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We describe a simple but quantitative experiment to demonstrate the conservation of angular

momentum. We measure the correlation of the apparent radius and angular velocity of the Sun with

respect to the stars, due to the conservation of the angular momentum of Earth in its orbit. We also

determine the direction of Earth’s angular momentum vector and show that it is conserved. The

experiment can be performed using a small telescope and a digital camera. It is conceptually

simple, allowing students to get direct physical insight from the data. The observations are

performed near the resolution limit imposed by the atmosphere, and in the presence of strong

competing effects. These effects necessitate a careful experimental setup and allow students to

improve their skills in experimentation. VC 2015 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4932397]

I. INTRODUCTION

The principle of conservation of angular momentum is a
pillar of physics, playing a fundamental role in classical
mechanics, electromagnetism, and quantum mechanics.1–3

In spite of its importance, in most courses the conservation
of angular momentum is approached from a theoretical
point of view. The experiments usually used to demonstrate
it in the classroom are merely qualitative in nature.4–11

Indeed, a literature search reveals only a few student
experiments in which this conservation law is tested
quantitatively.12–16

Because gravity is a central force, the angular momen-
tum of Earth is conserved in its orbital motion around
the Sun. This simple system provides then a laboratory
to obtain direct evidence supporting both the aforemen-
tioned conservation principle and the central nature of one
of the fundamental interactions. Hence, a demonstration of
the conservation of the orbital angular momentum of our
planet can be a valuable experiment for undergraduate stu-
dents. Moreover, the simplicity of the system allows a
direct and clear interpretation of the data, increasing the
value of the experiment as a teaching tool. The direction
and distance to the Sun can be estimated from the position
of the solar disk in the sky and its apparent size, respec-
tively. The transverse velocity of Earth can be obtained
from the apparent motion of the Sun with respect to the
stars, while the radial velocity component is not needed, as
it cancels in the vector product defining the angular
momentum.

The feasibility, and also the difficulty, of this experiment
can be understood by examining the amount of change of the

observables to be measured, i.e., the solar apparent size and
velocity. In fact, what one would measure is the angular ve-
locity of Earth in its orbit, which multiplied by the square of
the distance to the Sun gives the angular momentum per unit
mass. The amplitude of the fractional variation of the dis-
tance between the Sun and Earth is given by twice the eccen-
tricity of Earth’s orbit (e�¼ 0.017), so it is roughly 3.4%.
Given that the apparent diameter of the solar disk is �32 arc
min, its maximum variation during the year would be of the
order of 1 arc min. An angular resolution at least an order of
magnitude better than this value (i.e., �6 arc sec, or 0.3% of
the disk size) is needed to track this variation during the
year. This value approaches the resolution limit imposed by
Earth’s atmosphere, providing an important challenge to the
experimentalist. The expected variation of Earth’s angular
velocity is twice that of the distance, or �7%, because angu-
lar momentum is conserved. An order-of-magnitude estimate
of the angular velocity of Earth is 1� day�1 (as it moves 360�

in a sidereal year), therefore, the amplitude of its variation is
�4 arc min day�1. Observing the variation during the whole
year requires therefore a resolution an order of magnitude
better than this figure, or �20 arc sec day�1. If the angular
velocity is derived from the change of the position of the
Sun over two consecutive days, a resolution of a few arcsec
is enough for the purpose. The challenge here is to separate
this effect from the far greater effect of the diurnal apparent
motion of the Sun, produced by Earth’s rotation. The latter is
greater than the former by a factor of �366, equal to the ratio
of one sidereal year to one sidereal day, as the angular veloc-
ity of Earth’s rotation is 360� per sidereal day.

In this paper, we present an experiment designed to dem-
onstrate the conservation of the orbital angular momentum
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of Earth. We perform our experiment using a digital camera
and a small telescope. The choice of these devices is dictated
by the fact that present-day cameras with megapixel sensors
can image the entire solar disk while discriminating varia-
tions of less than 0.1% of its diameter. Hence, they are able
to reach the resolution needed for the experiment. Apart
from the benefits described above, this experiment offers an
opportunity to train undergraduate students in astronomical
observing techniques, in which the experimental conditions
cannot be completely controlled, requiring careful planning,
setup, and execution of the experiment. At the same time,
because the Sun is observable almost every day from many
places in the world and is the brightest object in the sky, the
proposed experiment is easy to fit into most course
schedules.

The organization of this paper is as follows. Section II
gives the theoretical framework of the experiment; Sec. III
shows our experimental setup and procedure; and Sec. IV
our data analysis. Finally, Sec. V presents our conclusions.

II. THEORY

Earth moves under the influence of the gravitational forces
of all bodies in the Solar System. The Sun, with a mass
M�¼ 1.99� 1030 kg and at a mean distance �r� ¼ 1:46
�1011m, exerts by far the greatest gravitational force on
Earth, so we will neglect the influence of all other bodies and
consider only the Earth-Sun system. Because the mass of
Earth is M�¼ 5.97� 1024 kg� M�, the Sun can be consid-
ered a fixed center of force, around which Earth revolves in a
plane (i.e., the plane of the ecliptic), within which it
describes an elliptical orbit. The energy and angular momen-
tum of Earth are conserved, because the gravitational force
is both conservative and central.

In the following discussion, we will assume that we can
define an inertial reference frame fixed to the stars. We will
also neglect the motion of the Sun with respect to this inertial
frame, so the reference frame fixed to the Sun is also inertial.
Both assumptions are justified because the motion of Earth
around the Sun involves length and time scales much smaller
than those involved in the relative motions of the stars.

The angular momentum of Earth with respect to the Sun
(Fig. 1, left panel) is

~L� ¼ M�~r� �~v� ¼ M�~r� �~v�; (1)

where ~r� and~v� are the position and velocity of Earth in a
reference frame fixed to the Sun, respectively. The position
and velocity of the Sun observed from Earth are ~r� ¼ �~r�

and~v� ¼ �~v�. The magnitude of ~L� is

L� ¼ M�r�vt;� ¼ M�xr2
�; (2)

where vt;� is the component of ~v� normal to ~r�, and
x ¼ vt;�r�1

� is the angular velocity of the Sun with respect
to the stars as seen from Earth. The instantaneous distance
of the Sun r� can be determined from its physical radius
R� ¼ 6:96� 108 m and the apparent radius of the solar disk
/�, as

r� ¼ R�/
�1
� ; (3)

where we have used /� � 1. Combining Eqs. (2) and (3),
we get

x ¼ L�M�1
� R�2

� /2
�: (4)

This equation has the advantage of being written in terms of
observables; hence, it can be used to demonstrate the conser-
vation of L�. A series of simultaneous measurements of /�
and x should show a correlation, in the sense that x
increases with /�. The existence of the correlation described
by Eq. (4) would provide a direct piece of evidence for the
conservation of the magnitude of Earth’s angular momentum
L�. The constancy of the direction of the angular momentum
L̂� can be demonstrated by measuring the directions r̂� and
v̂t;�, and showing that their vector product is constant. The
radial component of the velocity of the Sun with respect to
Earth cancels out in the vector product, so it does not need to
be measured.

However, some care must be taken to determine x because
observers on Earth’s surface are fixed to a rotating reference
frame. The actual angular velocity of the Sun in the sky is the
composition of the apparent motion of the Sun with respect to
the stars, due to the orbital motion of Earth, plus the diurnal
motion of all celestial bodies, due to the rotation of our planet
(i.e., the angular velocity of the rotating frame). In order to
measure x, the effect of Earth’s rotation must be corrected
for. The easiest way to do this is to measure the change in the
position of the Sun in the equatorial astronomical reference
frame (Fig. 1, right panel).17 This is the closest realization of
a non-rotating frame fixed to Earth; its axes (X, Y, Z) are
defined by the direction of Earth rotation axis (Z, with its unit

Fig. 1. Upper panel: The orbit of Earth around the Sun, as seen from an iner-

tial frame fixed to the stars. The angular momentum ~L and velocity ~v are

shown, together with the decomposition of the latter in the radial and trans-

verse directions. The Sun is at an instantaneous distance r� from Earth.

Dashed lines represent the line of sight to the Sun from Earth at times t and

tþ dt, and show that the angle dh swept by our planet in the interval dt is the

same as the observed change in the position of the Sun with respect to the

stars. Therefore, the rate of this change is equal to the angular velocity of

Earth. Lower panel: The equatorial reference frame fixed to Earth. The

shaded region is the equatorial plane, and the ellipse represents the ecliptic.

Their intersection is the direction of the vernal equinox, toward which the

X-axis points. The rotation axis of Earth is the Z-axis; the Y-axis is defined

by the right-handedness of the frame. Right ascension a and declination

d are the spherical angular coordinates of this frame.
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vector Ẑ pointing North), and the direction of the intersection
of the orbital and equatorial planes of Earth (X, X̂ pointing in
the direction of the vernal equinox). The Y-axis is orthogonal
to X and Z, and Ŷ is defined by the fact that the system is
right-handed. Within this frame, the spherical angular coordi-
nates right ascension (a) and declination (d) are used. The for-
mer is the usual azimuthal angle of any spherical system,
while the latter is the complement of the polar angle. The
equatorial coordinates of the Sun (a�; d�) change only due to
the motion of our planet in its orbit. We disregard here other
small, long-term variations of equatorial coordinates due to
the change in the orientation of the rotation axis of our planet,
such as precession or nutation,17 which are negligible for our
purposes.

The equatorial coordinates of the Sun can be related to
observables if we consider its position at transit, i.e., at the
time the center of the solar disk crosses the meridian of the
observer.18 First,

d� ¼ u6zt
�; (5)

where zt
� is the Sun zenith distance at transit, u is the latitude

of the observer, and the plus (minus) sign applies when the
transit occurs to the north (south) of the zenith. Second,

a� � a? ¼ X�ðtt
� � tt

?Þ j 2p; (6)

where tt� and tt
? are the transit times of the Sun and a star

with right ascension a?, respectively, X�¼ 7.29� 10�5 s�1

is the sidereal rotational angular velocity of Earth, and j rep-
resents the modulo operation.19 Both zt

� and the transit times
are observables, while the other magnitudes are given. The
time variations of the solar coordinates are usually expressed
by the proper motions la;� ¼ da�=dt and ld;� ¼ dd�=dt,
giving

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

a;� cos2d� þ l2
d;�

q
: (7)

Therefore, a simple method to determine x is to measure the
time Dtt

� elapsed between two transits separated by a
few days (Ndays), and the corresponding difference Dzt

� of
the zenith distances of the Sun. In this case, Eq. (6) trans-
forms into

la;� �
Da�
Dtt�
¼ X�Dtt

� � 2Ndaysp

Dtt
�

; (8)

where the term �2Ndays p accounts for the whole turns com-
pleted by Earth between the two transits. On the other hand,
Eq. (5) reads

ld;� �
Dd�
Dtt�
¼ 6

Dzt
�

Dtt
�
: (9)

Equations (8) and (9) depend only on observables and can be
used together with Eq. (7) to determine the angular velocity
x of Earth.

Moreover, from the equatorial coordinates of the Sun
[Eqs. (5) and (6)] and the proper motions [Eqs. (8) and (9)],
the unit vector in the direction of Earth angular momentum
can also be computed

L̂� ¼ r̂� � v̂t;� ¼ x�1ðla;� cos d�d̂� � ld;�â�Þ: (10)

Here, â� and d̂� are the spherical unit vectors of the equato-
rial reference frame at the position of the Sun, and hence
depend on the latter. To verify its constancy, L̂� must be
written in terms of the fixed Cartesian unit vectors ðX̂; Ŷ ; ẐÞ
defined above. The relationship between the two sets of unit
vectors is

â� ¼ �sin a�X̂ þ cos a�Ŷ ; (11)

and

d̂� ¼ �sin d� cos a�X̂ � sin d� sin a�Ŷ þ cos d�Ẑ:

(12)

The above discussion shows that a set of simultaneous obser-
vations of the position, apparent radius, and proper motion
of the solar disk allows the computation of the orbital angu-
lar momentum of Earth. Repeating the observations several
times during an interval comparable to Earth orbital period
(i.e., several months), the conservation of angular momen-
tum can be demonstrated. It is important to note that the min-
imum and maximum distances between Earth and the Sun
are reached in early January and July, respectively.
Therefore, the observations should not be clustered around
these dates, as the changes in the distance are then small.

It is interesting to note the relation between the aforemen-
tioned observables and two constructions used in astronomy
to visualize the nonuniformity of the motion of the Sun dur-
ing the year. The first one is the equation of time (EoT),18

defined as the difference in right ascension between the true
and mean Sun, the latter being a fictitious object moving uni-
formly along the equator so that its transits are always sepa-
rated by 24 h. Therefore, the rate of change of the EoT traces
the nonuniform component of the motion of the Sun, pro-
jected onto the equator. Hence, a determination of the EoT20

would allow the computation of Da�, after adding the mean
solar motion. Note, however, that the latter amounts to
�4 min per day, typically an order of magnitude larger than
the EoT variations. The second construction is the solar ana-
lemma, a figure-eight-shaped graph obtained by plotting the
declination of the Sun against the EoT along the year or, in
other cases, the elevation of the Sun at mean local noon
against its azimuth.17 In the EoT-declination version, the
variation of the east-west component of the solar analemma
from one observation to the next is Da� minus the mean Sun
motion, whereas the change in the north-south component is
directly Dd�. Therefore, measuring the components of the
velocity of the Sun along the analemma and correcting for
the mean Sun motion and the cos d� factor of Eq. (7) would
be a direct and elegant measurement of x. However, for rea-
sons that will be explained in Sec. III, the precision required
for the present demonstration cannot be achieved by taking
measurements directly from the analemma.

III. EXPERIMENTAL SETUP

The goal of the present experiment is to accurately mea-
sure the position, apparent radius, and proper motion of the
Sun at different times. In order to see a change in these mag-
nitudes, the measurements must span a period of several
months, during which Earth moves from near its perihelion
to near its aphelion. Despite this fact, the experiment requires
relatively little time, because one or two observations per
month are enough to demonstrate the constancy of angular

1021 Am. J. Phys., Vol. 83, No. 12, December 2015 Pellizza et al. 1021
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momentum. We performed the experiment in Buenos Aires,
Argentina, from July 3 to December 24, 2014. We recall that
the time of aphelion was July 4, 2014, while that of perihe-
lion was January 4, 2015.21

The critical experimental requirement is a precision of
�0.3% in the apparent radius /� of the Sun. To achieve this
precision, we chose a small telescope equipped with a full-
aperture solar filter and a six-megapixel digital camera to
image the Sun. We performed the experiment at the Galileo
Galilei Observatory of the Cristoforo Colombo Italian School
of Buenos Aires, which is equipped with a 203-mm-aperture,
f/6.3-focal-ratio, Meade LX200 Schmidt-Cassegrain telescope
with an alt-azimuth mount. A Thousand Oaks Type 2þ, full-
aperture solar filter with a transmission of 10�5 was attached
to the telescope. A Canon EOS Digital Rebel (Canon EOS
300D) reflex camera was used to take the images. This camera
has a 22.7� 15.1 mm sensor with 2048� 3072 pixels of
7.4 lm in size. The image of the Sun in the focal plane of the
telescope is �12 mm, or about 1800 pixels, which allows us
to get almost the largest resolution possible with this camera.
The nominal precision for the measurement of the apparent
radius is then of the order of 0.1%, corresponding to a one-
pixel uncertainty.

Before the first observation, we focused the camera on the
Sun and took a set of test images to determine the best expo-
sure time. A value of 1/3200 s at ISO 800 was chosen and
was used in every observation, because the luminosity of the
Sun does not change, the telescope aperture, focal length,
and filter transmission are fixed, and the changes in the
atmospheric extinction are small. We measured the size of
the solar disk on the images directly in pixels and used the
scale of the images (n¼ 1.087 arc sec pix�1) to determine
/�. Although the scale depends on the focal length of the
telescope and the pixel size,22 the effective focal length of
the Meade LX200 telescope is different from its nominal
value, and depends on the distance between the camera and
the rear end of the telescope. Therefore, we measured the
scale of our particular telescope-plus-camera configuration
(except for the solar filter) by taking an image of a stellar
field and comparing the positions of a set of stars with known
coordinates, taken from the Smithsonian Astrophysical
Observatory Star Catalog.23 Given the value obtained and
the resolution limit imposed by atmospheric seeing (of the
order of a few arcsec), the experimental configuration pro-
vides a reasonable coupling between atmospheric and detec-
tor resolution. We checked that there were no temperature
variations of the scale for the ambient temperature range in
which the experiment was performed (17 �C–29 �C).

The measurement of the solar coordinates and proper
motion can be performed following the procedure described
in Sec. II. The time and zenith distance of the transit of the
Sun can be measured at two epochs separated by a few days,
and Eqs. (7)–(9) used to determine the solar coordinates,
their variation, and x. However, for the determination of
Dzt
�, the direct use of this procedure is prone to cancelation

errors, because Dzt
� ¼ zt

�;2 � zt
�;1 is the difference of two

much greater quantities.24 From Eq. (5), with a latitude
u � �35�; zt

�� 12�, while Dzt
� is �100 times smaller.

Therefore, to determine Dzt
� with a precision of 1% would

require an extremely high precision of 0.01% in the determi-
nation of zt

�, which we cannot achieve with our equipment.

To avoid this problem, we aimed at measuring the difference
Dzt
� directly, by imaging the path of the Sun in the sky near

its transit at two epochs separated by a few days;25 the verti-
cal difference between the two paths is Dzt

�. To achieve this,

the first day of each observation we pointed the telescope to
the meridian with a reasonable precision (our telescope
allows us to do it within 0.125�), and fixed its azimuth. We
oriented the camera in such a way that the long size of the
chip is horizontal, to observe the largest possible path of the
Sun in the sky.26 When the Sun entered the field of view of
the camera, we roughly centered its image vertically and
fixed the telescope at this altitude. We took a series of snap-
shots with the telescope fixed (i.e., disabling the tracking of
celestial bodies) as the solar disk moves through the field of
view of the camera. The second day we took a second, simi-
lar series of snapshots, keeping the telescope fixed at the
position in which we left it the first day. The camera acts here
as a reference frame fixed to Earth, and the trail described by
the solar disk in the snapshots correspond to its path near
each transit. The vertical difference between the two trails is
directly Dzt

�, and the nominal precision of the measurement

is equal to the resolution of the camera (1 pix � 1 arc sec).
Note that it is not crucial that the camera is oriented

exactly in the horizontal direction. Any orientation error can
be corrected for using the fact that the solar path during
transit is horizontal. Moreover, the procedure is also robust
against small errors in the pointing azimuth of the telescope.
A small systematic error is committed in the determination
of zt

� due to the curvature of the solar path in the sky. Its
magnitude can be estimated using the formulae for transfor-
mation between the horizontal and equatorial coordinate sys-
tems18 and amounts to �5 arc sec for our 0.125� pointing
accuracy. As the curvature is similar for both days in each
observation, the systematic error in Dz is much less than this
value, and can be neglected. The leveling of the base of the
telescope, although performed carefully, is not an issue for
this measurement. It changes the individual values of zt

�;j
(here, j indicates the observation day) by the same amount,
hence it cancels in the difference Dzt

�.
The procedure described above also allows measurement of

the variation in transit times Dtt
�. The camera records the time

at which each snapshot was taken. We used these values to
determine the time tt

�;j at which the center of the solar disk
crossed the central pixel column of the chip each day. The dif-
ference of these times is Dtt

� ¼ tt
�;2 � tt�;1. Once again, this

difference is not affected by small pointing errors, as the angu-
lar velocity of the Sun is nearly constant between the two
observations, and its path near transit is horizontal. The system-
atic uncertainty in the transit times due to pointing errors can
be estimated in the same way as the systematic uncertainty in
Dzt
�. For our pointing precision, it amounts to less than 0.4 s in

Dtt�, or less than 6 arc sec in Da�. The leveling accuracy has
no effect on the measurement of Dtt

�, and the precision of the
internal camera clock is not an issue, as the worst quartz clocks
are accurate to 0.5 s per day.27 As a by-product, each value of
tt
� can be used, together with the time of transit of the vernal

equinox that day (taken from the Data Services of the United
States Naval Observatory21) and Eq. (6) to determine the right
ascension of the Sun a�. Its declination can be determined
from Eq. (5) and the value of the fixed altitude of the telescope
(the complement of the zenith distance), which can be read
from its setting circles with a precision of 0.125�.

The raw outcome of the experiment is therefore a set of
observations, each one comprising several images to mea-
sure the apparent radius of the solar disk, and two series of
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snapshots describing the path of the Sun in the sky near
transit, at epochs separated by a few days. Each snapshot
records the time at which it was taken. The altitude of the tel-
escope at each observation and the number of days elapsed
between the two series of snapshots (in our case always one)
is also recorded. In Sec. IV, we will describe the analysis of
the data of each set, and the computation of the angular mo-
mentum of Earth.

IV. DATA ANALYSIS AND RESULTS

As a first step in the analysis of the data, we determined
the apparent radius /� of the solar disk during each observa-
tion. Due to atmospheric refraction and extinction, and to the
conditions in the photosphere, the solar limb is not sharp. A
radial intensity profile (Fig. 2) shows instead a smooth
decline of the brightness towards the limb. The best defini-
tion of the position of the limb is therefore the location of
the maximum absolute value of the slope of the intensity
(vertical dashed line in Fig. 2).28,29 Hereafter, to express
positions in the images, we will use a reference system with
its origin at the center of the chip (i.e., at pixel [1536, 1024])
and the x (y) axis along rows (columns). To find the points
(x, y) belonging to the limb, we took N¼ 500 columns at
positions xi near the center of the solar disk, computed the
differences of the intensity between adjacent pixels along
each of them, and determined the positions yi,þ and yi,�
where the maximum positive and negative intensity change
occurs, respectively. To avoid spurious, abrupt variations
due to noise, we smoothed the intensity profiles along the
columns using a three-pixel moving-average filter before
computing the differences. As yi,þ=� mark the position of the
limb for a given column, yc,i¼ (yi,þþ yi,�)/2 gives an estima-
tion of the row of the center of the solar disk. The uncer-
tainty of this estimation is of the order of �5 pix. The mean
of yc,i over all columns, yc ¼ N�1

P
i yc;i, gives the y coordi-

nate of the center of the solar disk, with subpixel precision.
Applying the same procedure to N rows, we obtain the x
coordinate of the center, xc.

Given the 4 N points of the limb determined with the pre-
vious procedure, we fitted a circle to them by applying the
least-squares method to the equation

ðy� ycÞ2 þ ðx� xcÞ2 ¼ R2
limb (13)

to determine the limb radius Rlimb (Fig. 3). The apparent ra-
dius of the Sun was then computed as /� ¼ nRlimb, and its
distance was computed from Eq. (3). The advantages of this
technique are its simplicity and precision. As the solar limb
is defined by 2000 points, the effect of random distortions of
the image (such as those produced by atmospheric seeing)
averages out. This reduces the five-pixel uncertainty of each
limb position to a 0.3-pixel statistical error in the estimation
of Rlimb. The main source of systematic error is the flattening
of the solar disk due to differential atmospheric refraction.
The transit occurs at altitudes higher than 30� at our latitude,
leading to a shortening of the vertical radius of the Sun by
less than 2 arc sec (�2 pix).18 To be conservative, we took
this value as the total error of our measurement.

As this is the crucial measurement of the experiment, it
is worthwhile to compare its results to those obtained from
precise ephemeris of Earth’s orbit;21 Fig. 4 shows this

Fig. 2. Radial intensity profile of the solar disk. A smooth decline from the

brightness level of the solar disk (solid line) to the sky level (dotted-dashed

line) is seen. The maximum slope of the profile marks the position of the so-

lar limb (dashed line).

Fig. 3. Determination of the solar disk radius. For each limb point (x, y),

(y� yc)
2 is plotted as a function of (x – xc)

2 (circles). The intercept of the linear

correlation (solid line) between these quantities is R2
limb. For the sake of clarity,

only 10% of the 2000 data points used in the fit are plotted.

Fig. 4. Comparison between our estimation of the distance to the Sun (r) and

precise ephemeris obtained from the U.S. Naval Observatory (rUSNO) for the

dates of our observations. The data are consistent with the identity (solid line)

to within experimental errors, showing the correctness of our method.
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comparison. A clear correlation is seen, with the data scat-
tered around the identity (solid line in the figure), indicating
that our method is both precise and accurate. The scatter is
of the order of the size of the error bars, demonstrating that
the uncertainties are estimated correctly. In brief, Fig. 4
shows that our method provides an adequate estimation of
the distance of the Sun.

To measure the angular velocity of the Sun for each ob-
servation, we used the series of snapshots taken to deter-
mine its path in the sky between two consecutive days. For
each snapshot, we determined by eye the circle of radius
Rlimb passing as close as possible to the solar limb position.
Here, Rlimb is the limb radius obtained for the same obser-
vation using the procedure described above. We used for
this purpose the Smithsonian Astrophysical Observatory
SAOImage DS9 software,30 which allows us to draw a
circle of a given radius on any image and determine the
position of its center (xc, yc). We note that in this case the
exact definition of the solar limb is irrelevant, because we
do not want to measure its radius, and the fitting is guided
by the symmetry of the solar disk rather than by the exact
location of the limb points. Although this procedure is less
precise (the uncertainty in the measured position is �5 pix),
it is good enough for the purpose of computing the solar
proper motion. In any case, the previous, more precise
method for determining the position of the center of the Sun
cannot be applied, because most images do not show the
complete solar disk.

The positions (xc, yc) trace the paths of the Sun in the sky
near transit for both days. Figure 5 (left panel) presents a set
of snapshots showing the motion of the Sun through the field
of view of the camera the first day of one observation. It can
be seen that the path is straight, indicating the direction par-
allel to the horizon. This figure also shows that the orienta-
tion of the camera is not perfect. To correct this
misalignment, we plotted the positions (xc, yc) for each day
(right panel of Fig. 5) and fitted a straight line to them by
least squares. The average of the two slopes determines the
rotation angle e between the x axis of the images and the hor-
izontal direction.

Using the rotation angle e, we transformed the positions
(xc, yc) to a reference frame with axes ðx0; y0Þ rotated counter-
clockwise by e with respect to the (x, y) axes. This makes
the paths run along the x0-axis of the new frame. Because the
y0-axis is perpendicular to the horizon by construction, the
average y0p;j of the y0c values for each day j gives the altitude

of the path of the Sun for that day, up to the multiplicative
scale factor and an additive constant. This constant is the
pointing altitude of the telescope, and although we have
measured it, we do not use it for this computation because its
relative error is too large. Instead, we compute the difference
Dy0p ¼ y0p;2 � y0p;1, in which the additive constant cancels out.

This difference is related to the variation in the solar zenith
distance at transit between both days, by Dzt

� ¼ �nDy0p.

To determine the variation of the solar right ascension,
we plot for both days the x0-coordinate of the solar disk
against the time at which each snapshot was taken
(Fig. 6). It can be seen that the relationship between
these magnitudes is linear, due to the constancy of the
solar angular velocity during the three minutes that the
series of snapshots lasts. A least-squares fit of a linear
function gives the parameters of this relationship, and
hence the time tt

�;j at which the Sun crossed each day the

center of the image (x0 ¼ 0, which is the location of
the meridian to within the experimental uncertainty).
The time between the two transits is then Dtt

� ¼ tt
�;2

�tt
�;1 þ 24h, as each tt

�;j is measured from the previous
midnight (mean solar time). The nominal uncertainty of
the determination of Dtt

� by this method is of the order
of 0.1 s. However, because digital clocks could introduce
errors �0.5 s per day,27 we conservatively take this fig-
ure as the uncertainty of Dtt

�.
We used the measured value of Dtt� in Eq. (8) to deter-

mine la;� and, together with Dzt
�, in Eq. (9) to obtain ld;�.

Using the value of the fixed altitude of the telescope,
we computed the solar zenith distance z� and declination
d� [Eq. (5)] at the first transit. From these quantities,
we determined the angular velocity of the Sun x [Eq. (7)]
and, using the measurement of r� described previously, the
magnitude of the angular momentum of Earth L�. The
time of the first transit, together with that of the vernal
equinox (a?¼ 0, tabulated21) and Eq. (6), allowed us to
determine the right ascension a�. In this way, we deter-
mined the position of the Sun at the first transit. Using
the computed solar position and proper motion, we
obtained the direction of the angular momentum of Earth
L̂� [Eq. (10)].

Fig. 5. Upper panel: Composite image showing the motion of the Sun near

its transit. Four frames taken during an interval of 3 min with the telescope

fixed and pointing to the local meridian were combined. The solid line

shows the path of the center of the Sun through the field of view. Because

this path is horizontal, it helps us in transforming the image reference frame

(x, y) to a new one with its axes ðx0; y0Þ aligned to the horizon. Lower panel:

Positions of the Sun near its transit during the first (open squares) and second

(filled squares) days of an observation. The average slope of the fits (solid

lines) gives the misalignment e of the camera. The size of the squares is the

nominal measurement error of 65 pix.
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Figure 7 shows the relation between the distance to the
Sun r� and its angular velocity x. A clear trend can be
seen, in the sense that the angular velocity decreases with
increasing distance. Moreover, this trend is consistent with
a power-law relation, as required by Eq. (2). A least-
squares fit gives an exponent of �2.31 6 0.33 for this rela-
tion, consistent with the value �2 expected from the con-
servation of angular momentum within the 68% confidence
level. The fit was performed using the effective variance
method, as the relative uncertainties in both axes are of the
same order of magnitude. We note that despite the high
precision of the data (below 1%), that of the slope is only
�15%. The precision is low because the variations of the
magnitudes being measured are much smaller than their
values. On the one hand, this highlights the importance of
our initial analysis, in which we adopted a goal precision
of 0.3% for our measurements after examining carefully
the magnitude of the effect to be measured. Note that the
whole experimental setup is based on this analysis. On the
other hand, this result shows that a higher precision in the
slope (say, of the order of 1%) is unreachable with com-
mercial, low-cost equipment. To show explicitly the con-
servation of angular momentum, we computed the
magnitude of L�/M� and plotted it against the observation
date (Fig. 8). The constancy of the magnitude of the angu-
lar momentum of Earth, to within the 2% precision of our
data, is clear in this figure. The mean value is L�/M�

¼ 6.28 6 0.04 AU2 yr�1.
The conservation of the direction of L� is demonstrated in

Fig. 9. The three Cartesian components of the unit vector
L̂�, computed from our data, are shown. The X-component
is consistent with a null value, as expected because the equa-
torial reference frame has the X-axis along the intersection of
the ecliptic with the celestial equator, hence in the plane of
motion of Earth. The other two are constant to within 3%.
The inclination of the orbit of Earth (the ecliptic) with
respect to its equator can be obtained from these components
(e.g., tan � ¼ L�;Y=L�;ZÞ. From our data, �¼ 23.35 6 0.05�,
in good agreement with the mean obliquity for the year
2014, �¼ 23.44.21

Fig. 6. Determination of the solar transit time. The upper panel shows the

position x0 of the solar disk center as a function of time t. Open circles repre-

sent the data, while the solid line is a linear fit. The dot-dashed line marks

the position of the meridian, hence its intersection with the fit is the transit

time. The lower panel shows the residuals of the fit. The uncertainties of the

data are plotted as well as the 68% confidence region of the fit (dashed lines)

to show its quality.

Fig. 7. Log-log plot of the angular velocity of Earth as a function of the dis-

tance to the Sun. A clear correlation is seen, the best-fit power law (solid

line) having a slope of �2.31 6 0.33, consistent with the value of �2

expected from the conservation of angular momentum. Dashed lines show

the 68% confidence region.

Fig. 8. Magnitude of the specific angular momentum of Earth as a func-

tion of the observation date. The conservation of L�/M� to within the

experimental uncertainty of 2% is evident. The solid line shows the

mean values of L�/M�, while the dashed lines show the standard devia-

tion of the data. Dates are given as Julian Date minus the date of the

first observation.
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V. CONCLUSIONS

The experiment described here allows one to verify the
conservation of both the direction and the magnitude of
Earth’s angular momentum vector to within a few percent.
We believe that this experiment is unique in the sense that it
provides quantitative evidence for one the central principles
of physics, and also for the central nature of one of the fun-
damental interactions. Because Earth-Sun system is simple
in terms of the dynamical interaction between its compo-
nents, the results can be easily and clearly interpreted by stu-
dents, providing them with direct insight into the physics
involved.

Two crucial features of the experiment are responsible
for its success. The first is the high precision (below 1%)
achievable for each individual photographic measurement.
This level of precision is needed to obtain useful data that
correctly trace the small variation of the observables (the
Sun’s apparent size and angular velocity), which amounts
to a few percent. A careful instrumental setup and an
extensive data analysis are then mandatory, as well as a
thorough investigation of the error sources, both statistical
and systematic. The second crucial feature is the method
of measuring the variation of the position of the Sun, using
directly the difference of observables (time and altitude of
transit) on two consecutive days. A separate measurement
of the position each day would suffer from cancellation
errors, and would prevent the required precision from
being reached. The precision of the method allows the sep-
aration of the angular velocity component due to the or-
bital motion of Earth from the much larger one due to the
rotation of our planet.

Due to the aforementioned features, we believe that
this experiment poses an interesting challenge to under-
graduate students, allowing them to improve their knowl-
edge of fundamental mechanics while training
themselves in astronomical observation and data analysis
techniques.
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