
Phosphate Mediated Adsorption and Electron Transfer of Cytochrome c. A Time-Resolved SERR Spectroelectrochemical Study

Daiana Capdevila, Waldemar Marmisollé, Federico J. Williams and Daniel H. Murgida*

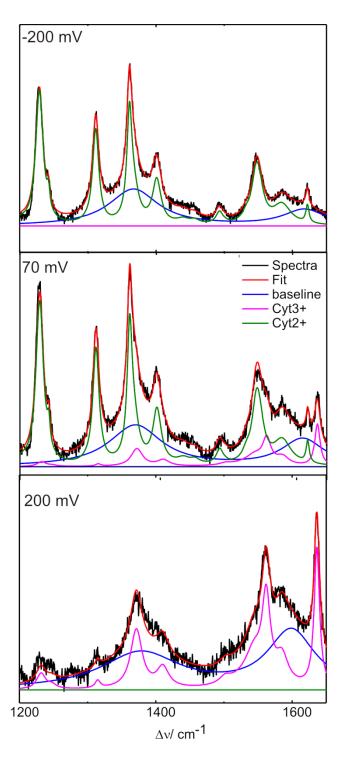

Supplementary Information

Figure SI1. C1s XPS spectra of $(NH_2)_{0.5}$ $(OH)_{0.5}$ C6 SAM modified gold electrode incubated overnight in 0.5M ATP (top) and 1mM Cyt in 0.5M ATP solution (bottom).

Figure SI2. C1s XPS spectra of (NH₂) _{0.5} (OH)_{0.5}C6 SAM modified gold electrode incubated overnight in 0.5M ATP (top) and 1mM Cyt in 0.5M ATP solution (bottom).

Figure SI3. Component analysis of SERR spectra of Cyt on NH₂-C6 SAM coated silver electrode at three different applied potentials. The components were obtained from RR spectra of Cyt²⁺ and Cyt³⁺.

Figure SI4. Nernst plot for Cyt on NH₂-C6 SAM coated silver electrode. Relative concentrations of reduced and oxidized forms were obtained by component analysis as indicated in Figure SI3.

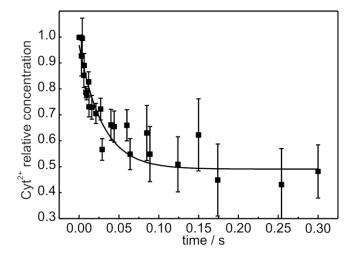


Figure SI5. Time dependence of relative concentration of Cyt^{2+} after a potential jump from -100mV to the redox potential for Cyt on NH_2 -C6 SAM coated silver electrode. Data of two independent experiments are included and fitted to a monoexponential decay function.