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Abstract

Background: Chagas disease, caused by Trypanosoma cruzi, is endemic in Latin America and an emerging infectious disease
in the US and Europe. We have shown TcG1, TcG2, and TcG4 antigens elicit protective immunity to T. cruzi in mice and dogs.
Herein, we investigated antigenicity of the recombinant proteins in humans to determine their potential utility for the
development of next generation diagnostics for screening of T. cruzi infection and Chagas disease.

Methods and Results: Sera samples from inhabitants of the endemic areas of Argentina-Bolivia and Mexico-Guatemala were
analyzed in 1st-phase for anti-T. cruzi antibody response by traditional serology tests; and in 2nd-phase for antibody
response to the recombinant antigens (individually or mixed) by an ELISA. We noted similar antibody response to candidate
antigens in sera samples from inhabitants of Argentina and Mexico (n = 175). The IgG antibodies to TcG1, TcG2, and TcG4
(individually) and TcGmix were present in 62–71%, 65–78% and 72–82%, and 89–93% of the subjects, respectively, identified
to be seropositive by traditional serology. Recombinant TcG1- (93.6%), TcG2- (96%), TcG4- (94.6%) and TcGmix- (98%) based
ELISA exhibited significantly higher specificity compared to that noted for T. cruzi trypomastigote-based ELISA (77.8%) in
diagnosing T. cruzi-infection and avoiding cross-reactivity to Leishmania spp. No significant correlation was noted in the sera
levels of antibody response and clinical severity of Chagas disease in seropositive subjects.

Conclusions: Three candidate antigens were recognized by antibody response in chagasic patients from two distinct study
sites and expressed in diverse strains of the circulating parasites. A multiplex ELISA detecting antibody response to three
antigens was highly sensitive and specific in diagnosing T. cruzi infection in humans, suggesting that a diagnostic kit based
on TcG1, TcG2 and TcG4 recombinant proteins will be useful in diverse situations.
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Introduction

The protozoan parasite Trypanosoma cruzi, transmitted by blood-

sucking triatomines, causes Chagas disease, which is a health threat

for an estimated 10 million people, living mostly in Latin America.

More than 25 million people are at risk of the disease [1]. Increasing

travel and immigration has also brought T. cruzi infection into non-

endemic countries, e.g., the U.S., Spain and Australia, where

natural transmission is absent or very low. The congenital and

transfusion- or organ transplantation-related transmissions are

becoming recognized as significant threats in recent decades [2,3].

Diagnosis and treatment of T. cruzi infection has remained

difficult and challenging after 100 years of its identification. This is

because the acute infection, in general produces mild clinical

symptoms, e.g., fever, dyspnea, local swelling at the site of

infection, that are infrequently reported [4]. As a result, acute

exposure when detection of blood parasitemia and treatment is

possible, remain largely unnoticed. Only those who develop severe

acute myocarditis or when an outbreak of T. cruzi infection occurs

may receive early diagnosis and therapeutic treatment [5][6]. In

.95% of human cases, T. cruzi infection remains undiagnosed

until several years later when chronic evolution of progressive

disease results in clinical symptoms associated with cardiac

damage. A conclusive diagnosis of T. cruzi infection then often

requires multiple serological tests, in combination with epidemi-

ological data and clinical symptoms. Unfortunately, after compli-

cated diagnosis, no vaccines or therapies are available to treat the

chronically infected individuals.
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We have, previously, employed an unbiased computational/

bioinformatics approach for screening the T. cruzi sequence

database and identification of potential vaccine candidates [7]. A

strategic analysis of the sequence database led to selection of 71

candidates that were unique to T. cruzi. Of these, eight candidates

(TcG1, TcG2, TcG3, TcG4, TcG5, TcG6, TcG7, and TcG8)

were selected for their ability to induce agglutinating antibody

response in mice [7]. Further studies indicated TcG1, TcG2, and

TcG4 were maximally immunogenic because these were recog-

nized by IgGs in infected mice and dogs (reviewed in [8]), by

CD8+ T cells in infected mice [9], and elicited type I cytokines (e.g.

IFN-c) in mice and dogs [10]. Immunization with candidate

antigens as a DNA vaccine provided a degree of protective

immunity (TcG2 = TcG4.TcG1) that substantially controlled

acute parasitemia after challenge infection in mice and dogs

[10,11]. The delivery of candidate antigens as heterologous

prime/boost vaccines further enhanced the protective efficacy,

evidenced by .80% control of acute parasitemia and tissue

parasite burden and associated inflammation in heart and skeletal

tissue [9,12].

In this study, we investigated the antibody response to the three

candidate antigens (TcG1, TcG2, TcG4) in clinically character-

ized chagasic patients. Our objectives were to evaluate the

antigenicity of the candidate antigens in humans and determine

their utility in generation of improved diagnostics for screening of

T. cruzi infection and disease. Our data demonstrate that the

candidate antigens are recognized by antibody responses in

chagasic patients from two distinct study sites where diverse

strains of the circulating parasites were reported. Further, a

multiplex assay consisting of the mixture of the three antigens was

highly sensitive and specific in diagnosing T. cruzi infection in

human patients.

Materials and Methods

Parasites
T. cruzi trypomastigotes (SylvioX10/4, TCI lineage) were

maintained and propagated by continuous in vitro passage in

monolayers of C2C12 cells. Amastigotes were obtained by

incubation of the freshly harvested trypomastigotes in RPMI-

10% FBS medium, pH 5.0 at 37uC, 5% CO2 for 2 h.

Human subjects
Human sera samples used in this study were obtained from

Salta Argentina (located at the border of Bolivia) and Chiapas

Mexico (located on the border of Guatemala) that are known to be

endemic for T. cruzi transmission and human infection. All

procedures were approved by the Institutional Review Boards at

the University of Texas Medical Branch (UTMB), Universidad

Nacional de Salta (UNSa), Argentina, and the Universidad

Autónoma de Chiapas, Mexico. All sera samples obtained for

the study were analyzed for T. cruzi-specific antibodies by

commercially available kits. Those positive by $ two tests were

considered seropositive (+ve) and those negative for these tests

were considered as seronegative (2ve). All samples were decoded

and de-identified before they were provided for research purposes.

Written informed consent was obtained from all individuals.

In Argentina, all individuals were clinically characterized, and

venous blood samples were collected to obtain plasma or serum.

Clinical data included medical history, physical examination and

subjective complaint of frequency and severity of exertional

dyspnea, electrocardiography (12-lead at rest and 3-lead with

exercise) to reveal cardiac rhythm and conduction abnormalities

and transthoracic echocardiogram to obtain objective information

regarding the left ventricular (LV) contractile function. Chest X-

ray was used to assess cardiomegaly (cardio-thoracic ratio.0.5).

Seronegative and physically healthy subjects exhibiting no history

or clinical symptoms of heart disease were used as controls.

Seropositive chagasic patients were classified according to clinical

exam as follows: Group 0: no echocardiography abnormalities, no

left ventricular dilatations, and $70% ejection fraction (EF)

indicating preserved systolic function, Group I: negligible to minor

EKG alterations, EF: 55–70%, no indication of heart involvement;

Group II: a degree of heart involvement with systolic dysfunction

(EF: 40–55%); and Group III: moderate to severe systolic

dysfunction (EF#40%), left ventricular dilatation (diastolic diam-

eter $57 mm), and/or potential signs of congestive heart failure.

In Mexico, human sera samples were collected within the

framework of a research project on emerging zoonotic diseases

conducted jointly by several institutions, including Chiapas State

University (UNACH), Mexican Social Security Institute (IMSS),

Chiapas Health Institute (ISECH) and UTMB at Galveston [13].

The seropositive subjects generally represented indeterminate/

asymptomatic form of disease. Patients’ detailed information is

presented in Table 1.

1st-phase screening
All sera samples from Salta Argentina were analyzed for T.

cruzi-specific antibodies by the personnel of the Clinical labora-

tories at the San Bernardo Hospital using a Wiener Chagatest-

ELISA recombinant v.4.0 kit (cut-off absorbance at 450 nm:

average of seronegative samples (,0.1) +0.2., i.e. $0.3). Serolog-

ical tests were also done following the specifications of the

commercial IHA test kit (Wiener Chagatest-HAI, positive $1:16

dilution). Those positive by both tests were considered seroposi-

tive, and exposed to T. cruzi infection.

All sera samples from Chiapas Mexico were screened by

epimastigote antigenic lysate-based ELISA, trypomastigote-based

flow cytometry, and Chagas Stat-Pak immuno-chromatograpic

test (Chembio Diagnostic Systems, Medford NY). Those positive

by at least two tests were considered seropositive [13].

Author Summary

Chagas disease is the most common cause of congestive
heart failure related deaths among young adults in the
endemic areas of South and Central America and Mexico.
Diagnosis and treatment of T. cruzi infection has remained
difficult and challenging after 100 years of its identifica-
tion. In .95% of human cases, T. cruzi infection remains
undiagnosed until several years later when chronic
evolution of progressive disease results in clinical symp-
toms associated with cardiac damage. Diagnosis generally
depends on the measurement of T. cruzi–specific antibod-
ies that can result in false positives. A conclusive diagnosis
of T. cruzi infection thus often requires multiple serological
tests, in combination with epidemiological data and
clinical symptoms. In this study, we investigated the
antibody response to TcG1, TcG2, and TcG4 in clinically
characterized chagasic patients. These antigens were
identified as vaccine candidates and shown to elicit
protective immunity to T. cruzi and Chagas disease in
experimental animals. Our data show the serology test
developed using the TcGmix (multiplex ELISA) is a
significantly better alternative to epimastigote extracts
currently used in T. cruzi serodiagnosis or the trypomas-
tigote lysate used in this study for comparison purposes.

Diagnostic Efficacy of T. cruzi Antigens
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2nd-phase screening
Based upon the above analysis, we created sera pools for 2nd

phase screening. Briefly, from Chiapas Mexico, a seropositive pool

(n = 65) and a seronegative pool (n = 34) was included in the 2nd

phase. From Salta Argentina, sera and plasma samples collected in

year 2009 (seropositive, n = 65; seronegative, n = 20) and year

2010 (seropositive, n = 45; seronegative, n = 20) were included. All

blood samples positive for T. cruzi-specific antibodies from Salta

Argentina were analyzed for Leishmania infection by two PCR

approaches. Briefly, total DNA was extracted from blood samples

with a phenol-chloroform mixture, precipitated with ethanol and

dissolved in 20 ml of TE buffer. A PCR reaction was performed

using 1 ml isolated DNA with primer pairs (59-

GTGGGGGAGGGGCGT-TCT-39 and 59-ATTTTACAC-

CAACCCCCAGTT-3) that specifically amplify 120 base pair

product from the conserved region of Leishmania kDNA [14]. The

polymorphism-specific PCR (PS-PCR) allows the identification of

Leishmania species from Argentina, and was performed using the

primer pairs as previously described [15].

To evaluate the specificity of the TcG1-, TcG2-, and TcG4-

based diagnostic ELISA, sera samples from volunteer donors from

Galveston TX, Buenos Aires Argentina, and Toluca Mexico with

no history of residence in the endemic areas, and were healthy

(n = 42, true negative controls) or exhibited cardiomyopathy of

other etiologies (n = 20) were included in the study. Seronegative/

cardiomyopathy patients were identified based clinical exam, and

blood levels of NT-proBNP to be .2000 pg/ml (normal,450 pg/

ml). To examine the cross-reactivity of antigen-based assay, sera

samples from subjects living in Salta Argentina, and diagnosed for

Leishmania infection (n = 35) or certain autoimmune diseases (n = 15)

were also included in the study. Patients were diagnosed for

leishmaniasis (cutaneous, mucocutaneous or visceral) based upon

three criteria (smears and lesions, Montenegro reaction, epidemi-

ology and clinical demonstration) as described in [15], and further

identified to be positive for Leishmania infection by kDNA-specific

PCR and PS-PCR approaches, as above. Briefly, parasitological

analysis was done on smears of dermal scrapings stained with May-

Grunewald Giemsa and examined under a microscope. For

Montenegro skin test, promastigote protein lysates (4 mg/100 ml)

of Leishmania braziliensis were injected intradermally on the ventral

forearm of the patients, and indurations $5 mm in diameter,

observed 48 h after the injections were considered reactive. Clinical

features included the presence of compatible tegumentary injuries

with ulcerative, nodulous, papulous cutaneous or mucocutaneous

lesions and a congruent epidemiological history. Patients’ informa-

tion is presented in Table 1.

Sera samples were analyzed for IgG antibody levels by using

TcG1-, TcG2-, TcG4-based ELISA. Recombinant TcG1, TcG2

and TcG4 proteins were purified from E. coli. The nucleotide

sequences of TcG1, TcG2 and TcG4 antigens have previously

been submitted to GenBank under accession numbers AY727914,

AY727915 and AY727917, respectively [7]. The cDNAs encoding

TcG1 (1–166 amino acids), TcG2 (1–220 amino acids), and TcG4

(1–92 amino acids) were cloned in pCR2.1 T/A vector, and then

Table 1. Characterization of the subjects included for screening of TcG1-,TcG2-, and TcG4-specific antibody responses in this
study.

Clinical characterization Enrolled subjects (numbers) Age range in years Sex Males (%)

Salta, Argentinaa

Seropositive for T. cruzi-specific antibodiesb

Chagasic 0 n = 54 19–75 44 (40%)

Chagasic I n = 30

Chagasic II n = 17

Chagasic III n = 9

Seronegative for T. cruzi-specific antibodies

Healthy, no disease n = 40 18–55 19 (48%)

Leishmaniasis n = 35 18–62 25 (71%)

Autoimmune diseases n = 15 NA NA

Chiapas, Mexicoc

Seropositive for T. cruzi-specific antibodies

Chagasic 0-I n = 65 18–73 29 (45%)

Seronegative for T. cruzi-specific antibodies

Healthy, no disease n = 34 18–73 15 (45%)

Non-endemic areasd

Seronegative, healthy, no disease n = 42 18–55 16 (38%)

Seronegative, other Cardiomyopathy n = 20 42–75 12 (60%)

aSubjects in Argentina were screened for T. cruzi-specific antibodies by Wiener Chagatest-ELISA and Wiener Chagatest-HAI kits. Clinical exam included physical exam,
electrocardiography and echocardiography. Confirmation of leishmaniasis was obtained by parasitological test, Montenegro reaction, clinical demonstration, and two
PCR approaches. One of the seropositive patient presenting acute infection was referred for chemotherapeutic treatment with Benznidazole.
bFive of the seropositive/chagasic subjects from Argentina were positive for Leishmania infection, determined by two PCR approaches.
cSera samples from Chiapas Mexico were screened by epimastigote antigenic lysate-based ELISA, trypomastigote-based flow cytometry, and Chagas Stat-Pak immuno-
chromatograpic test.
dSeronegative subjects from non-endemic areas were screened for T. cruzi-specific antibody response using T. cruzi trypomastigote lysate as antigen source in ELISA
assays. Seronegative/cardiomyopathy patients were identified based upon blood levels of NT-proBNP to be .2000 pg/ml (normal,450 pg/ml).
N/A: not available.
doi:10.1371/journal.pntd.0002018.t001

Diagnostic Efficacy of T. cruzi Antigens
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sub-cloned in to pET-22b plasmid (Novagen, Gibbstown, NJ) such

that the encoded proteins were in-frame with a C-terminal

polyhistidine tag. All cloned sequences were confirmed by

restriction digestion and sequencing at the Recombinant DNA

Core Facility at UTMB. The pET22b plasmids containing TcG1,

TcG2 or TcG4 were transformed in BL21 (DE3) pLysS competent

cells (Invitrogen, Carlsbad CA) and recombinant proteins purified

using the polyhistidine fusion peptide metal chelation chromatog-

raphy system (Novagen) [9]. After purification, proteins were

dialyzed to remove contaminant particles, and endotoxins, and

stored at 280uC till further use. Culture-derived parasites (70%

trypomastigotes/30% amastigotes) were lysed by repeated freeze-

thaw in PBS (109/ml) and used as a source of T. cruzi total antigen

for positive control [10].

Flat bottom, high-binding, 96-well plates (Greiner bio-one) were

coated overnight at 37uC with 100-ml/well of recombinant

antigens (0.5 mg each antigen/well, individually or in combination)

or T. cruzi total lysate (56105 parasite equivalents/well). Plates

were blocked for 2 h at 37uC with 200-ml/well of 5% non-fat dry

milk (NFDM) in PBS, washed with PBS-0.05%Tween-20 (PBST)

twice, and PBS once, and then incubated for 2 h with test sera

(100-ml/well) added in triplicate in 2-fold dilutions. Plates were

then washed and incubated at room temperature for 30 min with

100-ml/well of horseradish peroxidase-labeled goat anti-human

IgG (1:5000 dilution in PBST-1% NFDM), and color was

developed for 5 min with 100 ml/well of Sure Blue TMB substrate

(Kirkegaard & Perry Laboratories). The colorimetric reaction was

stopped with 2N H2SO4, and absorbance measured at 450 nm

using SpectraMax M5 Microplate Reader (Molecular Devices).

The sensitivity of the antigen-based ELISA (2nd phase) was

determined by calculating the percentage of chagasic samples that

exhibited reactivity with recombinant proteins out of the total

samples previously categorized as seropositive based on 1st phase

screening with commercially available kits. The data from antigen-

based ELISA analysis of sera samples from healthy individuals,

other cardiomyopathy and leshmaniasis patients was utilized to

calculate the specificity of the assay as follows: [ number of sera

samples analyzed – number of sera samples that exhibited false

positive reaction or cross-reactivity with TcG1, TcG2 or TcG4/

number of sera samples analyzed] 6100.

Data analysis
All samples were analyzed in duplicate and assayed at least

twice for all experiments. Box plots and dot plots were made using

Sigma Plot 12.0 and GraphPad Prism 5 software, respectively, and

statistical analysis was conducted using SPSS v.18 software.

Results were analyzed using Student’s t test for statistical

evaluation of mean values for experimental and control samples,

and the level of significance was taken at a,0.05. Pearson’s

correlation analysis was performed to determine the relationship

between predictive efficacies of the antibody response to selected

antigens in diagnosis of disease severity. Seropositivity rates for

anti-T. cruzi antibodies in different tests, and their confidence

intervals [CIs], were calculated using the mid-P 95% confidence

interval (95% CI) using Epi Info (version 6.0) software.

Results

To proceed with sample analysis, we optimized ELISA

components by cross-titration, using a pool of known positive

and negative controls (1:20–1:1600 dilutions). The optimal sera

and HRP-conjugated secondary antibody dilutions providing

maximum signal-to-noise ratio were determined to be 1:50 and

1:5,000, respectively, and used in all further investigations. The

variations in reactivity of negative and positive sera among

different assays and plates of the same experiment ranged from 3–

12%.

We, first, monitored the antigenicity of TcG1, TcG2, and TcG4

using sera samples collected from volunteers enrolled in the study

in Argentina in year 2010. Samples were stored at 280uC just

after collection, and thawed when utilized. The negative sera

samples (n = 20) from the endemic area near Argentina-Bolivia

border exhibited low reactivity for TcG1, TcG2, and TcG4,

similar to that noted for confirmed negative controls (n = 42) from

non-endemic areas (TcG1: 0.21660.035 versus 0.21160.048,

TcG2: 0.24060.04 versus 0.23060.044, TcG4: 0.22560.041

versus 0.25260.038, expressed as mean absorbance 6 SD). In

comparison, a 4-fold, 2.75-fold, and 2.65-fold increase in sera

levels of antibody response to TcG1, TcG2, and TcG4,

respectively, was noted in previously characterized seropositive

subjects (n = 45) from Argentina-Bolivia border (TcG1:

0.8160.33, TcG2: 0.6660.20, TcG4: 0.5760.09, expressed as

mean absorbance 6 SD, p,0.001 for all, Fig. 1.A–C). The sera

levels of antibodies to TcG1, TcG2, and TcG4 were above the

meanseronegative level in 62.2%, 66.6% and 75.5% of the 1st-phase

seropositive subjects. When analyzing plasma samples from the

same individuals, we noted a 3.34-fold, 2.4-fold and 2.3-fold

increase in plasma levels of antibodies to TcG1, TcG2 and TcG4

in seropositive subjects as compared to seronegative controls

(TcG1: 0.7760.21 versus 0.2060.05, TcG2: 0.6560.12 versus

0.2160.057, TcG4: 0.6760.09 versus 0.2060.048, expressed as

mean absorbance 6 SD, p,0.001 for all, Fig. 1.D–F). The plasma

levels of antibodies to TcG1, TcG2, and TcG4 were above the

meanseronegative levels in 71.1%, 77.7% and 80% of the 1st-phase

seropositive subjects. These data suggested that a) TcG1, TcG2

and TcG4 are recognized by antibody responses elicited in human

patients infected by T. cruzi, and b) both plasma and sera samples

can be utilized to monitor the antibody response.

We then analyzed the plasma samples that were collected in

2009, and characterized as seropositive (n = 65) and seronegative

(n = 20) by 1st-phase serology tests. These samples were subjected

to two cycles of freezing/thawing during the two-year storage. Our

data showed a 6.72-fold, 2.4-fold and 2.9-fold increase in plasma

levels of antibodies to TcG1, TcG2 and TcG4 in seropositive

subjects as compared to seronegative controls (TcG1: 1.6660.55

versus 0.20460.05, TcG2: 0.6960.13 versus 0.23960.039, TcG4:

0.7560.20 versus 0.22760.05, expressed as mean absorbance 6

SD, p,0.001 for all, Fig. 1.G–I). The plasma levels of antibodies

to TcG1, TcG2, and TcG4 were above the meanseronegative level in

61.5%, 64.6% and 81.5% of the seropositive subjects. These

results suggest that antibody response to TcG1, TcG2, and TcG4

is stable, and field samples can be utilized to examine antigenicity

of the selected candidates in large-scale population studies.

Overall, the data presented in Fig. 1 also indicate that TcG1,

TcG2 and TcG4 are expressed by T. cruzi isolates circulating in

the endemic areas at the Argentina-Bolivia border.

It is important to know if antibody recognition of the three

antigens can be expanded for diagnosis of T. cruzi infection in

other countries where different isolates are suggested to be present

in domestic and sylvatic cycle of parasite circulation. For example,

in Argentina and neighboring countries in South America, TCII

isolates are predominantly identified in peripheral blood of

seropositive patients, though molecular studies have revealed the

presence of TCI parasites also in heart biopsies of chronic chagasic

patients [16,17,18]. In Mexico and Guatemala, TCI is dominantly

found in epidemiological evaluation of infected triatomines as well

as in blood samples from acute and chronic chagasic cardiomy-

opathy patients [19,20]. We, therefore, monitored the antigenicity

Diagnostic Efficacy of T. cruzi Antigens
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of TcG1, TcG2, and TcG4 in human sera samples from Mexico-

Guatemala border area that were characterized as seropositive

(n = 65) and seronegative (n = 34) by 1st-phase serology tests. Our

data showed 6.72-fold, 2.4-fold and 2.9-fold increase in sera levels

of antibodies to TcG1, TcG2 and TcG4 in seropositive samples as

compared to that noted in seronegative healthy controls (TcG1:

0.760.25 versus 0.21160.047, TcG2: 0.6460.22 versus

0.2560.05, TcG4: 0.6560.20 versus 0.21260.048, expressed as

mean absorbance 6 SD, p,0.001 for all, seropositive versus

seronegative, Fig. 2). The sera levels of antibodies to TcG1, TcG2,

and TcG4 were above the meanseronegative level in 69.2%, 76.9%

and 72.3% of the seropositive subjects from Mexico. These data

demonstrate that TcG1, TcG2 and TcG4 are antigenic, and

recognized by antibody responses in chagasic patients from

Mexico, and suggest that the three antigens are expressed by T.

cruzi isolates circulating in Mexico-Guatemala border area.

Next, we determined if the three candidate antigens can be

utilized together to improve the diagnosis of exposure to T. cruzi. For

this, we coated the 96-well plates with either the mixture of TcG1,

TcG2 and TcG4 (0.5 mg/well each) or T. cruzi trypomastigote lysate

(TcTL, 26105 parasite equivalent), and monitored the antibody

response by ELISA under similar experimental conditions. When

antibody response was captured using the TcGmix, the seronegative

controls from the non-endemic areas exhibited a mean absorbance

6 SD of 0.22560.039. Using the controls’ mean absorbance+2SD,

our data validated 40 of the 45 sera samples (88.8%) from

Argentina, characterized as seropositive in 1st-phase screening in the

year 2010, were seropositive for TcGmix-specific antibodies (mean

absorbance 6 SD: 0.7360.17, maximum OD: 1.2, Fig. 3A). One of

the volunteer previously characterized as seronegative exhibited

anti-TcGmix antibody response above the meanseronegative level.

Similarly, the plasma detection of antibody response to TcGmix

identified 102/110 of the seropositive subjects (92.7%) identified in

1st-phase screening in the years 2009 and 2010 (Fig. 3B,C). In

comparison, when plates were coated with TcTL to capture anti-T.

cruzi antibodies, the seronegative true controls from non-endemic

areas, exhibited a mean absorbance 6 SD value of 0.23360.044

(Fig. 3C,E). Using the mean absorbance for controls +2 SD as a cut

off, our data validated 97.7–100% sera and plasma (year 2010) and

96.9% plasma (year 2009) samples characterized as seropositive in

Figure 1. Antigenicity of TcG1, TcG2 and TcG4 in inhabitants of Salta Argentina. Sera (A–C) and plasma (D–I) samples obtained in year
2010 (A–F) and year 2009 (G–I) from volunteers in Salta Argentina were identified as seropositive (+ve) or seronegative (2ve) in 1st-phase screening
by using conventional approaches. The 2nd-phase screening for antigen-specific antibody response was conducted by an ELISA using the
recombinant TcG1, TcG2 and TcG4 proteins. Data (mean of four observations from each sample) are presented as box plot. The horizontal lines of the
box (bottom to top) depict the lower quartile (Q1, cuts off lowest 25% of the data), median (Q2, middle value), and upper quartile (Q3, cuts off the
highest 25% of the data). The lower and upper whiskers depict the smallest and largest non-outlier observations, respectively, and solid dots
represent the outliers. The spacing between the different parts of the box indicates the degree of dispersion (spread). Standard deviation for all
samples was ,12%.
doi:10.1371/journal.pntd.0002018.g001
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1st-phase screening in Argentina were also positive for TcTL-

specific antibodies; the mean absorbance 6 SD for the positive

population was 1.160.6 (year 2009) and 0.7360.08 (year 2010)

with the highest value being 2.5 and 0.98, respectively (Fig. 3B,D,F).

One of the volunteer previously characterized seronegative

exhibited anti-TcTL antibody response.

To validate that diagnostic potential of the TcGmix based

ELISA is not restricted to samples from Argentina, we monitored

the antibody response using sera samples collected in Mexico. Of

the 65 samples characterized as seropositive in 1st-phase screening,

58 (89.2%) and 63 (96.9%) exhibited reactivity when plates were

coated with TcGmix and TcTL antigens, respectively (Fig. 4). The

mean absorbance 6 SD for the antibody response to TcGmix and

TcTL in the positive population positive population was

0.7560.14 (max: 1.2) and 0.8760.4 (max: 2.6), respectively, the

difference between the two values being observed non-significant.

No significant difference was observed when either plasma or sera

were used as the source of antibodies.

Five of the 110 seropositive/chagasic subjects from Argentina

exhibited reactivity for Leishmaina-specific antibodies and were

likely infected with both pathogens. To examine if the antigen-

based ELISA is specific for T. cruzi detection, we performed

recombinant antigens-specific ELISA using the sera samples from

non-chagasic individuals (total 112), including leishmaniasis

patients (n = 35), volunteer donors with cardiomyopathy (n = 20)

and autoimmune diseases (n = 15) of other etiologies, and healthy

donors from non-endemic areas (n = 42), and calculated the

specificity of the antigen-based ELISA. Sera samples from

Figure 2. TcG1, TcG2 and TcG4 are recognized by antibody response in human subjects from Mexico. Sera samples obtained from
volunteers living in the endemic areas of Chiapas Mexico were characterized as seropositive (+ve) and seronegative (2ve) by whole-parasite antigen
based serology tests in the 1st phase. The TcG1 (A), TcG2 (B) and TcG4 (C) specific antibody response was measured by ELISA, and data are presented
as box plot (details in Fig. 1).
doi:10.1371/journal.pntd.0002018.g002

Figure 3. TcGmix-based ELISA provides superior efficacy in
identifying exposure to T. cruzi infection among inhabitants of
Salta Argentina. Sera (A&B) and plasma (C–F) samples, characterized
as seropositive (+ve) and seronegative (2ve) by conventional
approaches, were submitted to multiplex ELISA using the mixture of
recombinant TcG1, TcG2 and TcG4 proteins for capturing the antigen-
specific antibody response (A,C,E). Shown are the antibody response
captured using the T. cruzi trypomastigote lysate (TcTL) as a source of
crude antigen (B,D,F) for comparison purpose.
doi:10.1371/journal.pntd.0002018.g003

Figure 4. TcGmix-based ELISA was effective in diagnosing
exposure to T. cruzi infection among inhabitants of Chiapas
Mexico. Sera samples obtained from volunteers living in the endemic
areas of Chiapas Mexico were characterized as seropositive (+ve) and
seronegative (2ve) by whole-parasite antigen based serology tests in
the 1st phase. Shown are the antibody response captured by an ELISA
using mixture (TcGmix) of recombinant TcG1, TcG2 and TcG4 proteins
(A) or T. cruzi trypomastigote lysate (TcTL) (B) as a source of antigen.
doi:10.1371/journal.pntd.0002018.g004
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leishmaniasis patients (n = 35) exhibited very low reactivity for

TcG1, TcG2, and TcG4, similar to that noted for sera samples

from confirmed negative controls from non-endemic areas

(TcG1: 0.1860.04 versus 0.2160.048, TcG2: 0.1560.06 versus

0.23060.044, TcG4: 0.23260.05 versus 0.25260.038, expressed

as mean absorbance 6 SD). Likewise, sera samples from patients

exhibiting symptoms of cardiomyopathy of non-chagasic etiology

or autoimmune diseases showed reactivity to TcG1, TcG2, and

TcG4 below the cut-off threshold values derived from healthy/

seronegative controls. The specificity for TcGmix was highest

(98%), followed by TcG2 (96%), TcG4 (94.6%), TcG1 (93.6%)

and TcTL (77.8%), determined by detection of false positive

signal for 2, 4, 6, 7 and 25 of the samples, respectively, out of the

total 112 samples from non-chagasic individuals that were

submitted for antigen- and TcTL-based ELISA. These data

indicated that the recombinant antigens were highly specific for

the detection of anti-T.cruzi antibodies than the whole parasite

(trypomastigote) lysate, and exhibited no cross-reactivity to

Leishmania-specific antibodies.

Pearson correlation analysis was employed to identify correla-

tion between antigen-specific antibody response and disease state

including the data derived from seronegative/healthy controls and

seropositive/chagasic subjects. For this, seronegative/healthy

subjects were labeled as 0, and patients classified as 0, I, II and

III (Materials and Methods) were labeled as 1, 2, 3, and 4,

respectively. Antibody response was titrated using 2-fold sera

dilutions (1:50–1:1600). We observed no significant correlation

between the anti-TcG2, anti-TcG4, anti-TcGmix and anti-TcTL

antibody titration curves and clinical disease category in any of the

patient population (data not shown). The representative correla-

tion data from sera levels of anti-TcGmix and anti-TcTL antibody

response (1:50 dilutions) and clinical disease category for the

clinically characterized Argentine patients enrolled in the study is

shown in Fig. 5. It is worth noting that TcGmix-specific antibodies

exhibited a clear downward trend with patients’ disease severity,

indicating that presence of antibodies for TcG1, TcG2, and TcG4

is protective during progressive Chagas disease (Fig. 5A). No clear

trend or correlation was observed for TcTL specific antibody

response and disease severity in any of the patient population

(Fig. 5B).

Discussion

Serological diagnosis of Chagas disease is frequently based on

tests such as enzyme-linked immunoassays (EIAs), indirect

immunofluorescence assays, and indirect haemagglutination assays

(IHAs). Most of these serological tests, including one recently

licensed by the United States Food and Drug Administration for

use as a blood screening test in the U.S. [21], use crude or semi-

purified T. cruzi epimastigote forms as the antigen, the stage that is

present in insects but not in infected humans. Overall, the current

diagnostics fail to provide a high degree of sensitivity and

specificity, requiring use of multiple tests for diagnosis of T. cruzi

infection [22]. Further, most of the currently available kits produce

questionable results when used for donors with low titers [23]. The

absence of a true gold standard makes it difficult for the medical

practitioners to provide proper treatment as not all cases are

properly identified and treatment response cannot be accurately

monitored. Accordingly, World Health Organization has empha-

sized the need to employ defined antigens for improved

serodiagnosis of T. cruzi infection [24]. However, before an

antigen can be used for diagnostics, several criteria should be met:

(i) the selected candidate antigen(s) should be expressed in isolates

circulating in different areas of endemicity, (ii) antigens should be

highly immunogenic in populations with different genetic back-

ground, (iii) they should be absent from other pathogens to prevent

cross-reactivity, and (iv) easily expressed and purified from

traditional protein expression systems (e.g. E. coli) to ensure

reproducibility and quality control [25]. Because of the complexity

involved in antigen selection and testing, limited progress has been

made towards the development of antigen-based kits for the

diagnosis of T. cruzi infection.

Keeping the above guidelines in mind, we believe that TcG1,

TcG2 and TcG4 are ideal candidates for the development of

diagnostic assays. One, these antigens were previously shown to be

expressed in infective and intracellular forms of clinically relevant

multiple isolates of T. cruzi [7]. Two, the small size of the three

antigens (TcG1: 18.4 kDa, TcG2: 24 kDa, TcG4: 10 kDa) allows

reproducible high-yield purification of the proteins from E. coli

(0.5–1.0 g/L) and is amenable to large-scale production. Three,

the presence of multiple 12-mer B cell epitopes of high specificity

(Table 2) suggests that these antigens will be immunogenic,

Figure 5. Pair-wise correlation analysis. Shown is pair-wise correlation analysis of antibody response to TcGmix (A) and TcTL (B) with clinical
disease category in patients enrolled in the study from Argentina-Bolivia border area. For this, seronegative/healthy subjects were labeled as 0, and
patients classified as 0, I, II and III (Materials and Methods) were labeled as 1, 2, 3, and 4, respectively. Dots, individual subjects.
doi:10.1371/journal.pntd.0002018.g005

Diagnostic Efficacy of T. cruzi Antigens

PLOS Neglected Tropical Diseases | www.plosntds.org 7 January 2013 | Volume 7 | Issue 1 | e2018



recognized by B cells of the immune system, and elicit antibody

response. Indeed, we have found that TcG1, TcG2 and TcG4 are

recognized by antibodies elicited in infected dogs and mice [9,11].

The diagnostic potential of the three antigens in humans was

evident from our analysis of a panel of sera or plasma from chronic

chagasic patients from Argentina-Bolivia and Mexico-Guatemala

border areas. T. cruzi strains of lineages TCV (IId), TCII (IIb) and

TCI were identified in seropositive chagasic patients from

Argentina/Bolivia (Patricio Diosque and Monge Rumi, personal

communication), and of lineage TCI in seropositive subjects from

Mexico/Guatemala (unpublished results). Others have document-

ed the predominance of TCII isolates in peripheral blood of

seropositive patients from South America [16,17,18] and TCI in

Mexico and Guatemala [19,20]. Thus, our data presented in

Figs.1, 2, 3, 4 suggest the diagnostic kit developed using TcG1,

TcG2 and TcG4 will be useful in identifying T. cruzi circulation

and transmission in South, Central and North America.

It is important to note that TcG1, TcG2 and TcG4, when used

individually, exhibited 93.6–96% specificity in detecting anti-T.

cruzi antibody response that was in the range for other

recombinant proteins (e.g. TSSA, CP1 and CP2) proposed for

Chagas disease immunodiagnosis [26,27]. However, 98% speci-

ficity of the TcGmix-based ELISA was much higher than that

observed for single antigens in this study or other recombinant

antigens in other reports [26,28]. Further, TcGmix specificity at

98% was significantly better than that observed with T. cruzi

trypomastigote-based ELISA (77.8%) that is not desirable because

culturing of human-infective form of the pathogen requires special

facilities, technology, and expertise.

Another major concern that is generally not taken into

consideration when one is using serological tests for Chagas

disease is the potential frequency of cross-reactivity. In some areas

of endemicity in Central America and Brazil, where T. cruzi and

the nonpathogenic protozoan Trypanosoma rangeli can be found

infecting the same vectors and vertebrate hosts, cross-reactivity has

been proposed to contribute to miscalculated higher percentage of

T. cruzi transmission and misdiagnosis of patients may have severe

health-related and economic consequences [29,30]. Others have

documented the crude antigen-based serodiagnostic kits exhibit

cross-reactivity between sera of patients infected with T. cruzi and

sera of patients infected with Leishmania spp. [31,32,33]. In our

study, homology searches suggested that only TcG1 is similar to a

ribosomal protein of other trypanosomes (.90% identical) while

TcG2 and TcG4 exhibited no clear paralog in the public

databases (Fig.S1). Thus, to rule out the possibility of cross-

reactivity with Leishmania, we have screened sera samples from

confirmed leishmaniasis patients for antibody cross-reactivity to

TcG1, TcG2 and TcG4. Our data clearly showed that the three

antigens exhibited no cross-reactivity to antibodies generated in

cutaneous, mucocutaneous and visceral leishmaniasis patients,

providing evidence that the antibody response to TcG1, TcG2 and

TcG4 was solely directed by exposure to T. cruzi infection.

Finally, TcGmix-ELISA performed at a higher potency in

discriminating weakly positive samples from background, demon-

strated statistically by calculating the quotient of measured optical

density values divided by the cutoff values. Only 12 of all the

seropositive samples had a quotient smaller than 2.0 in the

TcGmix-ELISA whereas TcG1-, TcG2- TcG4 and TcTL-based

ELISA resulted in 18, 16, 14 and 16 samples below the mean

value. This potency will facilitate diagnosis because weakly positive

results routinely need to be confirmed by alternative assays. Thus,

based upon high sensitivity (93%) and specificity (98%) to sera

from chagasic patients from different endemic countries, we

surmise that TcGmix-based ELISA can serve as a single assay to

determine the T. cruzi status of a given blood sample, and diagnose

Chagas disease. We plan to further standardize the assay for large-

scale screening and establishing the prototype assay for commer-

cial use of the selected antigens for diagnostic kits.

Table 2. B cell epitopes in candidate antigens.

Protein name (Acc# in
Genbank) Protein (aas) Predicted B cell epitopes

Position Epitope Score

TcG1 (AAU47265.1) 166 14 RIIRGPRQDRVG 1

154 VDSKPAAKKRIS 0.947

66 SRNCSTRTLKNV 0.904

127 VFDENDQKKPVS 0.788

109 ERYQLRVAKRSR 0.699

27 VVDIIDGNRVLV 0.667

TcG2 (AAU47266.1) 221 113 FYATDGNAANYT 0.99

144 EKEKTSTNRRSK 0.838

161 YDISGSNTNLCD 0.815

127 AAVDGGVAHRSL 0.793

7 ESGFVPSDGMRR 0.751

190 SVHDSKDVSPQK 0.716

210 EAFRIRLPPLLG 0.715

91 PKHFVAPLNSNS 0.667

TcG4 (AAU47268.1) 91 39 MWVEHQRRLRQE 0.973

1 MSAKAPPKTLHQ 0.958

74 IPTIVPKELHEL 0.542

Linear B cell epitopes (12 amino acid lengths) were predicted using a BCPred tool (http://ailab.cs.iastate.edu/bcpreds/).
doi:10.1371/journal.pntd.0002018.t002

Diagnostic Efficacy of T. cruzi Antigens

PLOS Neglected Tropical Diseases | www.plosntds.org 8 January 2013 | Volume 7 | Issue 1 | e2018



The immune interactions necessary to eradicate T. cruzi

parasites are extremely complex and require both humoral and

cell-mediated components of the immune system. Previous

experimental studies and a few studies in humans indicate that

antibodies are able to kill T. cruzi in the presence of phagocytic

cells, such as macrophages. Others have shown in B cell knockout

mice or mice depleted of B cell function, the pivotal role of

antibody molecules in attaining resistance to T. cruzi infection and

Chagas disease (reviewed in [34]). In this study, the mean antibody

response to TcG1, TcG2 and TcG4 (individually or in combina-

tion) exhibited a downward trend in correlation to clinical disease

severity suggesting that antibody response to the candidate

antigens was protective, though further studies with larger patient

population will be required to validate the significance of this

observation. The experimental data indicating the up regulation of

IgG1 antibodies specific to TcG1, TcG2 and TcG4 [9,11] suggest

that isotypes related to up regulation of opsonization, cell

dependent cytotoxicity and activation of classical complement

pathway are elicited by the candidate antigens, and might be

present in significant levels in seropositive/chagasic individuals.

Considering that the three antigens have been shown to be located

on plasma membrane of trypomastigote/amastigote stages of

T. cruzi by flow cytometry [7], we predict that these will be

available as a target to antibody-dependent cell cytotoxicity

effector mechanisms mediated by IgG1. Indeed, TcG1, TcG2

and TcG4 have been shown to elicit potent trypanolytic antibodies

in accordance with the intensity of the surface expression of these

antigens in infective and intracellular stages (as compared to eight

others tested in similar experiments) [7]. In addition to IgG1,

candidate antigens elicited IgG2b known to drive the type 1

adaptive immunity in experimental mice and dogs [9,11]. High

levels of candidate antigens-induced IgG2b in vaccinated mice

were linked to complement-dependent trypanolytic activity [9].

Patients in the indeterminate phase display higher levels of lytic

antibodies compared with patients with chagasic heart disease

indicating an association between the presence of lytic antibodies

and a protective response in chronic patients [35,36]. This was

also evidenced by absence of lytic antibodies in patients treated

with anti-parasite drugs that displayed negative hemocultures for

over ten years [37]. Based upon these observations, we consider

that activation of IgG2a (along with IgG1) will be an important

attribute that contributes to host protection against T. cruzi

infection and Chagas disease when TcG1, TcG2 and TcG4 will be

tested as vaccine candidates in humans.

In summary, this is the first report identifying the antigenicity of

TcG1, TcG2 and TcG4 in humans. We have concluded that the

three candidate antigens are recognized by IgGs in sera samples of

seropositive/chagasic patients. Further, the candidate antigens

were represented in diverse strains of T. cruzi as the sera samples

from two different endemic areas from the South, Central and

North America recognized the antigens at the same rate. Our data

show the serology test developed using the TcGmix is a significantly

better alternative to epimastigote extracts currently used in T. cruzi

serodiagnosis or the trypomastigote lysate used in this study for

comparison purposes. TcGmix ELISA was .98% specific and

93% sensitive, was not discriminatory of sex, age or geographic

location of the individuals, performed at a higher potency in

identifying weakly positive samples, and, thus, has a potential to

serve as a single assay for the diagnosis of T. cruzi infection. Future

studies with large cohorts of patients will be required to determine

if immunological responsiveness to the three antigens detects with

high confidence the chronicity of infection, severity of disease, and

effectiveness of treatment etc.

Supporting Information

Figure S1 TcG1, TcG2 and TcG4 homology to proteins
in other trypanosomatids. Homology searches were per-

formed using the NCBI BLASTP against nr database to identify

homology for TcG1, TcG2 and TcG4 proteins of T. cruzi in other

trypanosomatids (e.g. Leishmania spp, T. brucei, T. congolense, T. vivax).

Shown are the results from maximum observed homology.
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