter is used to keep catalyst powders from damaging the back-pressure regulator. The backpressure regulator is
used to keep the catalyst bed at pressure. The bed pressure is set manually by adjusting the back-pressure regulator
and observing the response of the pressure transducer. A bypass vale allows purging of the system before starting a
reaction. A sampling port allows sampling of the reaction stream manually. The reaction stream is diluted with
argon before entering a rotary sample valve with 1 mL sample loop. During operation, a sample is automatically
taken at regular intervals and analyzed by GCMS.

ar

2.2.4 CO2 Mass Uptake

In an argon-filled glovebox, 1.5 g of dh-BN was placed into a glass vial of known mass.
This vial is loaded into a pressurization cell, removed from the glovebox, and pressurized with
either 372 kPa of CO> or 138 kPa each of CO2 and H.. The defect-laden BN was left to equilibrate
for 48 hours before the pressurized cell was returned to the glovebox for a final mass measurement.

Thermogravimetric analysis was performed on the recovered solids after the final massing.

30



2.2.5 Turnover Frequency and Turnover Number Estimations

Maximum turnover frequencies were estimated using the slope of the asymptote line of the
pressure-time curves of each hydrogenation (Figure 26). The slope is taken between times 0 and
20 minutes and divided by four (4 moles of gas are consumed when one mole of CO; is
hydrogenated). Turnover numbers were estimated by computing the ratio of the total number of
moles of CO> converted in each cycle (from t = 0 to t = 1320 minutes) to the number of CO>

adsorption sites determined by Equation 2.3.

TON =

CO, consumed (mol) (2 1)
active sites (mol) '

2.2.6 Density Functional Theory (DFT) Analysis

Calculations were carried out using the Quantum ESPRESSO package [50] employing the
projector-augmented wave (PAW) [51, 52] and plane wave basis set methods. We utilized the
vdW-DF2 functional [53] for describing electron exchange-correlation interaction. We set cut-off
energy for plane-wave expansion at 45 Ry. We construct our simulation supercell with a 6x6 h-
BN sheet with one N vacancy at the middle and a vacuum of 20 A to decouple periodical image
along the normal direction of the sheet. Considering the large size of supercell, we sampled the
Brillouin Zone at the zone center. Structural relaxation is performed for all configurations until the
forces acting on each ion are smaller than 0.0002 Ry/Bohr. To calculate reaction energy barriers,
we use the Nudged-Climbing image method. [54] As Vn is identified as active site, calculations

for reaction energies and barriers are carried out only for V defect h-BN.
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2.3 Results

2.3.1 Defect Sites and Adsorption onto Boron Nitride

Evaluation of defect sites in dh-BN was performed by mass uptake experiments, TPD, and
SSNMR. For all these analyses, dh-BN was kept rigorously oxygen- and moisture-free, to prevent
blockage of defect sites.

It was found, from mass uptake experiments, that pristine, defect-free h-BN exhibited
almost no CO; uptake while dh-BN produced through high-energy ball milling absorbed up to 5
mass% or 45.9 mg/g CO2 (H20<20 ppm) at the relatively low pressure of 372 kPa. This is
significantly better than other h-BN materials prepared specifically for CO, uptake. [55] Infrared
spectra showed that adsorbed CO> (Figure 22) had a reduced bond strength as the asymmetric
stretch (v3) was lowered in energy from 2349 cm™ [56], for gaseous CO2, to 2335 cm™. This
reduction in bond energy is greater than that observed for CO, adsorbed onto ruthenium (2343 cm’
1 [57], a metal with known activity for CO2 reduction. DFT calculations supported these
observations by predicting a change in the O-C-O angle from linear to bent, suggesting a reduction
in the C=0 bond order and an increase in carbon sp® character. [58] Maximum uptake of CO;
occurred at 1 hour of high-energy ball milling with subsequent decrease in CO, adsorption at
longer processing times for these milling conditions. The resulting solid was stable under ambient
conditions and heating above 100°C was required to release the adsorbed CO2. Temperature
programmed desorption (TPD) analysis (Figure 23) indicates a binding site concentration of 81.1
pmole/g (all sites producing CO2 or CO desorption). This is nearly two orders of magnitude
smaller than previous olefin hydrogenation studies over h-BN defect sites produced in a similar

manner. [17]
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Figure 22: The infrared spectra of activated dh-BN as produced and exposed to 372 kPa of CO, shows increased
signal due to CO; uptake. As the species is surface adsorbed, the C=0 asymmetric stretch is missing the P and R
branch and shifted to lower energy (from 2349 cm shifted to 2335 cm™).

In addition to CO- desorption, CO, NO, and water were among the gases shown to desorbed
from the dh-BN sample by TPD. Large desorption of mass 44 (CO>) peaks are seen at temperatures
105°C and 211°C (Figure 23) whereas desorption of mass 28, belonging to either N2> or CO (but
predicted to be CO), occurs at temperatures 111°C and 198°C. Water desorbs increasingly after
200°C. Although other materials show desorption of CO; at relatively low temperatures [59], the
initial CO2 desorption peak at 105°C is on par with desorption peaks observed over zeolites with
a similar second peak at 227 °C for Cs* exchanged zeolites [60] suggesting that the adsorption sites
are of similar strength to the acid/base sites on ion exchanged zeolites. The desorption of CO2 from
CaO shows a peak at 227 °C [61] suggesting a similar basic surface character for the dh-BN site,

Cs™ exchanged zeolite, and CaO.
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Figure 23: Temperature programmed desorption (TPD) of CO, adsorbed onto dh-BN shows desorption profiles of
CO; and CO from different defect sites within the BN sheet, indicated by peaks.

Solid-state *C NMR spectrum of the 3CO, adsorbed dh-BN was acquired to further
elucidate the environment of CO> bound to boron nitride. The NMR spectrum (Figure 24) was
obtained after exposing dh-BN to > 99% isotopically labelled *3CO.. A group of CO2 resonances
was observed near 155 ppm with an overall line width of approximately 15 ppm. This spectrum
was well fit by a superposition of three resonances (Figure 25). Based on this fitting, the peaks at
161.7,156.3, and 151.7 ppm are present in a ratio of 3.1:2.5:1.0, respectively. These lines observed
are consistent with surface bound CO- because all the shifts differ significantly from the frequency
of CO2 in solution at 132.2 ppm. [62] Moreover, surface bound CO2 would invariably be in very
close proximity to N, 1°B and *'B nuclei and the resonances would thus be expected to broaden
because these nucleides are quadrupolar. The fact that the observance lines are broad and differ

from the expected shift of CO: is consistent with surface bound CO; at three distinguishable sites.

34



Gas Phase
Co,

EEEEEED VN(2)

EENINENEEEERENENEEEEEEND V

EEEEEE NN NI NNNN NN NN EE] VN(I)

I T T T

200 150 100 ©5C, ppm

Figure 24: The 13C spectrum of CO, bound to boron nitride. The red dashed lines represent theoretical shifts from
four model binding sites. Theoretical shifts were computed at using the B3PW91/D95** level of theory. The blue
dashed line represents the shift of gas phase CO..
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Figure 25: The 3C spectrum of CO; bound to boron nitride. The spectrum is consistent with three unique CO>
binding sites as indicated by the excellent fit to the spectrum from three model Lorentzian resonances.
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2.3.2 CO2 Reduction

Hydrogenation reactions in batch-mode run over fresh dh-BN resulted in complete
reduction of CO> and formation of valuable products. For experiments run at temperatures 20°C
and 120°C, turnover numbers (TON) were calculated to be 57 and 56 per cycle, respectively, with
multi-cycle totals listed in Table 5. With each subsequent recycle, the catalyst shows reduced
activity (Figure 26). This observed reduction in activity is accompanied by increasing discoloration
(yellowing) of the BN from its original white and darkening with increased temperature (Figure
27). The calculations for TON, described briefly in the experimental, are obtained using Equation
3. The number of moles of active sites was obtained through TPD analysis, by determining the
molar difference in adsorption and desorption of carbon-containing species. In this way, the
determination of maximum active sites is specific to those sites having carbon dioxide affinity.

Tables 6 and 7 report the TON values after each recycle of the catalyst at 20°C and 120°C.

Table 5: TON and TOF numbers for CO, hydrogenation over dh-BN catalyst.

T/P TOF Analysis
Mode (°C/kPa) TON (s1.10?) Products Method
20/685 289 | 152 methanol GC/MS
Batch 120/685 108 | 7.57 methanol GC/MS
< -
160/685 - - formic acid tGran/MS captured via
Plug 20, 120, 200, 350, 0 i none i
flow 500/308.2

Plug flow implementation of dh-BN in a packed bed was investigated at 20, 120, 200, 350,
and 500°C in a system with (dynamic) a without mechanical agitation (static). No measurable
amounts of hydrogenation products were observed. High-intensity vibratory agitation of the PFR

bed was not sufficient to facilitate the reaction. GC/MS analysis of the mechanocatalytic batch
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reactor revealed that hydrogenation reactions run at temperatures 20°C and 120°C formed

methanol while reactions at 160°C produced formic acid.
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Figure 26: The reduction of CO2 by H; for multiple recycles of the catalyst decreases with each recycle, ultimately
reaching a stable state as the BN surface experiences coking. This reduction at 20°C occurs at a rate comparable to
olefin hydrogenation with decreasing TOF (inset) for each recycle of the catalyst.
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Figure 27: Defect-laden h-BN processed under H, and CO; produced low volatility side products that colored the
catalyst. The same catalyst processed under hydrogen alone did not develop this color.

Table 6: Estimation of TON and Yield at 20 °C.

Cycle

1 > 3 ; E Notes
P start (psig) 69.464 | 70.398 | 70.132 | 70.332 | 70.070 | Starting pressure
P end (psig) 19.935 | 29.066 | 33.873 | 35.523 | 42.398 | Pressure at 22 h, Cycle#5at 16 h
P start (psia) 84.16 | 85.09 | 84.83 | 85.03 | 84.77
P end (psia) 34.63 | 43.76 | 4857 | 50.22 | 57.09
P_Hj start (psia) 3473 | 35.20 | 35.07 | 35.17 | 35.04
P_CO; start (psia) 49.43 | 49.90 | 49.76 | 49.86 | 49.73
Temperature (K) 293.15 | 293.15 | 293.15 | 293.15 | 293.15
Moles of H, 0.0347 | 0.0352 | 0.0351 | 0.0352 | 0.0350 | Purge with hydrogen first so hydrogen
Moles of CO, 0.0494 | 0.0499 | 0.0498 | 0.0499 | 0.0497 | Pressure in psia is 1/2 psig + 14.7 psi
Total (moles) 0.0842 | 0.0852 | 0.0849 | 0.0851 | 0.0848
Final gas (moles) 0.0346 | 0.0438 | 0.0486 | 0.0502 | 0.0571
Consumed (mol) 0.0495 | 0.0413 | 0.0363 | 0.0348 | 0.0277 | CO; + 3H,—~CH30H + H,0. Every 4
Consumed CO, 0.0123 | 0.0103 | 0.0090 | 0.0087 | 0.0069 | Moles are consumed, 1 mole of CO; is
Consumed H, (mol) | 0.0371 | 0.0310 | 0.0272 | 0.0261 | 0.0207 hy‘_jmge_”actgi'sume aH,
Yield (%) 100 | 88.07 | 77.55 | 74.24 | 5924 | Yield= /Moles of H,
Max active site 0.000203 From TPD analysis
TON 57 | 58 | 58 | 58 | 58 | Total TON =289
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Table 7: Estimation of TON and Yield at 120 °C.

Cycle

1 ’ Notes
P start (psig) 69.066 | 70.027 | Starting pressure
P end (psig) 25.335 | 38.134 | Pressure at 22 hr, Cycle #5 at 16 h
P start (psia) 83.76 | 84.72
P end (psia) 40.03 | 52.83
P_H start (psia) 3453 | 35.01
P_CO start (psia) 49.23 | 49.71
Starting Temp. (K) 297.15 | 327.15
Ending Temp. (K) 385.15 | 385.15
Moles of H, 0.0341 | 0.0314 | Purge with hydrogen first so hydrogen pressure in psia is 1/2 psig +
Moles of CO, 0.0486 | 0.0446 | 14.7 psi
Total (moles) 0.0827 | 0.0760
Final gas (moles) 0.0305 | 0.0402
Consumed (mol) 0.0522 | 0.0357 | 0, + 3H,—»CHsOH + H,0 .
Consumed CO, 0.0130 | 0.0089 | 4 moles of gas are consumed when 1 mole of CO; is hydrogenated
Consumed Hy (mol) | 0.0391 | 0.0268 Vield = Consumed H,
Yield (%) 100 | 85.36 Moles of H,
Max active site 0.000203 From TPD analysis
TON 56 ‘ 52 Total TON =108

Thermogravimetric analysis (TGA) of the recycled dh-BN showed continuous linear mass
loss up to temperatures of 800°C with an overall mass loss of 32.9% (Figure 28). TGA of dh-BN
exposed to the potential reaction products of methanol, formic acid, and acetic acid shows strong
affinity for the carboxylic acids with >50% mass loss from the free-flowing dry powder initially
produced (Figure 29). Tandem TGA-GC/MS results showed the desorbed gases are largely CO>

and acetic anhydride at higher temperatures (Figure 30).
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Figure 28: Thermogravimetric analysis (TGA) of spent catalyst. The spent catalyst picks up a large fraction of
carbonaceous materials. The spent catalyst is colored and after thermogravimetric analysis returns to white
indicating the color is not due to steel incorporation.
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Figure 29: As received, h-BN shows little mass loss on heating (pristine). Powders of defect-laden h-BN (dh-BN)
were soaked in pure reaction products and held at room temperature in air until dry free-flowing powders were
obtained. The material has a strong affinity for formic and acetic acid and a weak methanol affinity. Complete

carboxylic acid desorption was achieved near 165 °C suggesting that a portion of the mass loss observed in spent
catalyst may be due in part to adsorbed products.
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Figure 30: Tandem GC-MS-TGA of spent catalyst shows uniform CO; release up to 600 °C with acetic anhydride
collected in a cryotrap during heating. The peaks marked with the (*) are due to column contaminants.

X-ray photoelectron spectroscopy (XPS) revealed C=0 on the surface of recycled dh-BN
(Figure 31) showed the carbon 1s region. Beside the strong intensity peak at around 284 eV for
both as received and spent h-BN, which was due to adventitious carbon, the additional peak at

288.5 eV indicated that carbon in the form of carbonyls was deposited on the catalyst surface.
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Figure 31: X-ray photoelectron spectroscopy (XPS) of the C 1s region shows the incorporation of carbonyl
compounds on the spent catalyst surface.
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In addition to XPS, FTIR spectra of spent catalyst showed a multitude of reaction side
products on the dh-BN surface (Figure 32). Spectra showed evidence of unreacted adsorbed COs,
and reaction side products. These include reaction with the BN sheet (B-C, B-O-H, and B-N-0),

absorbed CO., and the formation of alkyne carbons or nitriles.
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Figure 32: FTIR of pre-reaction dh-BN (gray) and spent dh-BN (black) catalyst shows significant amounts of
carbon compounds. The peaks labeled + and * are either alkyne or nitrile stretches.

2.4 Discussion

2.4.1 Defect Sites and Adsorption onto Boron Nitride

The role of defect (or active) sites in the catalytic activity of solids have been the subject

of many studies [63-67]. It is not uncommon for defect sites to be introduced into a material
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through the application of force to increase or induce catalytic activity. Ball milling is one
convenient method of defect site creation utilizing mechanical force. For boron nitride, the force
required to introduce defect sites in the crystal lattice is 41.3 MPa (the compressive yield strength
of the material). This criterion can be met in our preprocessing and in the mechanocatalytic reactor.
These forces are not realized in a static or agitated plug flow reactor (PFR). Increased processing
times should increase the concentration of defect sites present on the h-BN sheet and result greater
activity. However, prolonged high-intensity ball milling leads to loss of activity as the sheet
structure is lost to amorphitization. We observed this phenomena as a loss in CO, absorption
capacity with increased processing time. Thus, there exists an optimum milling time where a
maximum number of active sites are created and a maximum adsorption of gas is observed. Mass

% uptake experiments show this optimum mill time to be 1 hour (Figure 33).
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Figure 33: The amount of CO; absorbed by milled h-BN increases with processing time as defects are generated
and increased surface area is realized. However, as processing continues amorphitization occurs and a loss in CO»
capacity is observed.
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BET analysis indicated enhanced CO> uptake for dh-BN and a surface area increase from

10 m?/g ,for as received, to 135 m?/g, for material processed 1 hour (Figure 34).
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Figure 34: With a BET surface area of ~10 m2/g, as received h-BN is nonporous. Negligible CO- uptake was
measured at 195 K and 298 K (A and C). Processing for 1 hour produces dh-BN with a BET surface area of ~135
m?/g. Enhanced CO, uptake was observed at 195 K and 298 K (B and D).

Delamination and size reduction, after processing, is clearly observable in transmission
electron microscopy images (Figure 35). Although milling reduced the starting materials
crystallinity, there was still order in the c-direction (Figure 36). To alleviate amorphitization issues,
continuous low-energy ball milling (via pebble mill) is utilized in tandem with hydrogenation to
apply strain to the catalyst without amorphitization. This keeps the needed sheet structure for
catalysis while providing a high-energy non-equilibrium surface for enhanced catalysis. This

phenomena has been observed in systems other than BN. [67]
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Figure 35: Transmission electron microscopy images of as received and 1 hour processed dh-BN. The as received
material has large flakes (A) with well-ordered BN layers (B). The dh-BN consists of smaller and thinner flakes (C)
with less order in the ¢ direction. Delamination and curling of the BN sheet can be seen in C.
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Figure 36: As received h-BN (top, red) and dh-BN (bottom, black) shows reduction of crystallinity with the ¢
direction still indicating order. A reference pattern for h-BN (JC-PDS 34-421) and Miller indices are included in
blue.

By performing the hydrogenation reactions under continuous milling conditions, the
reduction of CO- shows significant increase as compared to static (non-milling) reactions using
identical dh-BN. The benefit to simultaneous defect site creation and hydrogenation is two-fold:
1) the continuous formation of new defect sites without lattice destruction, and 2) the low-energy
mechanocatalysis likely facilitates desorption of gaseous products through plastic deformation of
the BN sheets, leading to renewed site availability. Desorption enhanced by shear is observed with
polymers adhering to surfaces [68] and was also observed in water release during the large scale

mechanocatalytic processing of biomass. [69]
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Different types of defects are likely produced from these milling methods (Figure 16) and
some defects have more favorable binding energies for CO, than others (Table 8). DFT
calculations show the highest binding energy of CO> occurs within a nitrogen vacancy (Vn),
suggesting it to be the most active for CO> reduction. This defect site is also favored for the
hydrogenation of olefins. [17] But TPD results indicate this may not be the only defect to

effectively bind carbon dioxide.

Table 8: Calculated binding energy for ethene, propene, hydrogen, and CO, on defects in h-BN. Ethene and propene
values are from a previous publication. [17]

Defect Binding Energy (eV)
Ethene Propene Hydrogen CO;
Vs -3.71 -3.69 -4.73 -0.69
VN -1.90 -1.76 -1.79 -1.97
By -1.95 -2.05 -1.68 -0.21
SwW -0.23 -0.35 1.04 0.43

The TPD of dh-BN after CO2 exposure (but prior to hydrogenation) showed desorption of
CO- as well as N2, CO, water, and NO gases. Desorption of gases from defect sites produce peaks
in the TPD curves. Two discernable peaks are visible in the COz curve (at temperatures 105°C and
211°C) and the mass 28 curve (at temperatures 111°C and 198°C) (Figure 23). DFT calculations
show that the sites Bn, Vg, and Vn bind CO2 with energies: -0.21 eV, -0.69 eV, and -1.97 eV,
respectively (Table 8). Two of these defects likely correspond to the two CO> desorption peaks,
with the higher temperature desorption corresponding to a defect with stronger binding energy.
The mass 28 desorption curve shows signal for either N2 or CO gases. However, the similarities
in desorption peaks in the CO2 and CO curves suggest that this signal comes from CO rather than

nitrogen and is produced from already adsorbed CO,. Both curves show close matching
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temperatures of desorption on the average of 108°C £ 3.7°C and 205°C + 8.8°C, potentially
indicating both CO, and CO gas molecules desorbed from the same defect sites at similar
temperatures. Carbon monoxide has stronger binding affinity in these defects than does COo,
making it questionable for desorption at the same temperature unless this carbon monoxide
originated as CO,. A surface reaction between a BN defect and CO. could produce carbon
monoxide gas if a molecule of CO. bound to a defect site through an oxygen atom cleaved one C-
O bond. This would produce gaseous CO and leave behind a bound oxygen atom in the defect site.

A previous study of the effects of oxygen on dh-BN showed strong binding of molecular
O2 in defect sites Vn and Vg of -4.28 eV and -1.38 eV, respectively[18]. Nevertheless, TPD
produced no oxygen desorption signals. The binding energies of dissociated oxygen in Vn and Vg
defect sites are strong: -9.32 eV and -2.86 eV, respectively. [18] This strong binding energy
suggests any atomic oxygen trapped in nitrogen vacancy (thus, bound to B atom) will surely remain
trapped. However, atomic oxygen trapped in a boron vacancy (bound to N) has a possibility for
desorption as NO gas at elevated temperatures.

SSNMR results further refine the defect site possibilities identified using DFT calculations.
Four theoretical model structures were created as possible binding sites for CO2. These structures

are designated as Bn, Vg, Vn conformation 1 and V conformation 2 (Figure 37).
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Figure 37: The four model structures considered as binding sites for CO».

For each model structure, **C NMR chemical shifts were computed at the B3PW91/D95**
level of theory. Computed shifts for each model are illustrated in Figures 24 and 25. These data
show that candidate structures Bn and Vn (2) are in excellent agreement with experimental data.
Although Vg gives a less accurate fit to experimental data, it is the next best fit the experimental
data and is thus proposed as the third binding site. Model V (1) is a poor fit to experimental data

and is the least feasible binding site, based on NMR evidence.

2.4.2 CO2 Reduction

Catalysis using fresh dh-BN shows the largest conversion of CO; (Figure 26) and with each
recycle of the catalyst, the reaction rate decreased. This reduction in activity can be attributed to
the formation of strongly adsorbed carbon products (coking) on the catalyst surface, which block
active sites and hinder adsorption. XPS and FTIR of post-hydrogenation boron nitride detect these
carbon species, which can be bound within the defect sites themselves, as is evident from B-C
bonds detected by FTIR (Figure 32). Analysis of cryotrap components from tandem GC-MS-TGA

showed the presence of acetic anhydride and water. Early steps in the pathway to non-volatile
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adsorbates would be through the formation of acetic anhydride. Starting with the decomposition
of adsorbed formic acid (Equation 2.4) to carbon monoxide and water, methanol (formed by the
reaction in Equation 2.2) is then carbonlyated to acetic acid (Equation 2.5). Finally, acetic acid is

dehydrated to realize acetic anhydride (Equation 2.6).
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More complex steps may be occurring as the TGA shows continuous mass loss to 800°C
suggesting that the non-volatile coking formed on the dh-BN surface is potentially due to C=0
containing polymers.

Prior to coking of the catalyst, GCMS analysis found that carbon dioxide processed via
batch-mode was converted into methanol (at 20°C and 120°C) and formic acid (at 160°C).
Methanol product was observed simply by sampling the headspace gas from the batch-mode
reactor, while formic acid required capturing via an activated charcoal trap. TGA of dh-BN soaked

in methanol, formic acid and acetic acid then air-dried is shown in Figure 29. There is a clear
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binding preference for formic acid over methanol that explains the difficulty in sampling formic
acid in the reactor headspace. Once formed, formic acid remains bound to the catalyst surface.

In fact, process intensification for formic acid realization may be successful up to
temperatures near 700°C (red heat). Although, above that temperature h-BN may not be active for
formic acid production as CO: is a product of BN synthesis from B0z and urea (NH2CONHy).

[70] At such temperatures, reverse water-gas shift (RWGS) products may dominate.

2.4.3 Catalyst Reactivation

Although dh-BN shows a decrease in catalytic activity after a few reduction cycles, it has
strong potential for regeneration to its original state. Coke products blocking the catalytic active
sites can be removed by heating to sufficiently high temperatures. TGA of spent (post-
hydrogenation) catalyst, such as that shown in Figure 28, shows significant mass loss and a return
of the yellowed dh-BN to its original white color after heating to 800°C. This physical color change
implies the complete or partial removal of carbon products located on the catalyst surface.

In practice, the dh-BN and milling media will be mixed, which should not hinder the
regeneration process. Stainless steel media can be heated to high temperatures without
consequence, and the bearings can act to enhance the exposed surface of the catalyst, speeding up

regeneration.

2.4.4 Presence of Oxygen

It is important to note that the presence of oxygen on defect sites inhibits hydrogenation.
[18] The anoxic conditions required for dh-BN activity are ideal for CO2 reduction as the presence
of oxygen in a CO> stream would reduce overall reaction efficiency, as combustion of hydrogen

would be favored over reduction of CO».
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2.5 Conclusion

Engineering catalytic activity into a solid through the introduction of defects is an
important step toward realizing rationally designed heterogeneous catalysts. In this work, defects
were induced in h-BN through an initial high-energy ball-milling step, which is energy intensive.
Previous work found that the low-energy rolling mill produced sufficient impact forces to induce
catalytically active defects in h-BN. However, the first cycle exhibited a prolonged induction
period. [17] Laboratory-scale implementation of this reaction, at room temperature, is not energy
efficient. A single cycle consumes 3168 kJ (0.880 kwWh) of energy to produce 8.86 kJ worth of
methanol. However, the energy consumption of mechanochemical reactors scale favorable as
energy consumption does not scale as the cube of the reaction volume. [71] Significant energy
costs per kilogram of process material are realized at the 100 kg scale or larger. Scaling of this
system would require higher impact frequencies to reduce the dwell time in the reactor as was a
gas flow. Flow adapted attrition (Union Process) and agitator mills (Netzsch) would enable this
catalysis with few modifications from stock.

Through exploitation of defects, a heterogeneous catalyst for the reduction of CO: to
methanol and formic acid was realized. Defects in h-BN are extremely active toward the formation
of low volatility compounds. Increased reaction temperatures or implementation in a plug flow
reactor may alleviate this issue. Recent work by Ting et al summarizes CO2 to methanol
homogenous and heterogenous efforts.[16] The dh-BN system catalyzes the formation of methanol
at much lower (by an order of magnitude) CO: partial pressures and temperatures (room
temperature). The maximum TOF of 56.62 + 0.60 h™* (1.52+0.02 x 10%s%), based on active sites
measured by TPD, is better than many hetero- and homogeneous metal-based catalysts Similarly,
a total TON of 234 (Tables 6 and 7) is better than many heterogeneous catalysts investigated for

the same process (Table 9 and an extensive table compiled by Ting et al.[16]).
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Table 9: Literature values of the TON and TOF numbers of select catalysts.

Catalyst T°C COz2:Hz2 | t(h) | TON TOF (h?) Product Reactor Ref.
dh-BN 20 1.1 234 | 54.62 +0.60 | methanol Ball mill | This work
120 1.1 108 272.48 methanol Ball mill | This work

Mo.C 135 1:3 2 | 04 0.2 methanol | " Micro | oo,

5500

Cu/MoC 135 1:3 2 | 15 0.8 methanol ParéB'\(’)'(')cm [72]

Pd/ Mo:C 135 13 2 | 17 0.8 methanol ParéB"(’)'(')”O [72]

Col MosC 135 13 2 | 14 0.7 methanol ParéB"(’)'(')”O [72]

Fe/ Mo,C 135 13 2 | 11 05 methanol ParéB"(’)'(')”O [72]

Cu/CuCr,04 140 11 5 | 410 2.06 forme | Fixedbed | [73]

Cu/ZrO,/CNT-N 220 1:3 - - 13.32 methanol | Fixed bed [74]

The mild reactions conditions are similar to typical electrocatalytic work. [75] These

conditions are easier to apply in the field where the storage of solar energy or capture of CO2 must

proceed without the need for constant maintenance. The production of formic acid and methanol

are attractive method for energy shifting electrical production from solar and wind sources. Both

are useful, liquid fuels that can be used to power small turbines for energy generation at peak

demand and the subsequent CO> combustion product can be again captured and reused. If active

site concentration could be increased from 0.2 mol% to 1 mol%, 4700 m? of dh-BN would be

sufficient to capture and utilize the world’s yearly production of carbon dioxide (Table 10). This

would translate to a little over 200 catalysts beds smaller than a small shed. Assuming production

from borax, this amount would consume less than 1% of the world’s yearly boron production —

once (Table 11) [76]. Catalysts such as dh-BN can provide a pathway toward reduction of global

CO2 release by commoditizing CO: thereby encourage utilization versus disposal.
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Table 10: Estimation of boron nitride catalyst for converting annual CO» production of the world at 120 °C.

Value Unit Note
37100000000 | metric tons | total CO, produced in 2018
8.43182E+14 | moles moles CO>
6.69E+17 | seconds Seconds for 2.5 g dh-BN to process all CO,
8.49E+03 | years Years for a metric ton of dh-BN to process all CO,
8488 | metric tons | Tons of dh-BN required to process a years worth of CO,
4042 | m3 Volume of dh-BN
227 | m? Volume of a single distributed unit
179 | units Total units required

Table 11: Estimation of boron ore needed for production of the required amount of dh-BN calculated in Table 10.

Na,B,O;+ 10H,O + H,SOs — 2B,03 + 11H,0 + Na,SO4

B,Os + 2NH; — 2BN + 3H,0

Value Unit Note

4250 metric kilotons | World boron production as Na;B4O7¢10H.0O
8488 metric tons dh-BN required

341981249.9 moles

85495312.47 moles Na;B407¢10H-0 required

32600 metric tons

0.77% Fraction of world yearly production
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2.6 Supplemental Information

2.6.1 Mechanocatalytic Batch-Mode Reactor

Batch-mode reactions were performed in a stainless-steel custom pebble mill using a gas-
tight reaction vessel shaped as a double truncated cone to provide optimal tumbling of the milling
media in the central region of the reaction vessel (Figure 17 and 18a).

Two Conflat flanges (A&N Corporation CF275 flanges with a 1.5 in bore, 275-162) of
2.75 in. were welded onto two 1.5 x 3 in? conical reducers (A&N Corporation 300X150-WCR)
end to end to build the reaction vessel. Gas-tight conditions were maintained throughout milling
by implementing Deublin rotary feedthroughs (1005-020-019, 1005 Series, RH and 1005-020-039,
1005 Series, LH) retrofit with Kalrez o-rings and Krytox lubricant (GPL 105). These rotary
feedthroughs were sealed onto two 2.75 in. Conflat flanges with 10-32 tapped through-holes (A&N
Corporation; CF275 blank flanges 275-000) and a copper gasket were utilized between flange and
feedthrough to create a seal.

Powder was prohibited from entering the rotary feedthroughs by fitting stainless steel filter
frits to the entry and exit flanges. While tumbling, the reaction vessel is enclosed in a furnace with
NiChrome heating elements. A K-type thermocouple is used to measure the temperature of the

reactor by making contact with the upper, outside surface of the reactor.

2.6.2 Plug Flow Reactor

Plug flow reactions were performed in a 0.5 diameter, 16” long stainless steel tube
equipped with mass flow controllers and temperature regulation to allow operation at multiple

temperatures and pressures under a flow of hydrogen and carbon dioxide.
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2.6.3 Temperature Programmed Desorption (TPD)

The TPD experiment was carried out on dh-BN with an Altamira AMI-200 instrument
using CO- as adsorbed gas. Initially, helium was flowed over sample at 20 sccm and 35°C for 1
hour before flowing a 5% CO2/He mixture over sample at 20 sccm and 35°C for 1 hour. The dh-

BN sample was briefly exposed to air in the transfer to the TPD from an argon environment.

2.6.4 Gas Chromatography Mass Spectroscopy (GC/MS)

Gaseous COz reduction products were analyzed using GC/MS on an Agilent 6890 GC with
an HP PLOT U column (30m x 0.32mm x 10um) with a particle trap (2.5m x 0.25mm OD) coupled
to an Agilent 5973 MS detector. The GC method began isothermal at 70°C for 1 minute, ramping
to 180°C at a rate of 10 °C/min and maintaining isothermal conditions at 180°C for 4 minutes. Gas
samples of CO> reduction products were obtained by venting the mechanocatalytic batch-mode
reactor through a 50 mL serum vial crimp sealed with a PTFE-lined septum previously purged

with argon.

2.6.5 Thermogravimetric analysis (TGA)

Pristine, adsorbed, and post-hydrogenation BN samples were studied with a TGA 2050
(TA Instruments). Adsorbed samples included adsorption of CO2, methanol, acetic acid, and
formic acid on dh-BN. Pristine samples were dried at 400°C for 20 hours. CO2-adsorbed samples
were taken from dh-BN after CO, mass uptake experiments. Liquid adsorptions (methanol, acetic
acid, and formic acid) were taken after soaking dh-BN overnight and drying in air. BN samples
after hydrogenation were stored in crimped serum vials until TGA was performed. All TGA
samples were loaded into the sample pan in air, and TGA experiments were performed under

flowing argon.
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2.6.6 X-ray photoelectron spectroscopy (XPS)

XPS were recorded on a Physical Electronics 5400 photoelectron spectrometer with a

magnesium source.

2.6.7 Fourier-transform infrared spectroscopy (FTIR)

FTIR samples were analyzed by pressing samples in a KBr pellet. Spectra were acquired

at 2 cm™ resolution utilizing a Bruker Vector 22 FTIR purged with water and CO,-free air.

2.6.8 Solid-State Nuclear Magnetic Resonance (SSNMR)

Defect-laden h-BN was loaded into pressure vessels consisting of 1” triclamp fittings and
a 3” long triclamp spool. In a glovebox, one gram of material was placed in an open glass vial in
the vessel under argon, evacuated to 20 mtorr, and pressurized with 122 kPa of *CO; (Icon
Isotopes). The 3C spectrum was acquired on a CMX-200 Chemagnetics spectrometer operating
at 50.31(*3C) and 200.04 (*H) MHz. All spectra employed SPINAL-64 *H decoupling [77] with a
pulse duration of 9.1 us and an initial phase modulation angle of + 7°. Cross polarization was
employed using a spin-locking field of 62.5 kHz of 1 H and 56.0 kHz on 3C. Other parameters
included a 15 s recycle time, a spectral width of 12.5 kHz, a spinning rate of 7.0 kHz and an RF
power of 83.3 kHz for the initial *H excitation. The spectrum was referenced to the methyl peak
of hexamethyl benzene at 17.35 ppm. Because the total CO, content was low, a total of 25344
scans were acquired to obtain a suitable signal-to-noise ratio. The total experimental time for the
analysis was 4.4 days.

Fitting of model peaks to the spectrum was performed using the peak deconvolution
software available on the spectrometer (i.e. Spinsight 4.1.3). Three visually distinguishable peaks

were present in the spectrum and a peak was fit to each. All peaks were fit as pure Lorentzian
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lines with no Gaussian contributions. Peaks were first manually added and adjusted followed by
optimized using an automated process than minimizes residuals. Relative peak areas of 3.1:2.5:1.0
were obtained from the fitting for the peaks at 161.7, 156.3 and 151.7 ppm, respectively. The final
fit to the spectrum is illustrated in Figure 25.

Theoretical *C shifts were obtained using Gaussian 16. Shieldings were calculated at the
B3PW91/D95** level of theory [78, 79]. Computed shieldings were converted into shifts using
the relationship, shift = (shielding — 194.93)/(-1.01). This conversion factor has been demonstrated

[80] to give accurate computed shifts for carbons in similar bonding environments.

2.6.9 TG-GC-MS Measurements

Combining thermogravimetry with spectroscopic methods such as GC-MS, FTIR and/or
MS, enables the identification of the evolved gases. Temperature-dependent mass changes
including gas analysis employed a NETZSCH TG 209 F1 Libra simultaneously coupled to an
Agilent 7890A gas chromatograph and the Agilent 5975 MSD (mass selective detector). The
Thermo-Microbalance NETZSCH TG 209 F1 Libra, with an effective resolution of 0.1ug, enables
highly precise measurements under pure gas atmospheres from ambient temperatures up to
1100°C. Internal mass flow controllers (MFC) guarantee a highly precise gas flow control of three
different gases. For control of the measurements as well as for data acquisition, digital electronics
and the NETZSCH PROTEUS 32-bit software was employed. The evolved gases are injected over
a heated transfer line (up to 300°C) into a heated JAS valve box of the Agilent GC, where, with
the help of a carrier gas (usually helium), they are sampled at specified times and transferred to a
heated column. The components of the gas mixture are separated on the GC column according to
their interactions with the column material (retention time) and are then detected by the Agilent
mass selective detector.
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The sample underwent continuous mass loss from the start of the measurement. Small leaks
in the system inevitably introduce some air into the measurement. The background signals due to
air were subtracted from the TIC; however, the presence of air was still apparent at the beginning
of the TIC. This is probably due to the elimination of some air from the sample and due to the
introduction of some air when sample was inserted in the furnace. Minimal purging was performed
after sample insertion so that the mass loss could be captured as soon as possible. All other peaks
in the TIC were identified as carbon dioxide.

To determine if organic species may have been present in quantities that were too small to
detect in the quasi-continuous measurement, another measurement employing the cryotrap was
performed. The purpose of the cryotrap is to concentrate condensable evolved gas species, which
are then analyzed off-line. Besides carbon dioxide, the second measurement revealed the presence
of acetic anhydride in the material collected in the cryotrap. A large water peak is always observed
in these measurements and arises from water adsorbed on interior surfaces of the instrument as
well as possibly from water in the sample itself. Despite the apparent complexity of the
chromatogram following the water peak, all peaks in that region yielded extracted ion

chromatograms consistent with acetic anhydride.

2.6.10 Adsorption Measurements and Pore Size Distribution

Gas adsorption measurements of CO> at 195 K and 273 K were collected for surface area
and porosity determination on a Micromeritics 3Flex instrument. BN-pristine-dry was shown to
be nonporous as indicated by the negligible CO> uptake at 195 K with BET surface area of ~ 10
m?/g. On the other hand, dh-BN-milled-1hr showed appreciable uptake for CO, at 195 K with BET

surface area of ~135 m?/g.
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CHAPTER 3: THERMAL DEGRADATION OF BIOFUELS IN CONTACT
WITH HOT METAL SURFACES

Portions of the work in Chapter 3 have been previously published by the following authors:
K.L. Chagoya, A. Felix, F. Torres, N. Ciaffone, T.E. Pitts, A. Curbelo, L. Tetard, J. Kapat, R.G.
Blair with the title “Thermal degradation of biofuels in contact with hot metal surfaces”. They
were published by ASME Turbo Expo: Power for Land, Sea, and Air, Volume 4B, on November

5, 2019.

3.1 Introduction

The implementation of biofuels as an energy alternative to conventional fossil fuels is an
important step for the adoption of more sustainable sources of power. Unlike the manufacturing
of conventional hydrocarbon fuels used in the transportation industry, biofuels can be
manufactured above ground from plant and animal waste materials. Although the combustion of
any hydrocarbon fuel (biofuel or otherwise) produces GHG emissions, any replacement fuel that
does not require drilling or hydrolic fracturing would decrease emissions which arise from
obtaining fuels from underground (Figure 38). However, to begin utilizing biofuels in existing

engine systems, a study of their thermal degradation and fuel compatibility is needed.
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FIGURE 1. Average Life Cycle Emissions for Major Fuel
Categories
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Figure 38: Volume-weighted average carbon emissions for different fuel categories based on 2019 fuel sales in
California. Data source: CARB 2020A, CARB 2020B. Image credit; Union of Concerned Scientists (UCS)

Thermal degradation of petroleum-derived fuels to form coke deposits has been a topic of
study for decades. [25] The formation of carbon deposits within engines clogs fuel injectors and
lines, decreases fuel efficiency, results in costly repairs or replacement of engine components, and
produces plumes of black smoke from tailpipes, causing atmospheric and environmental pollution.
The combustion of any hydrocarbon fuel will result in these carbon deposits, but for new and
emerging biofuels, the extent of this carbon formation for different blends is yet unknown. It is
possible that during or after the manufacturing process, fuel mixtures can be chosen which select
for chemistries that produce the lowest carbon quantities.

The thermal decomposition of air-saturated hydrocarbons occurs via autoxidation at
temperatures between 150 °C (300 °F) and 480 °C (900 °F). [81] During autoxidation, free-radical

species are formed through the interaction of dissolved oxygen with hydrocarbons, continually
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initiating free-radical chain reactions that ultimately result in deposit formation (Equation 3.1).
Free-radical chain reactions can also occur in oxygenated hydrocarbons, as shown in Equation 3.2.
Above 480 °C, soot formation is driven by pyrolysis, in which small carbon species are formed via
the breaking of C=C bonds, as opposed to free-radical formation. [82] However, it is unclear if
particular hydrocarbon compounds containing certain functional groups are more susceptible to

these mechanisms than others.

CeHy =2 - CeHy > € () + Ha(9) (3.1)
CxHy 0, 2 - CHy0, — C (s) + Hy(g) + €O (9) (3.2)

A suggested pathway to eliminating these free-radical chain reactions potentially lies in
deoxygenation of the fuel blends, or complete removal of dissolved oxygen. It has been shown
that deoxygenation of fuels results in a reduction of carbon deposition by autoxidation, and
formation becomes negligible at oxygen levels below that of 1 ppm. [83] Studies by Spadaccini
and Huang have sought realistic methods for large scale removal of oxygen [82] in an effort to
circumvent the need for more complicated routes of soot mitigation. However, most large-scale
degassing is too costly for industrial implementation and thus, alternate means of carbon mitigation

are still necessary.

In the situation where a hydrocarbon comes into contact with a metal surface, the metal-
hydrocarbon interaction can completely alter the decomposition chemistry. Unlike decomposition
resulting from standard autoxidation or pyrolysis, the binding energy and location of the
hydrocarbon to the metal can cause more unique degradation results. Each hydrocarbon compound

will have a specific binding affinity to a metal, and that binding energy may differ significantly
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between different elemental metals. The elements Fe, Co, Ni, Cr, and Cu can catalyze carbon
production (Equation 3.3) while the elements Al, Ti, Nb, Ta, and Mn have shown resistance to
carbon deposition. [84, 85] Moreover, alloys containing multiple of these elements may have more
complex interactions with different organic compounds (hydrocarbons).

A promising path to mitigating these unfavorable catalytic interactions could be the coating
of high temperature surfaces with metal oxides or other materials. Since metals and non-metals
can be catalytically active for carbon formation, metal oxide coatings have been seen to decrease

the degradation of fuels over extended periods of time. [86-88]

CeHy0, = C(s) +Hy(g9) +C0 (9) (3.3)

Common testing methods for the study of soot deposit conditions are continuous flow
dynamic test rigs and static test rigs. [89] Continuous flow test rigs involve the flow of liquid fuel
through heated tubes of varying inner diameter, temperatures, pressures, and flow velocities. Soot
formations using this method are quantified by cutting sections of the heated tubing and measuring
by carbon burn-off or mass difference. Static tests involve a heated fuel reservoir through which
oxygen is bubbled. [89] Formation of soot in this method is measured via gravimetric analysis,
which requires considerable generation of carbon to analyze directly. To produce this quantity of
carbon, temperatures are typically run high and oxygen is bubbled liberally to generate measurable
amounts of soot. Thus, continuous flow rigs more closely resemble that of real fuel conditions,
since oxygen content is precisely that which is contained in the fuel. Experiments for both static
and flow reactors can take hours to complete for one fuel. In the interest of shortening sample

times, we have devised a new test rig for measuring the formation of soot involving impingement
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of the fuel onto the surface of a heated coupon. This impingement design allows for quantification
of carbon deposits with the benefit of reduced sample volume and test duration.

A detailed investigation of the sooting tendencies of biofuels is needed if they are to be
utilized as a practical fuel alternative. The chemical composition of biofuel blends may vary from
that of conventional fuels, and it is desirable to understand the effects these variations may have
in a typical engine environment. Depending on the nature of these compositional differences,
thermal degradation may increase or decrease, especially with variations in compounds within
different hydrocarbon classes. [27] Furthermore, accomplishing these characterization studies
relies on the existence of a rapid testing and screening for promising biofuel candidates, as well as
insight into which specific compounds are causing low performance of the blend. If possible, it is
desirable that such assessments do not require exceedingly long sampling times.

The compounds tested in this study were chosen based on biomass-derived gasoline and
diesel blendstocks identified by the US Department of Energy Co-Optima intiative [90], while
taking care to include molecules spanning a variety of chemical functional groups. The five
biogasoline compounds investigated are listed in Table 12 and five biodiesel compounds are listed
in Table 13. Of the compounds, diisobutylene, butylcyclohexane, n-dodecane, and dodecanes are
not oxygenates. In addition, both diisobutylene and dodecanes are inherently chemical mixtures.
Diisobutylene contains a mixture of 2, 4, 4- trimethyl-1-pentene and 2, 4, 4-trimethyl-2-pentene,
which are both olefins. Dodecanes contains a mixture of C12 isomers. The remaining compounds
are all potential oxygenation additives, ethanol being a widely used choice in gasoline to suppress
soot precursor formation, and in this study provides an alcohol functional group along with 1-
nonanol. Cyclopentanone, 2- methylfuran, and methyl acetate are each also biomass-derived fuels

[91-93] and contain a ketone, ether, and ester functional groups, respectively.
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3.2 Methods

3.2.1 Experimental Procedure

Biogasoline and biodiesel compounds (Tables 12 and 13) are to be characterized for their
carbon-forming tendencies on stainless steel, nickel, and aluminum metal. The fuels are not tested

as mixtures, but as pure compounds.

Table 12: List of biogasoline compounds tested for coke formation, and their corresponding functional groups and
chemical structures.

Bio-Gasoline Functional
Chemical Structure

Component Group

Ethanol Alcohol

/\OH
(0]
Cyclopentanone Ketone
0
Methyl Acetate Ester
O/

(0]
Aromatic
2-Methylfuran Ether @/
Diisobutylene Olefin M FEEN M
=
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Table 13: List of biodiesel compounds tested for coke formation, and their corresponding functional groups and
chemical structures.

Bio-Diesel Functional Chemical Structure
Component Group
1-Nonanol Alcohol NN 0H
Cyclic
Butylcyclohexane Alkane O/\/\
Dibutoxymethane Diether AN TN TN
CHy
n-Dodecane Alkane A et R S A
Dodecanes Glole ’E\:I\
Blend 10

Carbon deposits are formed by spraying individual fuel compounds through an injector
(Bosch EV14, PN 0 280 158 038) onto a metal coupon using the impingement test rig in Figure
39. Each metal coupon is placed on a small coiled heater which maintains a coupon temperature
of 350 °C (Figure 40). A ceramic cup holds the heater and coupon within the injector spray cone
(Figure 40). Pressurized argon at 68.95kPa pumps fuel into the injector from a stainless steel
reservoir. A 12V pulse circuit controls the release of fuel from the injector which then impinges
onto a coupon of either 18-8 stainless steel, nickel, or aluminum. Each coupon recieves a total of
200 fuel pulses of 10 ms each, with a delay of 2500 ms between pulses. Prior to spraying, the
impingement chamber containing the metal coupon sample is sealed and purged with argon for 5
minutes to evacuate air from the test environment. Thereafter, a constant flow of argon runs
through the chamber for the duration of the experiment and throughout subsequent cooling to room

temperature. Excess fuel, which has not decomposed on the coupon, either runs off to the fuel
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recovery reservoir or is vaporized and recovered in a trap. The entire experimental setup is shown

in Figure 41.

Heater &
Coupon

Fuel Recovery
Reservoir

Figure 39: A side-by-side view of the impingement chamber (left) and a schematic of the interior of that chamber
(right) showing the placement of the coupon beneath the spray cone.
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Figure 40: A open view of the inside of the impingement chamber. The metal coupon (here, a steel washer) sits on
top of a coiled heater. The heater is held in place by a ceramic fixture. Any fuel that does not degrade to soot on the
coupon runs off the ceramic fixture and collects in the base of this chamber.
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Figure 41: The experimental setup includes the impingement chamber, which consists of a fuel injector located at
the very top of a tall steel spray chamber. The height of the chamber allows room for fuel to be sprayed downward
onto a surface as well as room for collection of used fuel at the bottom. Fresh fuel sample is contained in the fuel
reservoir, and is pumped via teflon tubing to the injector. A pulse controller opens and closes the injector at
designated time intervals. A constant stream of argon flows through the impingement chamber which enters the
bottom, exits the top, and bubbles through a water trap.

3.2.2 Soot Quantification

Formation of soot is quantified by Raman spectroscopy. The carbon coating accumulated
on each metal coupon is analyzed using a Witec Alpha 300 confocal Raman spectrometer with a
532 nm excitation source. An 1800 groove/mm grating and a minimum channel collection width
of 0.9 cm-1/pixel were utilized along with a 50x objective lens. Spectra are taken 10 times in a

single location to obtain an average scan with low signal to noise ratio. A scan is obtained at 5
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different random locations on the coupon. The accumulation of soot can be seen visually after

removal of coupon from heater (Figures 42 and 43).

Figure 42: A visual comparison of coupons of 18-8 stainless steel kept at 350°C without hydrocarbon impingement
(A) and after 200 pulses of cyclopentanone (B) and 2-methylfuran (C) impingement at 350°C.

| “'ﬁ‘
A

Figure 43: A visual comparison of nickel test coupons kept at 350°C without hydrocarbon impingement (A) and
after 200 pulses of 2-methylfuran impingement (B) at 350°C.

3.3 Results

Raman spectral measurements were utilized to measure the layering depth of surface
graphitic carbon formation. The blue curve in Figure 44 shows the Raman spectrum of carbon
deposition on an 18-8 steel coupon. A pristine coupon prior to impingement with fuel is shown in
black for comparison. Post-impingement carbon formation with cyclopentanone reveals

disordered (D) and graphitic (G) carbon peaks at the anticipated energies of 1387.72 cm*and
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1591.04 cm, respectively. [94] The locations of the disordered and graphitic carbon peaks, D/G

ratios, and depth of graphitic carbon layers resulting from each fuel are listed in Tables 14 — 15.
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Figure 44: A comparison between the Raman spectra of a blank 18-8 stainless steel coupon after heat treatment
without fuel impingement (black) and a stainless steel coupon after impingement with cyclopentanone at
temperature (blue) shows the formation of graphite.

The formation of both ordered and disordered graphitic carbon layering was observed for
all tested hydrocarbons. Formation of any amorphous carbon was not analyzed. Within the
gasoline analog compounds, 4 out of 5 fuels (all but ethanol) exhibited more graphitic carbon
formation on nickel than on stainless steel. Ethanol showed slightly larger graphitic carbon
formation over steel (2.08 for nickel vs. 2.27 nm for stainless steel). Diesel compounds consistently
generated larger quantities of carbon over stainless steel than nickel metal. Across all gasoline and
diesel compounds, the largest formation of graphitic carbon was displayed by diisobutylene over
nickel metal. The smallest formation of graphitic carbon resulted from methyl acetate
decomposition over stainless steel. 1-nonanol, dodecanes, and n-dodecane each resulted in similar
carbon formation for both metal coupons, as did dibutoxymethane and butylcyclohexane. Raman
spectra from aluminum coupons revealed no signals indicating deposited carbon, and therefore are

not included in the tables.
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Table 14: A listing of the D (disordered) and G (graphitic) carbon peak locations (energies) and ratios for each fuel

tested on nickel in order of decreasing graphitic carbon length.

Peak: D Peak: G . Graphitic layer

At Energy (cm™) Energy (cm™) RUE/ U thiciness (n)r/n)
diisobutylene 1382.05 + 10.55 1580.74 + 2.55 1.22 +0.004 2.81+0.01
2-methylfuran 1347.60 £ 6.23 1580.61 + 1.01 1.06 £ 0.15 2.43 £0.36
methy| acetate 1366.93 + 36.13 1581.95 + 7.07 1.11+£0.53 2.40 £ 1.26
cyclopentanone 1382.53 + 10.04 1585.82 + 3.35 1.02 £ 0.26 2.331£0.61
dibutoxymethane | 1365.54 + 8.25 1592.41 + 9.49 0.92+£0.13 2.09+0.30
ethanol 1348.06 £ 4.13 1583.53 + 4.20 0.93+0.23 2.08 £0.54
butylcyclohexane | 1381.28 + 40.65 1580.74 + 37.09 0.89+£0.14 2.04 +0.33
1-nonanol 1374.37 + 16.76 1597.06 + 30.70 0.97+0.14 1.99 £ 0.37
dodecanes 1366.91 + 9.76 1584.15 + 7.90 0.84+0.14 1.92+0.33
n-dodecane 1365.66 + 9.57 1608.11 + 18.99 0.83+0.10 1.89£0.22

Table 15: A listing of the D (disordered) and G (graphitic) carbon peak locations (energies) and ratios for each fuel

tested on stainless steel, in order of decreasing graphitic carbon length.

Peak: D Peak: G . Graphitic layer
g Energy (cm™) Energy (cm™) 2UE e thiciness (n)r/n)
butylcyclohexane | 1390.66 + 14.98 1579.42 + 5.66 1.04 £ 0.08 2.39+0.18
dibutoxymethane | 1372.62 + 26.03 1592.15 + 15.71 1.04 +0.30 2.38£0.69
ethanol 1372.10 £ 3.06 1586.91 + 0.26 1.03 +3.0% 2.37 £0.031%
cyclopentanone 1390.60 + 2.12 1587.48 + 1.32 1.03 £5.8% 2.37 £ 0.059%
diisobutylene 1376.54 £ 8.11 1582.81 + 4.17 0.98 + 18% 2.24 £ 0.185%
dodecanes 1371.10 £ 22.90 1586.54 £ 7.45 0.93+0.18 2.13+£0.36
1-nonanol 1356.93 + 8.10 1587.56 + 1.66 0.93+0.06 2.12+0.15
n-dodecane 1358.36 + 6.68 1588.74 £ 2.16 0.93+0.04 2.12+0.10
2-methylfuran 1377.92 £ 455 1583.33 £ 2.77 0.83+£0.7% 1.90 + 0.008%
methyl acetate 1389.98 + 7.81 1578.61 + 7.54 0.60 £ 20.9% 1.35+0.219%

3.4 Discussion

3.4.1 Modes of Fuel Degradation

For standard combustion of hydrocarbons in a flame, the dependence of soot formation on
oxygen content and chemical functional groups is well established. [95, 96] However, outside an
ignition zone, the introduction of a catalytic or inhibiting surface (such as the walls of engine

components) will significantly alter the mechanism of carbon formation. As the hydrocarbon
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compounds interact with the metal surface sites, fuel molecules have the potential to bind to the
metal surface, altering their bond energies, and causing reactions. While actual ignition and
combustion of fuels relies more strongly on the concentration of oxygen and oxygenated additives
in the fuel blend, the presence of a catalytic surface shifts importance directly on the chemical
functional groups of the hydrocarbons themselves, since these are the binding locations of the fuel
molecules to the surface. For standard fuel degradation and formation of carbon, the creation of
precursors and polycyclic aromatic hydrocarbons is the initial step in production. [97] This step is
initiated via the formation of free-radicals and hydrogen abstraction, with a chain terminating step
of removal of the oxygen atom as CO2 or CO formation, which do not proceed further in the chain
reaction. [95] However, chemisorption of a fuel molecule to a surface site may be more predictable
than the free-radical mechanism. Thus, catalytic degradation of hydrocarbons may be more
predictable than other modes of degradation. The binding of a substrate to a surface site will

decrease the energy required to cleave bonds, leading to carbon formation.

3.4.2 Interactions on Metal Surfaces

Nickel is a known catalytic surface for a number of reactions. The fact that it is composed
of a single type of atom (nickel atoms) indicates the interactions over its surface are significantly
simplified as compared to a metal alloy consisting of many elements (such as steel). Similarly,
aluminum metal, although inhibiting by nature and not catalytic, offers a comparable simplicity.
Unlike nickel and aluminum, stainless steel contains more than one potentially catalytic element
(i.e. iron, chromium). However, this does not imply increased catalytic activity for carbon
formation over nickel or any other individual metal. It does, however, increase the complexity of

the material, as it is unclear which catalytic element contributes the most or if there are interatomic

73



interactions. The nickel, aluminum, and stainless steel chosen for our experiments offer a uniform

catalytic surface, a uniform inhibiting surface, and a surface mixture, respectively.

3.4.3 Functional Group Contribution

Over our ideal catalytic surface (nickel), olefins which contain a C=C double bond
(diisobutylene and 2-methylfuran) are observed to have the largest graphitic carbon formation.
From Figure 45, you can see this is closely followed by molecules with the bonds C=0 (methyl
acetate and cyclopentanone), C-O (dibutoxymethane), C-OH, and C-C. To identify a correlation
between carbon formation and surface binding affinity, the individual binding energies of each of
our fuel molecules would prove useful. In place of these energies for our specific fuels, Table 16
shows literature values of the binding energies of simple representative molecules over nickel
surfaces. Methanol, ethylene, formaldehyde, and furan are the simplest representations of alcohol,
olefin, C=0 molecules, and furans, respectively. The strongest binding energy of -217.57 kJ/mol
corresponds to furan, which is not surprising, as it contains multiple sites from which it could bind.
Formaldehyde, ethylene, and methanol are of subsequently smaller binding energies, methanol

coming in last place with the relatively weaker energy of -25.48 kJ/mol.

Table 16: Literature values for the binding energies of methanol, ethylene, formaldehyde, and furan over nickel
metals.

Binding Site | Binding Energy (kJ/mol) from Literature

Methanol Ethylene | Formaldehyde Furan
—OH C=C C=0 Ring

Nickel -25.48 -79 -149.81 -217.57
Ref. [98] [99] [98] [100]
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Figure 45: Comparison of carbon spot size on nickel coupons for each fuel.

A strong binding energy, such as that exhibited by furans, would allow compounds such
as 2-methylfuran to adhere longer on the surface, accumulating graphitic carbon fragments to
achieve more ordered carbon structures. The literature binding energies depicted in Table 16
correlate exceptionally well with our results with the exception of ethylene, or the C=C (olefins).
Where the table suggests olefins should have the second weakest binding energy, diisobutylene is
nevertheless our largest former of graphitic carbon. Of course, binding affinity may not be the only
factor at play. Other processes occurring simultaneously with catalysis may inflate the quantity of
graphitic carbon. As an example, if free-radical formation were occurring in tandem with catalytic

degradation, the carbon from both processes would be present. The specific chemical structure of
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diisobutylene makes it particularly susceptible to forming radicals, since it allows for multiple
resonance-stabilized radicals. It has been shown that branching tends to increase the formation of

carbon. [101]
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Figure 46: Comparison of carbon spot size on stainless steel coupons for each fuel.

Although diisobutylene is the most susceptible to free-radical formation of all our fuel
compounds, other molecules also exhibit some degree of vulnerability. The structure of
cyclopentanone offers multiple locations for hydrogen abstraction to occur. With varying possible
locations for the cleavage of the ring, cyclopentanone is likely to produce a variety of free radical

intermediates which could propagate to form larger carbon layers.

76



Inspection of the reaction pathways for the decomposition of methyl acetate shows much
fewer possible degradation products than cyclopentanone. [102-104] Hydrogen atom abstraction
occurs from the methoxy and acetyl groups on the molecule, resulting in the formation of
formaldehyde and ketene, which are small molecules compared to the long-chain radical products
of a molecule such as diisobutylene or 2-methylfuran. This is a direct result of the high oxygen
content of methyl acetate, as well as the placement of that oxygen within the molecule. The linked
oxygen atom in esters prevents carbon from forming soot precursors, and instead forms CO.. [95]
Formaldehyde and ketene have the ability to further decompose into even smaller radicals that
terminate at CO and C2He. Thus, methyl acetate has a low potential of degradation via free-radical
chain reactions relative to other compounds. The introduction of a catalytic surface allows a methyl
acetate molecule to bind more strongly than a cyclopentanone molecule to nickel, decreasing bond
strength and resulting in higher degree of decomposition for methyl acetate. However, in stainless
steel, this may account for methyl acetate’s low graphitic carbon formation.

Among the fuels, the hydroxyl group is present in only ethanol and 1-nonanol, and their
resulting graphitic carbon formations are very similar, despite 1-nonanol’s relatively long carbon
chain. Over transition metal oxides, ethanol can be dehydrated to form ethylene, [105] which is
soot- forming, [106] but does not proceed via free radical chain reactions. Mechanisms for the
thermal decomposition of basic alcohols such as ethanol have been studied over nickel- copper
catalysts. Although degradation mechanisms in the autoxidation regime typically require free
radical formation, it has been shown that ethanol can utilize alternative pathways in the formation
of soot. [107, 108] These additional pathways could cause an increase in carbon formation for
ethanol, but the results show strong similarity between the compounds. Stainless steel degradation

results are shown in Figure 46, and are ordered with the same high-to-low carbon formation as
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nickel, in order to visualize their stark differences. In the case of steel, methyl acetate had the
lowest formation of graphitic carbon though it was the third largest former in nickel. The fact that
there is little correlation to nickel coupons illustrates the difficulty with which mixtures of catalytic
metals can be predicted.

In both nickel and stainless steel coupons, a high standard deviation most likely results
from steep variations in carbon deposit in different locations upon the coupon surface. In addition,
variations in fuel viscosity (Table 17) between compounds determines the behavior of droplets
during spraying, potentially causing nonuniform distribution of the liquid on the coupons at
temperature. Nonhomogeneous coverage of the coupon can result in artificially high or low values
for soot formation, depending on the chosen location of the Raman laser. To reduce this effect, the
measurement of 5 locations on the metal coupon surface are averaged. Each fuel/metal interaction
was analyzed in triplicate. The size of the soot deposits were calculated based on methods by Reich
and Thomsen. [94]

Some physical properties of the 10 fuels are listed in Table 17 in order to visualize a the
trends in these physical parameters and how they might have been influential in their carbon
formations. Yet, the carbon and oxygen number seem to have no bearing on the degradation results.

Neither do the boiling point, nor the viscosity of the liquids.
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Table 17: Properties of gasoline and diesel analog compounds.

Fuel Chemical MW Boiling Viscosity | Carbon Oxygen

Formula | (g/mol) Pt. (°C) (cP) Number | Number
ethanol C2HsO 46.068 78 1.099 2 1
methy| acetate Cs3HgO2 74.08 57.4 0.353 3 2
cyclopentanone CsHgO 84.12 130 1.125 5 1
2-methylfuran CsHeO 82.1 64 0.374 5 1
diisobutylene CeHis 112.21 102 0.388 8 0
1-nonanol CoH200 144.25 215 9.682 9 1
dibutoxymethane CoH200, 160.25 180 1.02 9 2
butylcyclohexane CioH20 140.27 179 1.196 10 0
n-dodecane CiaH2s 170.33 216.3 1.376 12 0
dodecanes Ci2H2s 170.33 216.3 1.376 12 0

3.5 Conclusion

An impingement-style apparatus has been developed to quantify the graphitic carbon
formation of liquid fuels using Raman spectroscopy. The method involves spraying of the fuel
onto a heated metal coupon, which in this study are nickel, aluminum, and stainless steel. We have
examined 5 biogasoline analog fuels: ethanol, diisobutylene, methyl acetate, 2-methylfuran, and
cyclopentanone and 5 biodiesel analog fuels: 1-nonanol, dibutoxymethane, butylcyclohexane,
dodecanes, and n-dodecane, which have all been chosen based on the recommendations of the US
Department of Energy Co-Optima initiative. In addition, each of the fuels chosen represents a
separate hydrocarbon class, or chemical functional group. We have found that diisobutylene
produced the most carbon over a catalytic nickel surface using this method, followed by 2-
methylfuran and methyl acetate. This result agrees with literature binding energies of these
compounds on nickel surfaces. Aluminum metal coupons successfully inhibited formation of
graphitic carbon, to the extent that raman spectroscopy could detect no signal. Stainless steel
coupons showed a wide variation of results as compared to nickel, with the highest carbon former
being butylcyclohexane (narrowly) and the lowest former being methyl acetate. The complexity

of the stainless steel surface (being a mixture of catalytic elements) renders it more difficult for
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predicting and analyzing trends without the knowledge of the catalytic results of those elemental
components (iron and chromium) for our fuel compounds. Elucidating these trends would be an

interesting future study.
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CHAPTER 4: HARVESTING HEAT FROM SAFER, ENERGY-DENSE
SLOW PYROLANT MIXTURES FOR FUTURE SPACE MISSIONS

4.1 Introduction

4.1.1 Human Space Exploration

Since the start of human space exploration in the late 1950s, the number of space programs
and agencies across the globe have grown, humans have sent probes and spacecraft to distant parts
of the solar system, and humans themselves have left the planet. It can be said that the past 65
years of space travel and discovery have provided humanity with some of the greatest
technological and scientific advancements of any other age. [109] However, it can also be said that
space exploration is not occurring fast enough, since high impact missions are launched typically
on the order of years or decades. Political, [110, 111] legal, [112-114] and societal [115] challenges
and constraints are commonly debated as potential explanations for humanity’s slow space
colonization progress. However, construction of a spacecraft and its components are non-trivial
and complex, not to mention the physical human limitations [116-118] which are now in the
spotlight as conversations turn to increased manned missions and long-term outer space
habitability.

Currently, the United States’ National Aeronatics and Space Administration (NASA) is the
most active and funded space organization on Earth. [119] A mission to space within NASA’S
Planetary Missions Program will fall into one of three groups: Discovery, New Frontiers, or Solar
System Exploration (Table 18). [120] Small missions which require few resources and short
development times fall into the Discovery class, which can potentially launch a spacecraft from
Earth in as little as 36 months (3 years) of the mission’s conception. These Discovery class

missions define today’s standards for “frequent” human space exploration. However, our most
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ambitious and compelling missions do not have such short development times, nor do they have
comparable budgets. Missions involving high-priority science objectives that strive to investigate
a range of questions commonly fall under Solar System Exploration. [120] These are the flagship
missions (now called Large Strategic Science Missions) for the Planetary Science division, and

their costs enter the range of billions of dollars. [120]

Table 18: NASA’s Planetary Missions Program classifies missions into 3 groups. [120]

Program Mission | Development | Class Description
Budget | Time
Discovery $450 36 months Small » Established in 1992
million missions | » Missions require fewer resources
» Selection process: peer-reviewed
competition
New $850 60 months Mid-size | » Established in 2003
Frontiers million » Missions bridge gap between flagship
and Discovery class
» Selection procees: peer-reviewed
competition
» High-priority Planetary Science
Community mission goals
Solar System | $2 -3 >5 years Flagship | > High priority targets
Exploration billion » Often missions of national importance
» Selection Process: None. Missions
assigned directly to a NASA center

This high cost and lengthy development time comes in part from the scientific instruments
on board, as well as the power system for the craft. Flagship missions typically require robust
materials and complex equipment in order to accomplish the ambitious goals of the mission.
Although decreasing the costs associated with each analytical instrument onboard a spacecraft is
a wide and complicated task, devising low-cost power sources is not outside our reach. A low-cost
and versitile mode of energy production could drop some high-priority missions down from
Flagship class to a lower class, allowing for more frequent launches to these high-priority targets

and shortening the timeline of scientific discovery.
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4.1.1.1 Radioisotope Thermoelectric Generators (RTGS)

An RTG can be fueled by a number of isotopes, including americium-241 and strontium-
90, which is commonly used at remote locations on Earth. Plutonium-238 is NASA’s isotope of
choice for spacecraft, and it is provided in the form of plutonium dioxide pellets (28PuQ,).
Radioisotopes offer power options on the order of tens of kilowatts, which is lower than some
chemical fuels and most nuclear power options. However, their lifetimes are far greater, in the
range of years, as illustrated in Figure 47. Although the power output capabilities of an isotope
degrade over time based on its half-life, Pu-238 retains most of its heat output within half a decade

of its creation.
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Figure 47: (Left) Lifetime and power output of a radioisotope thermoelectric generator. (Right) The remaining
power able to be produced by the RTG accounting for isotope decay.

Over time, there have been several generations of RTG technology to meet the power needs
of their spacecrafts. The Systems for Nuclear Auxillary Power (SNAP), one of the first variations,
had an initial power output of approximately 40 and 70 W for the SNAP-19 and SNAP-27,
respectively. The Multi-Hundred Watt (MHW-RTG) power source employed on VVoyager 1 and 2

more than doubled the output of the SNAP-27, at 158 watts of power at the mission start. The
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general purpose heat source RTG (GPHS-RTG) is a combination of 18 GPHS modules which
provided a total power output of 292 W at the beginning of the Galileo, Ulysses, Cassini, and New
Horizons missions. Galileo and Cassini both utilized more than one GPHS-RTGs (2 and 3 for
Galileo and Cassini, respectively). [121] The newest generation, named the multi-misson
radioisotope thermoelectric generator (MMRTG) was designed to operate not only in the vaccum
of space, but also within a planetary atmosphere. The MMRTG (Figure 48) was first utilized on
the Curiosity Rover as part of the Mars Science Laboratory mission launched in 2011 and contains

8 GPHS modules, collectively generating about 110 W of power.

Multi-Mission
Radioisotope
Thermoelectric
Generator

(expanded view) . GPHS (General Purpose
= """ Heat Source) module

Stack of eight
GPHS modules -

_ Thermoelectric module
" (thermocouples)

- Radiator fins

Figure 48: A multi-mission radioisotope thermoelectric generator (MMRTG) consisting of 8 GPHS modules, and
thermocouples which convert the generated heat into electricity. Image credit: NASA.

As much as the RTG has fascilitated the most ambitious of NASA’s flagship missions,
there are grounds for diversifying spacecraft power options. The United States halted it’s

production of plutonium in 1988, making new plutonium-238 difficult to source . The plutonium
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already in the U.S. stockpile could only provide fuel for 3 additional MMRTGs, one of which
currently powers the Perseverence Rover which landed on Mars in 2021, and another which is
reserved for the future Dragonfly mission to Titan. Although Oak Ridge National Laboratory has
since began producing Pu-238 again in small quantities under the US Department of Energy
Supply Project, the goal is to produce 1.5 kg/year by 2026. [122] A single MMRTG requires
approximately 3.4 kg of Pu-238, whereas the GPHS-RTG requires 7.7 kg. [39]

If NASA is to increase the frequency of its flagship missions, attempts to unrestrict itself
from the RTG should be made. The capability of generating a steady flow of heat for a long period
of time need not be dominated exclusively by radioisotopes. Solid-state exothermic reactions could
potentially provide the necessary heat for electrical power generation, which would provide a
similar enclosed, environmentally-resistant power source, allowing for long-distance and long-

duration missons at a reduced cost.

4.1.2 Solid State Exothermic Reactions

The heat produced by solid-state exothermic reactions could potentially be harvested as
energy to power missions that would otherwise be powered by an RTG. The exothermic condition
is met by any chemical reaction which contains a negative value for enthalpy, which can be

calculated using Equation 4.1 for a typical chemical reaction. [123]

AHO = Z Hproducts - z Hreactants (4-1)

The more negative a value of enthalpy, the more heat produced by a reaction, whereas an
overall positive enthalpy value indicates an endothermic reaction, or one which requires heat input.
A thorough explantation of the enthalpy calculation for a balanced chemical reaction is provided

in the section to follow. We seek to determine chemical reactions with the most negative enthalpies
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for potential use as slow burning pyrolants. The enthalpy value for a chemical reaction system can
then be utilized to quantify the maximum temperature reached by the burning reactants in a closed

system, which is the subject of the next section.

4.1.2.1 Calculating Adiabatic Flame Temperature

It is important to determine the maximum temperature capable of our exothermic reactions
in order to assess which reaction should provide the largest quantity of heat able to be harvested.
Such a temperature is termed the adiabatic temperature (Tag) and this quantity differs from a
reaction’s enthalpy. Although an exothermic chemical reaction may produce heat upon
completion, not all of this energy is released as heat or is usable for work. The energy produced
from reagents can be absorbed by the products in different vibrational modes (the products’ heat
capacities) as well as in phase changes, if such an event occurs. Therefore, the value obtained from
an enthalpy calculation might indicate a larger production of heat than is usable in reality, and can
be seen as a theoretical value until heat capacity and other heat sinks specific to a chemical reaction
have been accounted for.

The concept employed for this calculation involves initially quantifying the total enthalpy
of the reaction. This is accomplished using the chemical reaction containing all starting reagents,
and with the general knowledge of the most likely product(s) to be formed. Given a chemical
reaction between reagents A and B which produce the products C and D, the stoichiometric
coefficients (a, b, ¢, and d, respectively) must be found by balancing the chemical equation, which
should result in something resembling Equation 4.2. The overall reaction enthalpy can then be
calculated using Equation 4.3 (which is an expanded version of Equation 4.1), if the enthalpies of
formation (Hs) are known for each reagent and product at STP (standard temperature and pressure).
[123] The degree sign included in the abbreviation for enthalpy, AH®, refers to the standard
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enthalpy of formation when the reagents are at STP. Typically, enthalpies of formation for specific
compounds can be found at STP in reference texts, literature, or chemical databases such as the

National Institute of Standards and Technology (NIST) Chemistry WebBook Database. [124]

aA+ bB — cC+dD (4.2)

AH® = (cHy ¢ + dHyp) — (aHy 4 + bHy ) (4.3

Once the specific enthalpy (AH°) has been obtained, we can begin the process of
determining Tad. The following paragraphs will first describe the logic behind the calculation,
followed by a handful of formulas needed before we can perform the Taq calculation, and will end
with putting the pieces together to obtain Tag.

We must begin with the assumption that products C and D were formed with 100% yield
(the reaction went to completion and reagents A and B are no longer present). With a system now
containing only products, a series of accounting steps can be taken at small increments of
temperature beginning at 298 K (room temperature). For each incremental rise in temperature, AT,
of products C and D, we will determine the heat (Q) that must have been absorbed by these
compounds to increase their temperature, and we will subtract that heat, Q, from the total standard
enthalpy, AH®. In addition, if one of the products should undergo a phase change at a specific
temperature, the heat required for that phase change is subtracted from the total enthalpy, AH®,
until all the energy produced by the exothermic reaction has been expended (i.e. AH°=0). At the
point when the internal energy, AH®, has been expended, whatever temperature the products C and
D have reached is the adiabatic temperature.

Of course, in reality, the chemistry of a reaction is unlikely to proceed in this way. It is

unlikely that 100% of the product is formed at room temperature at which point the products begin
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to absorb the produced exotherm. It is more plausible that the consuption of reagents to produce
products, heat production, heat absorption, and phase changes occur together and at times
simultaneously. However, accounting for the order of these events can be impossible as well as
unnecessary for bookkeeping the released heat.

Here will be given a general example of the adiabatic temperature calculation for a generic
chemical reaction which may look like Equation 4.2. We will discuss a few different heat sinks,
or phenomena which would cause the products to absorb heat. However, we will assume adiabatic
conditions, meaning we will assume no heat travels outside the system of our compounds to the

environment. The heat sinks we will consider are listed in Table 19.

Table 19: Types of heat sinks to consider for adiabatic temperature calculations.

Heat Sink Quantity Needed Abbrev. Unit
Heat absorbtion: storage in Heat capacity (const. pressure) as a Co(T) J/molK
molecular vibrational modes function of temp

Phase change: melting Heat of fusion AHiys kJ/mol
Phase change: Evaporation Heat of vaporization AHyap kJ/mol

Some amount of the heat produced by the chemical reaction will be absorbed by the
reaction products C and D, each of which can store the kinetic energy in the form of molecular
vibrations. Depending on the bonds contained by the compounds C and D, the heat can be stored
in a bond stretching, bending, or twisting, which together we will call the heat capacity, C,, of that
compound or molecule. Heat capacities for different compounds can be found at STP in reference
texts and chemical databases. However, to increase accuracy it is best to determine the heat
capacity as a function of temperature, Cp(T), which can be found using the Shomate equation
(Equation 4.4), where constants L, M, N, O, and P are determined experimentally and for many
compounds are often listed in the NIST Chemistry WebBook Database. [124] In Equation 4.4, t is

a fraction of temperature described by Equation 4.5.
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C, =L+ Mt + Nt? + 0t® + Pt 2 (4.4)

For a chemical reaction containing a single product C, calculating the Shomate equation
one time to determine Cp(T) for only compound C completes the work required for this step.
However, for chemical reactions containing multiple products C + D (or even C + D + E), an
average heat capacity must be calculated based on the mass fractions of C and D produced. Since
different molecules contain different bond types, each molecule C, D, or E will contain a different
value for heat capacity and each need to be considered. The equation for calculating average heat
capacity is shown in Equation 4.6, where Xc and Xp are the mass fractions of compounds C and
D, respectively. The calculations for obtaining the mass fractions are shown in Equations 4.7 and
4.8, where m indicates the compound’s respective masses. Due to the conservation of mass,
Equation 4.9 must be true. In addition, the sum of the fractions of all products must equal unity
(Equation 4.10). The procedure for determining the final product masses mc and mp can be
calculated from chemical Equation 4.2 if the molecular weights and stoichiometric coefficients (a,
b, ¢, and d) are known. A detailed explanation of this calculation can be found in any general

chemistry textbook.

Cp,avg = Cp,cxc + Cp,DXD (46)
X, = —¢
¢~ me +mp 4.7)
mp
Xp=——
D mc +mp (4.8)
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Miotqr = My +Mp =M +Mp (4.9)

Xe+Xp=1 (4.10)

Of course, the result of Equation 4.6 (Cpavg) IS not a measure of heat itself, and cannot be
subtracted from AH® directly since they are not both measures of energy. The quantity of heat, Q,

absorbed by the products in order to increase the temperature by AT is dictated by Equation 4.11.

Qar = mtotale,angT (4-11)

Refering back to Table 19, heat can also be absorbed by the compounds C and D in the
event of a phase change, in which the energy will be stored in the general movements of the
molecules. The heat of fusion of a compound, C, is the amount of energy input required for C to
undergo a phase change from a solid to a liquid (melting). Moreover, the heat of fusion can also
indicate the amount of energy released by C if it were to undergo solidification from a liquid to a
solid. For a compound C, this value should be equivalent (but opposite sign) in either direction
(melting or solidifying). Similarly, the heat of vaporization of a compound, C, is the amount of
energy input required for C to undergo a phase change from vaporization of liquid to a gas, or
energy released in the event of condensation of C from gas to liquid. To calculate the heat absorbed
by such a phase change, Equations 4.12 and 4.13 can be used. Qmeit Or Qvap can also be referred to

as the latent heat. [123]

Qmeit,c = MW, AHpysc (4.12)
mc
Quap,c = MW, AHyapc (4.13)



During any of these 4 types of phase changes, the overall temperature, T, of the products
should not change; all the energy should temporarily be directed exclusively to changing the
physical state of the compounds and no change in temperature should occur. The heat of fusion or
vaporization of a compound can be found in reference texts or chemical databases. The
temperature at which these occur are, of course, specific to the melting point and boiling point of
the particular compound.

Combining all of these steps, we are finally able to quantify the adiabatic temperature. It
may be convenient to use a spreadsheet or other software to calculate each step in AT, since it is
ideal to use small increments in temperature which may significantly increase the number of
calculations necessary. In a generic example in Table 20 below, I will use increments of 10 K, as
shown in the first column. The first column defines the temperature of the products. Using this
temperature, we can calculate Cp avg for column 2. Then, using the average heat capacity the various
Qs in column 3 can be quantified. All that follows is continually subtracting this determined heat
quantity, Q, from the AH® “bank account” until the AH® reaches zero (and the bank account is
empty). The temperature at which the total internal energy AH is depleted, is the adiabatic
temperature. It is key to know the melting and boiling points of all products in order to determine

the point at which a switch must be made from calculating Q from heat absorbtion to calculating

Qmert Or Qvap-
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Table 20: Example of adiabatic temperature calculation using a spreadsheet. Notice the last calculation should occur

when the total enthalpy reaches zero.

Toroducts (K) ]%pr'ag +D Energy Requirement AH remaining Heat sink type
Q1= — ALgo :

T1 Cpavg @T1 Morocucis* Coavg @70 (T2-T1) AH1 = AH° - Q1 | Heat absorbtion
T2 = Q2= _ i .
T, + 10K Cpavg @T2 Merocucts™ Cp.avg @72*(T2-T2) AH2 = AHj1 - Q2 | Heat absorbtion
T3 = Q3= _ i .
T, + 10K Cpavg @T3 Meroctucts™ Cp.avg @73 (Te-T3) AH3z = AH: - Q3 | Heat absorbtion
Tx= _ * AHyx = AHy.1 - | Phase change:
Tmp, C Qmelt B AHfUS'C mC/MWC Qmelt melting
Ty = _ * AHy = AHy.1 - Phase change:
Tmp, D Qmelt a AHfUS'D mD/MWD Qmelt melting

_ Qn = .
Th=Tad Cpavg @Tn Miroducts* Coavg @7 (To-Tre1) 0 Heat absorbtion

If the values for C, or AH¢ cannot be found, they can be estimated by looking to similar
chemical compounds for reference. Heat capacities are quantities based on the amount of heat
stored in a molecule’s bonds as they rotate or vibrate. Thus, a molecule containing similar bonds
can be used as an analog. It is important to consider ionic vs covalent bonds, as well as
intermolecular bonds. Heats of formation can depend on the initial phase of the compound as well

as its crystal structure if in the solid phase.

4.2 Research Objectives

4.2.1 Solid State Exothermic Reactions as an Energy Source

The central research objective of this study was to find a candidate solid-state exothermic
reaction to use as an energy source and determine its propagation speed. The energy densities of

several fuel and oxidizer combinations were calculated, and a list of 18 were chosen for
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preliminary experimentation (Table 21). The chemical compounds chosen were required to be in
the solid phase and were expected to be generally pyrolitic. However, it was critical that at least
one reaction could maintain a steady burn rate, rather than expend itself rapidly and all at once. A
steady burn rate implies long-duration heat generation if properly managed as well as the possibly
for controlled burning. Thus, the ideal pyrolant candidate is one whose propagation rate is naturally
slow, and which does not require additives or other heat sinks to slow its propagation to a desirable
rate. Although this is the desirable behavior, methods can be employed for pyrolants with rapid

burn rates in an attempt to slow them down.

Table 21: List of 18 fuel and oxidizer reaction combinations to test for slow reaction propagation potential.

# Fuel Oxidizer Energy # Fuel Oxidizer Energy

Density Density
(kWh/kg) (KWh/kg)

Group 1: Lithium Peroxide 10 Al MnO; 1.35

1 B Li2O2 2.09 11 Al MoOs3 1.31

2 MgB: Li»O, 2.83 Group 3: Magnesium & Teflon

3 Mg Li2O: 2.28 12 Mg Fe203 1.29

4 TiB: Li2O; 1.68 13 Mg Fes04 1.2

5 | Si(nano) Li2O2 2.83 14 Mg CuO 1.28

6 Zr Li2O 1.48 15 Mg MnO> 1.54

Group 2 16 Mg + Si 0, 8.57

7 Ti B 1.54 17 Mg (CoFa)n 4.1

8 Ti C 0.85 18 Li (CoFa)n 3.4

9 | Si(nano) 02 9.04

In order to measure burn propagation rates, a test cell was designed to monitor combustion
along a length of reaction powder. Prior to any analysis within the propagation test cell, a series of
experimental tests were devised to evaluate each of the 18 exothermic reactions. These preliminary
evaluations shortened the experimental process considerably, rapidly eliminating reactions that
were violently exothermic and avoided breakage of the test cell. For this selection process,
reactions were organized into groups roughly according to their chemical compositions in order to
distinguish ignition patterns.
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4.3 Experimental Methods

4.3.1 Production of Solid Pyrolant Mixtures

Stoichiometric quantities of solid fuel and oxidizer were measured on an analytical balance.
The powders were homogeneously mixed by hand-shaking in a glass serum vial, followed by

grinding in a mortar and pestle, and then finally loading into an empty steel vial to be shaken for

15 minutes by a mixer mill. The resulting powders are shown in Figure 49.

Figure 49: A view of a select number of the 18 pyrolant powders, after homogenizing the fuel and oxidizer.

4.3.2 Selection of the Ideal Pyrolant Candidate

A selection process was devised to determine the best pyrolant candidates and to narrow
down to a suitable number for initial testing. The pyrolants were subjected to 3 preliminary
experimental tests: a) a wire ignition and explosivity test, b) thermogravimetric analysis (TGA)

and c) a vertical propagation test. Each test was designed to assess one or multiple variables to
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select the pyrolant candidate that would require the least amount of manipulation or chemical

additives to propagate slowly.

4.3.2.1 Wire Ignition and Explosivity Test

At the outset, pyrolants were analyzed for their ability to be ignited with a nichrome wire,
as this is ultimately the ignition device within the propagation reaction chamber. Simultaneously,
their physical explosivity was assessed. A coil of nichrome wire was placed at the bottom of a
small, open, ceramic crucible (Figure 50). Approximately 0.5 g of pyrolant was placed on top and
around the coil, covering it completely. The nichrome wire was heated for 5 seconds by generating

a current within it in order to ignite the pyrolant powder.

Figure 50: A post-combustion image of burned solid pyrolant in a ceramic crucible, atop a coiled nichrome wire.
The reaction product has hardened around the wire coil.

4.3.2.2 Thermogravimetric Analysis (TGA)

Pyrolants which passed the ignition and explosivity test proceeded to be analyzed through
thermogravimetric analysis (TGA). Pure fuel and oxidizer powders were also analyzed. The
instrument contained an alumina pan attached to a platinum hang wire (Figure 51). The samples
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were heated to 600 °C at a rate of 10 °C/min under a flow of air. The moisture content of the
powders, evolution of gases, and ignition temperatures were determined by monitoring mass

fluctuations in the powders.

Figure 51: Thermogravimetric analysis (TGA) was used to monitor mass fluctuations of the pyrolants during
ignition. The right image shows a sample of titanium and boron pyrolant mixture hanging on the weighing pan.

4.3.2.3 Vertical Propagation Test

Pyrolants which passed the ignition and explosivity test proceeded to a vertical propagation
test rig, shown in Figure 52. This rig consists of a cylindrical chamber with removable bottom and
top covers, all constructed of POCO graphite. A small channel was machined from the top through
the bottom down the long axis of the cylinder, excluding the lid and base (Figure 52a). This
chamber contains the pyrolant powder during combustion. Four thermocouples penetrate the side
of the cylinder (Figure 52c) and enter the central channel, embedding themselves in the center of
the pyrolant powder. The thermocouple holes are spaced 1 cm apart. At the bottom of the cylinder,
a hollow alumina tube is inserted horizontally, which holds the nichrome ignition wire (Figure

52b). The alumina tube acts as insulation to shield the ignition wire from the graphite surroundings,
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which are highly electrically conductive, and can interfere with wire heating. A hole is cut in the
alumina tube where it will lie under the narrow channel so the pyrolant powder makes contact with

the ignition wire (Figure 52d), but does not fall through the bottom of the graphite cylinder.

Figure 52: (A) The vertical graphite test chamber, showing the top opening of the channel which holds the pyrolant.
(B) A hollow alumina tube hods the ignition wire and is inserted horizontally through the bottom of the graphite
cylinder. (C) 4 thermocouples are inserted into the side of the cylinder and reach the interior of the channel where
they make contact with the pyrolant. (D) A close-up of the alumina tube, showing a cut hole designed to align with
the pyrolant channel.

Thus, the pyrolant placed in this vertical propagation cell ignites from the bottom of the
cylinder and propagates upwards. The nichrome wire is heated for 7 seconds to ignite the pyrolant.

Pyrolant was packed into the central chamber until it reached 1 c¢cm above the topmost

thermocouple.
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4.3.3 Thermocouple Coatings

Observations of noise in the temperature readings during pyrolant burning resulted in
various attempts to coat thermocouples using different compounds.

Polysilizane was applied to 4 bare, welded thermocouple wires using a cotton applicator,
shown in Figure 53a. The liquid was applied heavily and dried in an oven at 180 °C to harden.

A mixture of boron nitride and isopropanol was spray-coated onto 4 bare, welded
thermocouple wires using a spray coater attached to compressed air (Figure 53b). These

thermocouples were left to air dry.

Figure 53: (A) Stripped thermocouples were coated with polysilizane applied with cotton applicator. (B) Stripped
thermocouples were coated with a mixture of boron nitride powder in isopropyl alcohol using a spray coater.

Propagation rates were evaluated for each pyrolant reaction within specially constructed
propagation test cells. Two nearly identical cells were machined: one of ceramic and the other of
graphite (Figures 54 and 54). Each cell consists of 4 ceramic or graphite blocks which are cut such
that when assembled, they create an empty rectangular space between them. A stainless steel base
and lid, as well as bolts, hold the 4 blocks in place.

98



For each experiment, approximately 1 g of pyrolant mixture is loaded into the rectangular
chamber space, which when completely closed compresses the powder gently to form a rectangle,
as shown in Figure 54c. A nichrome wire at one end of the rectangular chamber is coiled where it
is imbedded in the pyrolant, and the wire ends extend out each side of the cell to be connected to
a variable AC transformer (Variac); this placement is shown in Figure 54b. As the powder is
ignited from one side to the other, thermocouples inserted at 1 cm intervals along the length of the
sample measure the heat generated. Ten channels are machined perpendicular to the sample
chamber (Figure 54d) which hold the thermocouples at precise intervals from each other and
ensure they do not shift during burning. Only 4 of these channels are used at a time, but additional
channels allow for changing the thermocouple placement along the pyrolant sample if desired.
Each reaction is ignited by heating the nichrome wire for 7 seconds. The equal spacing between
the 4 thermocouples allows for a rate calculation as the combustion front passes over each
thermocouple. Figure 54d shows the pyrolant chamber after a successful ignition of pyrolant that

began looking as that of Figure 54c.
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Figure 54: (A) The completely assembled ceramic propagation rate cell. (B) A view to the interior of the cell,
showing thermocouples evenly spaced and coiled nichrome wire. (C) One of 4 ceramic blocks removed to show
interior compressed pyrolant shape. (D) Post-reaction residue after successful ignition of pyrolant.

The graphite chamber is shown in Figures 55a-d. The interior rectangular chamber of this
cell has identical dimentions to that of the ceramic cell in Figures 54a-d. Thermocouple channels
machined in this cell are made slightly deeper and wider to accommodate thicker guage

thermocouple wire if this is desired.
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Figure 55: (A) The graphite propagation cell, showing the central test chamber formed from the blocks once they
are assembled. (B) The completely assembled graphite propagation cell. (C) Burned pyrolant residue after a
successful ignition. (D) View of graphite blocks nearly assembled. The stainless steel top and base contain a

protruding slot which fits within the rectangular chamber to contain the pyrolant.

In order to control the atmosphere surrounding the burning pyrolant, a purge box was
constructed to house the propagation cell (Figure 56). The box consists of an acrylic enclosure,
each side of which is solvent welded at the edges. The box is placed on top of a table which holds
the propagation cell and thermocouple ports, and is held tightly onto a gasket (orange) with 8
screws. A gas inlet is located at the bottom of the chamber, and an outlet is placed near the top of
one side of the acrylic box which allows a continuous flow of gas to purge the environment of any
air (particularly oxygen). The thermocouple and ignition wires are threaded through a port in the

bottom of the table which has been made gas-tight by filling with epoxy. Prior to pyrolant ignition,
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the box is purged with the desired gas for 15 minutes and gas continues to flow during ignition

and burning.

Figure 56: A purge box allows control of the environment surrounding the propagation cell. A continuous flow of
gas enters and exits the box, purging of air before and during pyrolant ignition.

4.4 Results

4.4.1 Pyrolant Selection

Although the 18 pyrolant mixtures were chosen based on their high energy densities, it was
initially unknown if each pyrolant would ignite via a nichrome wire, how explosively the pyrolants
would react, or if any of the pyrolant reactions would incur harmful damage to the main
propagation cell or its components. Pyrolants which failed to ignite via the nichrome wire test did
not proceed to the next selection test, since they ultimatly would not combust within the
propagation cell. Pyrolants which underwent large visual or audible detonations within the crucible
were also not selected as immediately viable for propagation experiments. However, such
excessively energetic pyrolant mixtures could become useful in the future as additives to slower-
burning solid pyrolant reactions in order to speed up reaction propagation.

Groups of pyrolant mixtures which contained similar compounds reacted similarly to each

other in the ignition and explosivity tests. The results for all tests are summarized in Table 24.
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Reactions between lithium peroxide and titanium diboride (Li.O2 + TiB2; reaction #4) as well as
aluminum and manganese dioxide (Al + MnOz; reaction #10) were unable to be ignited via the
nichrome wire method. Pyrolants containing magnesium (Mg), zirconium (Zr), and teflon (CzF4)
exhibited loud cracking explosions often accompanied by visible flashes of light. Although the
reaction between lithium peroxide and silicon (Li2O2 + Si; reaction #5) was not characterized as
explosive, the reaction combusted rapidly.

Thermogravimetric analysis of the remaining pyrolants resulted in successful ignition and
burning for the majority of samples. However, the reaction between titanium and boron (Ti + B;
reaction #7) did not result in any ignition at temperatures up to 600 °C. Figure 57 shows the TGA
results of all successful pyrolant mixtures containing lithium peroxide. The samples showed
insignificant mass loss up to 350 °C, and at approximately 350 °C, all samples exhibited a sharp
decrease in mass. Between 400 — 450 °C samples show an inconsistent degree of mass gain,

followed by a second decline in mass. The values of these changes are recorded in Table 22.
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Figure 57: Thermogravimetric analysis (TGA) of pure lithium peroxide powder and 3 stoichiometric pyrolant
reaction mixtures.
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Table 22: Values of %weight at 350°C as well as sample masses at 600°C for each of the pyrolant samples in

Figure 57.
Pyrolant Sample Masoc Méeoo°c
(% weight) (% weight)
Li2O 81.1 67.2
.~ B#LkO. %5 82
MgB; + Li2O> 84.4 88.1

Pyrolants which passed the ignition and explosivity test were subject to the graphite
propagation test regardless of TGA test results. Experiments in this vertical propagation cell were
meant to be analagous to the horizontally-lying propagation cells, and were designed to analyze
the interactions between the pyrolant and thermocouples. For all pyrolants, burning of the powders
resulted in one or more problematic interactions with the thermocouples. The burn products often
formed a hardened mass surrounding the thermocouple junction, melted the thermocouple junction
altogether, or the hardened solid product replaced the thermocouple junction after it was melted,
all of which can produce false temperature readings. Two examples of thermocouple noise are
displayed in Figures 58a and b. Figure 58a is almost ideal, but peaks are closely spaced, indicating
a fast propagation rate and thermocouples 3 and 4 (TC3, TC4) seem to experience noise between
1 and 2 seconds. Figure 58b shows temperature curves commonly seen for excessive electrical
contact between the 4 thermocouples. Thermocouples 1, 3, and 4 show clear repetition in their
peaks, which align with the peaks in neighboring thermocouples in multiple instances.
Additionally, thermocouple 4 in Figure 58b also shows the signal produced when a complete
breakage occurs in the thermocouple junction. This can be seen at about 9.5 seconds as the

temperature curve shoots above the maximum range of a K-type thermocouple.
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Figure 58: First vertical graphite cell reactions. (A) Reaction monitored with standard thermocouple wires. (B)
Reaction monitored with one of the thermocouple wire pairs in electrical contact with the graphite cell.

Thus, of the 18 pyrolant reaction candidates assessed, mixtures with lithium peroxide and
boron (Li.O2 + B; reaction #1), magnesium diboride (Li2O2+ MgB>; reaction #2), as well as
aluminum and molybdenum oxide (Al + MoOsg; reaction #11) were the leading candidates.
Reaction 11 was not chosen among the 3 due to its lower energy density as well as the availability
of molybdenum oxide. Reaction 1 containing boron oxide was ultimately chosen due to the

availability of boron powder.
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Table 23: Results of the selection tests for each of the 18 pyrolants.

proceed to that test.

A dash (“-*) indicates the reaction did not

# Reaction Nichrome Wire Test TGA <600°C Grap_lt:ge[ Cell
Group 1: Lithium Peroxide
1 |LiO,+B v"Ignition (fizzle) v' Burn TC breakage
2 | LiO2 + MgB: v Ignition (fizzle) v' Burn TC breakage
3 Li.O,+ Mg Ignition (explosive) - -
4 | Li,O; + TiB; No ignition v' Burn -
5 | Li2O2+Si Ignition (rapid, noiseless) v" Burn -
6 Li,O, + Zr Ignition (explosive) - -
Group 2
7 |Ti+B Ignition (explosive) No Burn -
8 |Ti+C Postponed - -
9 | Si+0() Postponed - -
10 | Al + MnO; No ignition - -
11 | Al + MoO; v Ignition (slow) v’ Burn TC breakage
Group 3: Magnesium and Teflon
12 | Mg + Fe;0s Mg: too energetic - -
13 | Mg + Fe30q Mg: too energetic - -
14 | Mg + CuO Mg: too energetic - -
15 | Mg + MnO; Mg: too energetic - -
16 | Mg + Si + O2(9) Mg: too energetic - -
17 | CoF4+ Mg C,F4: too energetic - -
18 | CoF4+ Li C,F4: too energetic - -

4.4.2 Thermocouple Noise Reduction

Prevention of thermocouple melting using a liquid polysilizane coating slightly reduced
the occurances of complete breakage of the thermocouples. However, application of the coating
was imperfect and prone to errors, since the polysilizane dried as a thick crust, which easily
crumbled when the thermocouple junction was inserted into the pyrolant powder. As shown in

Figure 59, the coating did not eliminate electical noise.
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Figure 59: Vertical graphite cell reaction using polysilizane-coated thermocouples to prevent melting.

Coatings of boron nitride suffered less crumbling and remained on the thermocouple wires
during insertion into the propagation cell. However, as shown in Figure 60, boron nitride seemed

to provide little to no protection for electrical interferance.
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Figure 60: Vertical graphite cell reaction using boron nitride-coated thermocouples to prevent electrical interferance
within the pyrolant powder.

4.5 Discussion

4.5.1 Lithium Peroxide + Boron Reaction Mechanism

It was determined via thermogravimetric analysis that the pyrolysis reaction between boron
and lithium peroxide proceeds through 3 elementary steps, shown in Equations 4.14-4.16.
Equation 4.17 shows the summation of these elementary steps to form the overall chemical
equation. The first two elementary steps both involve the evolution or sequestration of a gas, which

allowed us to elucidate those steps via TGA.

Li, 0, (s) = Li,0 (s) + 0,(9) (4.14)
B (s) + 0, (g) = B,03(s) (4.15)
Li,0 (s) + B,05 (s) = LiyB,0,(s) (4.16)
Li,0;, (s) + B (s) » Li,B40, (s) (4.17)
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The first elementary step in Equation 4.14 describes the decomposition of lithium peroxide
to form lithium oxide and oxygen gas. This decomposition is observed at 350°C in all of our
pyrolant samples containing Li»O; in the form of a significant mass decrease. In the pure lithium
peroxide sample in Figure 61, the decomposition results in a mass loss of 24.5wt%. These TGA
results compare well to those in the literaure of lithium compounds which show a similar decline
in mass for lithium peroxide at a temperature near 350°C (Figure 62). [125] Assuming the reaction
in Equation 4.14 goes to completion, the theoretical yield of lithium oxide (Li20) is 34.8 wt%,
which is in agreement with the wt% value of Li.O> observed in the literature. However, our lithium
peroxide sample displayed in green in Figure 61 does not reach this theoretical value before a rapid
mass increase occurs between 400-500°C. This indicates Li2O2 decomposition was incomplete
before the formation of an unknown species, which seems to subsequently decompose between

450-500°C.
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Figure 61: TGA of a pyrolant mixture containing Li»O- (blue) as compared to a pure Li»O, sample (green) shows
the differences in behavior above 550°C as the pyrolant oxidizes leading to a mass increase, while pure Li,O, does
not.

The lithium peroxide curve eventually reaches 67.2 wt%; 65.2 wt% would indicate 100%

decomposition. However, Figure 57 shows that the pyrolant mixtures do not plateau at a lower
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mass, as does the pure oxidant. An isothermal hold of our boron pyrolant mixture (blue curve) at
600°C (Figure 61) confirmed an increase in mass up to 88.3 wt%. This occurs as oxygen evolves
from the first elementary step (Equation 4.14) and reacts with boron to form boron trioxide
(Equation 4.15). We predict that a TGA run flowing air instead of argon gas over the sample would
allow the pyrolant mixture B + Li2O> to reach its maximum yield by supplying an excess amount
of oxygen gas. Table 24 lists the final weight percent values for the curves in Figure 61 at
temperatures 350°C and 600°C, as well as the theoretical wt% values given complete
decomposition of Li-O at 350°C and complete oxidation of B at 600°C. We predict that the
products Li>O and B,0O3 from the first two elementary reactions then react to produce lithium
borate (Equation 4.16). Similarly, mixtures of lithium peroxide with magnesium diboride (MgB2)
and titanium diboride (TiB2) should recover their mass in an extended isothermal run at 600°C in
the TGA with a flow of excess oxygen. In addition to B2O3 they should form the oxides MgO and

TiO..
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Figure 62: TGA results of lithium compounds held to temperatures of 1200°C. [125]
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Table 24: TGA percent weight values of 4 samples at 2 different temperatures, as compared to their theoretical
weight percents after the decomposition of lithium peroxide and after oxidation of the solid fuel. The decomposition

of lithium peroxide should occur at 350°C.

Pyrolant Maso-c M3soec, theoretical Meooc Meooec, theoretical
Sample (% wt) (% wt) (% wt) (% wt)
Li2O2 75.5 65.2 67.2 65.2

4.5.2 Propagation of Lithium Peroxide + Boron Pyrolant

One ideal propagation reaction between lithium peroxide and boron is shown in Figure 63.
The large temperature peaks in the graph mark each moment the combustion front passes a
thermocouple as it proceeds along the length of pyrolant. In addition to Figure 63, the propagations
shown in Figures 64-66 depict nearly ideal propagation results as compared to the problematic
results shown in Figures 58b, 59, and 60. They each convey a significant noise reduction, no
thermocouple breakage (with the exception of Figure 64), and minimal electrical interferance.
However, temperature fluctuations can be caused by other phenomena, such as heat conduction
from the ignition wire, heat conduction eminating from the combustion front (preheating), phase

changes, and electrical interferance.
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Figure 63: Reaction propagation for the reaction of lithium peroxide and boron using the graphite propagation cell
and a nichrome wire.

4.5.2.1 Wire Heating

As current flows through the ignition wire, some heat generated may begin to conduct
through the pyrolant regardless of whether the pyrolant has ignited. This may occur if the ignition
wire is activated, the pyrolant rapidly ignites and causes the combustion front to pass quickly over
the first few thermocouples, then heat directly from the ignition wire reaches the nearest

thermocouple: likely thermocouple 1, causing a secondary spike in temperature.
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Figure 64: Reaction propagation for the reaction of lithium peroxide and boron using the graphite propagation cell
and a tungsten wire. The flatlining of the thermocouples above 3000°C indicates a breakage of the thermocouple
junction. This propagation occurred the most rapidly (combustion front passes over TC1 at <0.5s), and resulted in
the fastest propagation rate.

4.5.2.2 Preheating

Heat conduction traveling forward from the point of burning pyrolant can cause preheating
within the powder. Although similar to wire heating, the origin of the conduction is from the
burning pyrolant itself rather than the ignition wire. Preheating causes downstream pyrolant to
increase in temperature prior to it fully combusting. An example of this can be seen in TC2 of
Figure 63 at t=2 ms, where there is a slight change in slope of the temperature curve at 200°C.
Furthermore, this temperature fluctuation arises at a time between the combustion front leaving
TC1 and reaching TC2. Moments after the preheating in the TC2 region, TC2 experiences the

wave front of burning pyrolant.
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Figure 65: Reaction propagation for the reaction of lithium peroxide and boron using the graphite propagation cell
and a tungsten wire. This reaction resulted in significant wire heating, as observed in TC1. This propagation bears
strong resemblance to the propagation shown in Figure 66, a promising result for achieving reproducability.
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Figure 66: Reaction propagation for the reaction of lithium peroxide and boron using the graphite propagation cell
and a tungsten wire. This reaction resulted in significant wire heating, as observed in TC1. This propagation bears
strong resemblance to the propagation shown in Figure 65, a promising result for achieving reproducability.
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4.5.2.3 Phase Change

As discussed in section 4.1.2, heat can be absorbed by our products during melting or
vaporization, and heat can be released via solidification or condensation. The melting and boiling
points of the intermediate and overall products of the reaction between boron and lithium peroxide
are listed in Table 25. The relatively low melting point of boron trioxide (B2Oz3) allows its phase

change to be seen in some of our propagation curves, notably in Figures 63 and 67.

Table 25: The melting and boiling points for anticipated reaction products. *The boiling point of Li,B4O7 was
estimated from NazB.Os.

Meltin Boilin
Product Point (0(93) Ref. Point (o%) Ref.
Li>O 1843 [124] - -
B20O3 450 [126] 1860 [127]
Li>B4O7 1190 [124] 1873 *

4.5.2.4 Electrical Interferance

An extreme example of electrical interferance was shown in Figure 58b. Due to the nature
of our experimental set up, our 4 thermocouples should experience a rise in temperature in
chronological order. There should be little cause for peaks to be mirrored in multiple
thermocouples at the same instant in time. Figure 58b shows various instances where
thermocouples 1, 3, and 4 are all experiencing simultaneous temperature peaks. Unlike other
temperature peaks, these fluctuations are caused by stray electrons. Since the reaction between
boron and lithium peroxide is a reduction-oxidation (redox) reaction, electrons migrating within
the pyrolant can be inadvertently channeled through the thermocouple wires, producing electrical
interference that can behave like a temperature increase. Due to the electrical conductivity of the
graphite cell, electrons entering the graphite can then migrate to neighboring thermocouples. In a

case of mild interferance these perturbations can be identified by looking for “bumps” in a
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temperature curve that occur at the same time as the burning wave front in another thermocouple.
In Figure 63 for example, TC2 exhibits a slight temperature increase at the same time that the

burning passes TC3 and TC4.
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Figure 67: Reaction propagation for the reaction of lithium peroxide and boron using the graphite propagation cell
and a tungsten wire. The phase change of boron oxide from liquid to solid is visible in TC1 as that region cools.

4.5.2.5 Rate Calculations

A rate calculation can be made by determining the times the temperature spikes occur since
the distances between each thermocouple is known to be 1 cm. The overall rate calculation between
the first and last thermocouple is shown in Equation 4.18, where X is the location of a thermocouple

and t is the time at which the combustion front passes over a thermocouple.

_ AxXre  Xrea — Xrca
vpropagation -

= 4.18
Atre  trea — trea ( )
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The overall reaction propagation for the experimental run shown in Figure 63 was 1.49
cm/s, which has been our slowest (and therefore best) achieved propagation rate. The rates for
many other propagation reactions discussed are listed in Table 26. A singular reaction was
performed under nitrogen atmosphere by using N2 as the purge gas (Figure 64). The utilization of
nitrogen resulted in the fastest observed propagation rate of 14.49 cm/s. The highest reaction
temperatures achieved in our graphite cell seem to fall within a wide range from 600 — 1400°C. In
addition, reaction rates can be inconsistent between thermocouples within the same pyrolant
reaction. For example, a peak from TC3 can be closer to TC2 than it is to TC4, indicating the
reaction rate increased in the central region of the pyrolant. Inadvertant differences in the packing
density of the pyrolant powder within the cell could be a likely cause of these rate changes. A
higher packing density in a region of our rectangular chamber could cause a decrease in the
propagation rate, since less oxygen permeates the powder and more powder is available for

burning.

Table 26: The propagation rates of lithium peroxide and boron pyrolant reactions run with different cell parameters.

. Propagation .
# Cell Type Wire Type Atmosphere ratep(cgm /s) Figure #
1 Graphite Nichrome Air (high exposure) | 2.21 58a
2 Graphite Nichrome Air (tightly sealed) 1.49 63
3 Graphite Tungsten Nitrogen 14.49 64
4 Graphite Tungsten Argon 4.89 65
5 Graphite Tungsten Argon 4.63 66
6 Graphite Tungsten Argon 5.92 67

4.6 Conclusion

In this research study, a number of solid exothermic reactions were selected as potential
pyrolants with a range of energy densities between 0.8 — 9.0 kWh/kg. These pyrolants were
evaluated for use as fuels for long-duration space missions. Ultimately, of 18 pyrolants, the

reaction between lithium peroxide (Li202) and boron (B) was chosen as the initial fuel candidate.

117



The mechanism of the reaction was determined to proceed through 3 elementary steps: a) the
decomposition of lithium peroxide (Li20>) to form lithium oxide (Li20), b) the oxidation of boron
(B) to form boron oxide (B203), and c) the reaction of the solid products to form lithium tetraborate
(Li2B40O7). A slow propagation rate of 1.49 cm/s was achieved by this reaction without the need of
any solid additives or external control to further slow burning. This indicates that addition of solid
additives with high heat capacity or low melting points could slow the reaction even further and
provide a prolonged heat release. Thus, the exothermic reaction between Li,O2 and B is a

promising candidate for the generation and harvesting of heat to be used as an energy source.
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CHAPTER 5: FUTURE WORK

5.1 Hydrodenitrogenation (HDN) of Organic Compounds using dh-BN

While performing the catalysis work of hydrogenation using hexagonal boron nitride (h-
BN) we discovered that boron nitride was able to produce additional interesting products. Our
experiments showed that olefins containing nitrile and amine chemical functional groups not only
underwent hydrogenation, but also saw breakage of the C-N bond and subsequent removal of the
nitrile and amine group as ammonia. This indicates that dh-BN may be an effective catalyst for
hydrodenitrogenation (HDN) at low temperatures.

A handful of experiments confirmed that the nitrile compounds cinnamonitrile,
hydrocinnamonitrile, and acetonitrile could successfully undergo cleavage of their C-N triple

bonds to form ammonia gas and their respective characteristic products (Equations 5.1 — 5.3).

Hexylamine and diisopropylethylamine were also successfully cleaved to form the

products shown in Equations 5.4 and 5.5, respectively.

NN
NH, — NN+ NH; (5.4)
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\ij/ — H;C—CH; + PN +  NH;, (5.5)

Thus, so far, a short-chain nitrile, two aromatic-containing nitriles, and an olefinic nitrile
have undergone successful removal of their nitrogen atoms. This indicates that a C-C double bond
is not necessary for the reaction to occur, and the presence of a large ring structure does not hinder
the catalytic activity. Further, both a primary and a tertiary amine saw successful nitrogen removal,
strongly indicating that a secondary amine (such as methylhexylamine) should be able to be
cleaved as well, although this has not been tested. Exploratory experiments with long-chain nitriles
and amines (such as decanenitrile or dodecylamine), aromatic amines (such as benzylamine),
sterically-hindered compounds (like oleylamine), and structures containing nitrogen within 5- or
6-membered rings at different locations (such as piperidine, piperazine, and pyrazole) would

illuminate the entire scope through which the boron dh-BN can facilitate HDN.

5.2 Photocatalysis using dh-BN

Thus far, all discussion of the catalytic activity of dh-BN has involved mechanochemical
processes. Olefin hydrogenation, CO- reduction, and hydrodenitrogenation of nitriles and amines
all involved the use of a pebble mill to achieve catalysis at low temperature and pressure.
Moreover, the discussion of CO2 reduction went as far as noting that reactions in a static plug-flow
reactor were unsuccessful if mechanical agitation was not involved. However, catalysis was found
to be largely successful under static conditions if the dh-BN is exposed to light.

By constructing a plug-flow reactor from a quartz tube, dh-BN can be exposed to light

under static or continuous flow of gaseous reagents. Under static conditions, propene exposed to
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high-intensity light was found to dehydrogenate to produce benzene and hydrogen. Two such plug

flow reactors are shown in Figures 68 and 69 below.

Figure 68: First iteration of a medium-intensity plug-flow photoreactor. The quartz tube contains dh-BN and is
situatuated in the center of a circular light source.

Studying changes in the packing density of the catalyst in the tube, as well as the intensity
of the light and flow of reagents would allow for optimization and potentially control of the

products able to be synthesized.
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Figure 69: A second iteration of a higher-intensity plug flow photoreactor, with similar setup as in Figure 69, but
with a new light source. Figure on the right has a green filter for easier viewing.

5.3 Solid-State Exothermic Reactions for Powering Space Exploration

From the work discussed in Chapter 4, a select number of pyrolants other than lithium
peroxide and boron also displayed some potential to be slow propagating. These pyrolants are
reactions #2 and #11: boron + magnesium diboride (B + MgB:) and aluminum + molybdenum
trioxide (Al + MoO:s), and they should be similarly analyzed and assessed for their slowest
propagation rate. Once a value can be obtained for each pyrolant’s slowest burning rate in
powdered form, this rate could be slowed further by pelletizing the powder into various shapes
and controlling the volume of empty space in the reaction bed.

The addition of the purge box to the experimental setup allows for testing of a variety of
gaseous headspaces other than argon. The presence of atmospheric N2, CO2, or He could have
different affects on the reaction propagation. Partial vaccum can also be tested. Further, the oxygen
levels within the purge box can be monitored and controlled prior to reaction ignition as well as
during propagation. The level of oxygen in contact with the pyrolant can cause a hotter burn and

faster propagation. However, certain pyrolants (such as lithium peroxide and boron) produce
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oxygen in an intermediate step as part of their reaction mechanism. Sensing for a spike in Oz levels
mid-propagation may provide insight into how much of this oxygen proceeds forward in the

reaction as opposed to escaping into the surrounding box.

5.4 Mechanochemical Synthesis of MoN for Ammonia Production

Using mechanochemical methods, sodium amide (NaNHz) and molybdenum (V) chloride
(MoCls) were successfully able to yield two phases of molybdenum nitride: 6-MoN and y-Mo2N
(Equation 5.6). The molybdenum compounds are each a black solid (Figure 70) and the synthesis
also produces sodium chloride as a byproduct (Figure 71).

20NaNH, + 4MoCls - 20NaCl + 2Mo,N + 20H, + 9N, (5.6)
SNaNH, + MoCls — 5NaCl + MoN + 5H, + 2N, (5.7)

Figure 70: A mixture of 3-MoN and y-Mo;N after washing and vaccum filtration.
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Coakey)

Figure 71: NaCl salt crystals after evaporation of the water supernatant indicates some degree of successful
reaction.

Specifically the delta phase of the molybdenum nitride may be an active catalyst for the
Haber-Bosch process which produces ammonia industrially. Through x-ray diffraction (XRD), the
presence of both compounds are confirmed (Figure 72), although the relative yields of the two
phases vary with mill duration and bearing size. However, the gamma phase is consistently the
more prevalent. Also troubling was the presence of unreacted material in the vial which resulted

in blue molybdenum oxides upon recovery (Figure 73).
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Figure 72: X-ray diffraction of a typical mixture of 5-MoN and y-MozN at different mill times. With longer
duration of milling, peak intensity diminishes at the crystallinity is lost.
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Figure 73: If unreacted starting material remained, blue molybdenum oxides resulted from washing with water.

In order to obtain a more concentrated 3-MoN catalyst (undiluted by y-Mo2N) the
parameters of our synthesis process could be optimized. Initial steps already taken are the simple
analysis of the concentrations of each phase with varying milling parameters. However, controlling
the heat present during the mechanochemical reaction may prove more effective. Excess heat
within the milling vial may be driving the reaction to produce more of the gamma phase, or
alternatively, excess heat drives the formation of the delta phase (Figure 74) and there is not
enough present.

Heat-withdrawing practices in a ball milling experiement can include the addition of solid
chemical additives, such as NaCl or NH4Cl which would absorb heat without reacting as reagents.

In addition, small bearings of a high heat capacity material (steel) can act as a means of removing
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heat. If the reaction were to require more heat input to favor the delta phase, our steel reaction vial
may be of issue, as it is of a high heat capacity. A vial constructed of a lower heat capacity material

may result in less heat withdrawl.
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Figure 74: A model of the chemical structure of 5-MoN.

Even a mixture with a small concentration of 5-MoN may be able to successfully catalyze
the synthesis of ammonia from the elements in the gas phase. Typically, nitrogen and hydrogen
gas are reacted to form ammonia at high temperature as in the reaction in Equation 5.8 and Figure
75. This is traditionally done over heterogeneous iron oxide catalysts, but catalyst alternatives may
increase efficiency. It is possible that molybdenum nitride and the implementation of a ball mill

could lower the temperature and pressure required by the reaction.

N, + 3H, — 2NH; (5.8)

If we are to have enough 3-MoN to perform catalysis experiments, the catalyst synthesis

will need to be scaled up using a pebble, attritor, or planetary mill, which can accommodate

127



between 10 — 100 times the mass as the mixer mill. This scale up will require its own yield analysis
of the two phases, and successful synthesis of a majority delta phase would be a significant

accomplishment.

Figure 75: The general process of ammonia synthesis over a catalyst surface should initial begin with the adsorption
of diatomic nitrogen and hydrogen before combinging to form ammonia, and subsequent desorption from the
surface.

Attempts at producing ammonia using a pebble mill were not initially successful, due to a
rather simple but critical issue: we were not able to achieve the mechanical force required in the
mill. During mechanical grinding, we noticed that the ball bearings were not making audible
collisions or impacts with the material, as they usually do. Selecting different media within the
reactor or switching to an attritor mill may be able to allieviate this setback. The mixer and
planetary mill vials do not have the innate capability to introduce gas into the reaction headspace.

Thus, the attritor mill is the next available option.
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example, other rights such as publicity, privacy, or moral
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Creative Commons Legal Code

Attribution 3.0 Unported

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE LEGAL
SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN ATTORNEY-CLIENT
RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS INFORMATION ON AN "AS-IS" BASIS.
CREATIVE COMMONS MAKES NO WARRANTIES REGARDING THE INFORMATION PROVIDED,
AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT
AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED
UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE
BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED
TO BE ACONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN
CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

a. "Adaptation" means a work based upon the Work, or upon the Work and other pre-existing works,
such as a translation, adaptation, derivative work, arrangement of music or other alterations of a
literary or artistic work, or phonogram or performance and includes cinematographic adaptations or
any other form in which the Work may be recast, transformed, or adapted including in any form
recognizably derived from the original, except that a work that constitutes a Collection will not be
considered an Adaptation for the purpose of this License. For the avoidance of doubt, where the
Work is a musical work, performance or phonogram, the synchronization of the Work in timed-
relation with a moving image ("synching") will be considered an Adaptation for the purpose of this
License.

b. "Collection" means a collection of literary or artistic works, such as encyclopedias and
anthologies, or performances, phonograms or broadcasts, or other works or subject matter other
than works listed in Section 1(f) below, which, by reason of the selection and arrangement of their
contents, constitute intellectual creations, in which the Work is included in its entirety in unmodified
form along with one or more other contributions, each constituting separate and independent works
in themselves, which together are assembled into a collective whole. A work that constitutes a
Collection will not be considered an Adaptation (as defined above) for the purposes of this License.

c. "Distribute" means to make available to the public the original and copies of the Work or
Adaptation, as appropriate, through sale or other transfer of ownership.

d. "Licensor" means the individual, individuals, entity or entities that offer(s) the Work under the
terms of this License.

e. "Original Author" means, in the case of a literary or artistic work, the individual, individuals, entity
or entities who created the Work or if no individual or entity can be identified, the publisher; and in
addition (i) in the case of a performance the actors, singers, musicians, dancers, and other persons
who act, sing, deliver, declaim, play in, interpret or otherwise perform literary or artistic works or
expressions of folklore; (ii) in the case of a phonogram the producer being the person or legal
entity who first fixes the sounds of a performance or other sounds; and, (iii) in the case of
broadcasts, the organization that transmits the broadcast.

f. "Work" means the literary and/or artistic work offered under the terms of this License including
without limitation any production in the literary, scientific and artistic domain, whatever may be the
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mode or form of its expression including digital form, such as a book, pamphlet and other writing; a
lecture, address, sermon or other work of the same nature; a dramatic or dramatico-musical work;
a choreographic work or entertainment in dumb show; a musical composition with or without
words; a cinematographic work to which are assimilated works expressed by a process analogous
to cinematography; a work of drawing, painting, architecture, sculpture, engraving or lithography; a
photographic work to which are assimilated works expressed by a process analogous to
photography; a work of applied art; an illustration, map, plan, sketch or three-dimensional work
relative to geography, topography, architecture or science; a performance; a broadcast; a
phonogram; a compilation of data to the extent it is protected as a copyrightable work; or a work
performed by a variety or circus performer to the extent it is not otherwise considered a literary or
artistic work.

g. "You" means an individual or entity exercising rights under this License who has not previously
violated the terms of this License with respect to the Work, or who has received express
permission from the Licensor to exercise rights under this License despite a previous violation.

h. "Publicly Perform" means to perform public recitations of the Work and to communicate to the
public those public recitations, by any means or process, including by wire or wireless means or
public digital perfformances; to make available to the public Works in such a way that members of
the public may access these Works from a place and at a place individually chosen by them; to
perform the Work to the public by any means or process and the communication to the public of
the performances of the Work, including by public digital performance; to broadcast and
rebroadcast the Work by any means including signs, sounds or images.

i. "Reproduce” means to make copies of the Work by any means including without limitation by
sound or visual recordings and the right of fixation and reproducing fixations of the Work, including
storage of a protected performance or phonogram in digital form or other electronic medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or restrict any uses free from
copyright or rights arising from limitations or exceptions that are provided for in connection with the
copyright protection under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a
worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license to
exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more Collections, and to Reproduce
the Work as incorporated in the Collections;

b. to create and Reproduce Adaptations provided that any such Adaptation, including any translation
in any medium, takes reasonable steps to clearly label, demarcate or otherwise identify that
changes were made to the original Work. For example, a translation could be marked “The original
work was translated from English to Spanish," or a modification could indicate "The original work
has been modified.";

c. to Distribute and Publicly Perform the Work including as incorporated in Collections; and,

d. to Distribute and Publicly Perform Adaptations.

e. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in which the right to
collect royalties through any statutory or compulsory licensing scheme cannot be waived,
the Licensor reserves the exclusive right to collect such royalties for any exercise by You of
the rights granted under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in which the right to collect
royalties through any statutory or compulsory licensing scheme can be waived, the Licensor
waives the exclusive right to collect such royalties for any exercise by You of the rights
granted under this License; and,

iii. Voluntary License Schemes. The Licensor waives the right to collect royalties, whether
individually or, in the event that the Licensor is a member of a collecting society that
administers voluntary licensing schemes, via that society, from any exercise by You of the
rights granted under this License.

The above rights may be exercised in all media and formats whether now known or hereafter devised.
The above rights include the right to make such modifications as are technically necessary to exercise the
rights in other media and formats. Subject to Section 8(f), all rights not expressly granted by Licensor are
hereby reserved.
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4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the
following restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms of this License. You must
include a copy of, or the Uniform Resource Identifier (URI) for, this License with every copy of the
Work You Distribute or Publicly Perform. You may not offer or impose any terms on the Work that
restrict the terms of this License or the ability of the recipient of the Work to exercise the rights
granted to that recipient under the terms of the License. You may not sublicense the Work. You
must keep intact all notices that refer to this License and to the disclaimer of warranties with every
copy of the Work You Distribute or Publicly Perform. When You Distribute or Publicly Perform the
Work, You may not impose any effective technological measures on the Work that restrict the
ability of a recipient of the Work from You to exercise the rights granted to that recipient under the
terms of the License. This Section 4(a) applies to the Work as incorporated in a Collection, but this
does not require the Collection apart from the Work itself to be made subject to the terms of this
License. If You create a Collection, upon notice from any Licensor You must, to the extent
practicable, remove from the Collection any credit as required by Section 4(b), as requested. If You
create an Adaptation, upon notice from any Licensor You must, to the extent practicable, remove
from the Adaptation any credit as required by Section 4(b), as requested.

b. If You Distribute, or Publicly Perform the Work or any Adaptations or Collections, You must, unless
a request has been made pursuant to Section 4(a), keep intact all copyright notices for the Work
and provide, reasonable to the medium or means You are utilizing: (i) the name of the Original
Author (or pseudonym, if applicable) if supplied, and/or if the Original Author and/or Licensor
designate another party or parties (e.g., a sponsor institute, publishing entity, joumal) for attribution
("Attribution Parties”) in Licensor's copyright notice, terms of service or by other reasonable means,
the name of such party or parties; (ii) the title of the Work if supplied; (iii) to the extent reasonably
practicable, the URI, if any, that Licensor specifies to be associated with the Work, unless such
URI does not refer to the copyright notice or licensing information for the Work; and (iv) , consistent
with Section 3(b), in the case of an Adaptation, a credit identifying the use of the Work in the
Adaptation (e.g., "French translation of the Work by Original Author," or "Screenplay based on
original Work by Original Author"). The credit required by this Section 4 (b) may be implemented in
any reasonable manner; provided, however, that in the case of a Adaptation or Collection, at a
minimum such credit will appear, if a credit for all contributing authors of the Adaptation or
Collection appears, then as part of these credits and in a manner at least as prominent as the
credits for the other contributing authors. For the avoidance of doubt, You may only use the credit
required by this Section for the purpose of attribution in the manner set out above and, by
exercising Your rights under this License, You may not implicitly or explicitly assert or imply any
connection with, sponsorship or endorsement by the Original Author, Licensor and/or Attribution
Parties, as appropriate, of You or Your use of the Work, without the separate, express prior written
permission of the Original Author, Licensor and/or Attribution Parties.

c. Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted by
applicable law, if You Reproduce, Distribute or Publicly Perform the Work either by itself or as part
of any Adaptations or Collections, You must not distort, mutilate, modify or take other derogatory
action in relation to the Work which would be prejudicial to the Original Author's honor or
reputation. Licensor agrees that in those jurisdictions (e.g. Japan), in which any exercise of the
right granted in Section 3(b) of this License (the right to make Adaptations) would be deemed to be
a distortion, mutilation, modification or other derogatory action prejudicial to the Original Author's
honor and reputation, the Licensor will waive or not assert, as appropriate, this Section, to the
fullest extent permitted by the applicable national law, to enable You to reasonably exercise Your
right under Section 3(b) of this License (right to make Adaptations) but not otherwise.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS
THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND
CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING,
WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR
PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS,
ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE.
SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH
EXCLUSION MAY NOT APPLY TO YOU.
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6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO
EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL,
INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF THIS
LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach by You
of the terms of this License. Individuals or entities who have received Adaptations or Collections
from You under this License, however, will not have their licenses terminated provided such
individuals or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will
survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of
the applicable copyright in the Work). Notwithstanding the above, Licensor reserves the right to
release the Work under different license terms or to stop distributing the Work at any time;
provided, however that any such election will not serve to withdraw this License (or any other
license that has been, or is required to be, granted under the terms of this License), and this
License will continue in full force and effect unless terminated as stated above.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor offers to the
recipient a license to the Work on the same terms and conditions as the license granted to You
under this License.

b. Each time You Distribute or Publicly Perform an Adaptation, Licensor offers to the recipient a
license to the original Work on the same terms and conditions as the license granted to You under
this License.

c. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect
the validity or enforceability of the remainder of the terms of this License, and without further action
by the parties to this agreement, such provision shall be reformed to the minimum extent
necessary to make such provision valid and enforceable.

d. No term or provision of this License shall be deemed waived and no breach consented to unless
such waiver or consent shall be in writing and signed by the party to be charged with such waiver
or consent.

e. This License constitutes the entire agreement between the parties with respect to the Work
licensed here. There are no understandings, agreements or representations with respect to the
Work not specified here. Licensor shall not be bound by any additional provisions that may appear
in any communication from You. This License may not be modified without the mutual written
agreement of the Licensor and You.

f. The rights granted under, and the subject matter referenced, in this License were drafted utilizing
the terminology of the Berne Convention for the Protection of Literary and Artistic Works (as
amended on September 28, 1979), the Rome Convention of 1961, the WIPO Copyright Treaty of
1996, the WIPO Performances and Phonograms Treaty of 1996 and the Universal Copyright
Convention (as revised on July 24, 1971). These rights and subject matter take effect in the
relevant jurisdiction in which the License terms are sought to be enforced according to the
corresponding provisions of the implementation of those treaty provisions in the applicable national
law. If the standard suite of rights granted under applicable copyright law includes additional rights
not granted under this License, such additional rights are deemed to be included in the License;
this License is not intended to restrict the license of any rights under applicable law.

Creative Commons Notice

Creative Commons is not a party to this License, and makes no warmranty whatsoever in connection
with the Work. Creative Commons will not be liable to You or any party on any legal theory for any
damages whatsoever, including without limitation any general, special, incidental or consequential
damages arising in connection to this license. Notwithstanding the foregoing two (2) sentences, if
Creative Commons has expressly identified itself as the Licensor hereunder, it shall have all rights and
obligations of Licensor.
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Except for the limited purpose of indicating to the public that the Work is licensed under the CCPL,
Creative Commons does not authorize the use by either party of the trademark "Creative Commons”
or any related trademark or logo of Creative Commons without the prior written consent of Creative
Commons. Any permitted use will be in compliance with Creative Commons' then-current trademark
usage guidelines, as may be published on its website or otherwise made available upon request from
time to time. For the avoidance of doubt, this trademark restriction does not form part of this License.

Creative Commons may be contacted at hitps://creativecommons.org/.
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