
Hindawi Publishing Corporation
Journal of Engineering
Volume 2013, Article ID 435104, 13 pages
http://dx.doi.org/10.1155/2013/435104

Research Article
Particle Swarm Algorithms to Solve Engineering Problems:
A Comparison of Performance

Giordano Tomassetti1 and Leticia Cagnina2

1 ENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati, Italy
2 LIDIC Research Group, Universidad Nacional de San Luis, Ej. de los Andes 950, 5700 San Luis, Argentina

Correspondence should be addressed to Leticia Cagnina; lcagnina@unsl.edu.ar

Received 31 December 2012; Accepted 10 February 2013

Academic Editor: Yangmin Li

Copyright © 2013 G. Tomassetti and L. Cagnina.This is an open access article distributed under theCreativeCommonsAttribution
License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the originalwork is properly cited.

In many disciplines, the use of evolutionary algorithms to perform optimizations is limited because of the extensive number of
objective evaluations required. In fact, in real-world problems, each objective evaluation is frequently obtained by time-expensive
numerical calculations. On the other hand, gradient-based algorithms are able to identify optima with a reduced number of
objective evaluations, but they have limited exploration capabilities of the search domain and some restrictions when dealing with
noncontinuous functions. In this paper, two PSO-based algorithms are compared to evaluate their pros and cons with respect
to the effort required to find acceptable solutions. The algorithms implement two different methodologies to solve widely used
engineering benchmark problems. Comparison is made both in terms of fixed iterations tests to judge the solution quality reached
and fixed threshold to evaluate how quickly each algorithm reaches near-optimal solutions. The results indicate that one PSO
algorithm achieves better solutions than the other one in fixed iterations tests, and the latter achieves acceptable results in less-
function evaluations with respect to the first PSO in the case of fixed threshold tests.

1. Introduction

Optimization is an interesting and crucial aspect in design
processes, particularly those related to real world issues. The
reason for this interest in practical optimization problems has
to be found in the intensive computational effort frequently
needed to evaluate different solutions. The evaluation of a
large number of candidate solutions is sometimes unafford-
able when dealing with extensive CPU times for each calcu-
lation. Many methods have been proposed to solve this kind
of problems such as mathematical programming [1–3] and
nonlinear programming [4–6]. Mathematical programming
algorithms are not always possible to apply because, many
times, the real world problems cannot be transformed into
linear models neither can the nonlinear variables be trans-
formed into polynomial functions. The applicability of Non-
linear Programming algorithms is limited to the availability
of the first- or second-order derivatives of the real-world
problem to solve. However, both kinds of methods constitute
an efficient gradient-based optimization set of algorithms.
These algorithms are strongly influenced by the choice of the
starting points, the number of local optima, and shape of

the peaks that the functions have. They also have difficulties
when dealing with discontinuities and they show a reduced
exploration capability of the search domain with respect to
evolutionary algorithms. The inefficiencies and instability of
these methods have forced researchers to consider another
kind of algorithms such as the recent swarm intelligence (SI)
methods like particle swarm optimization [7] (PSO).

PSO is ametaheuristic based on the observation ofmove-
ment rules followed by a swarm of birds. It has been observed
that movements of each individual are influenced by both the
swarm leader and the personal experience of the agent itself.
This social behaviour has been translated into amathematical
recursive scheme that has proven to be successful in the
search process.

In many engineering design optimizations, direct opti-
mizers, such as PSOs, do not directly call the simulation
but rather evaluate a surrogate of the objective and con-
straints. Such approaches considerably reduce the total num-
ber of simulations required. Although surrogate modeling
is a powerful tool to deal with time-consuming optimiza-
tion problems, a number of drawbacks arise when using

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CONICET Digital

https://core.ac.uk/display/52482948?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Journal of Engineering

metamodels.The sampling techniques should limit the num-
ber of expensive simulations but be able, at the same time,
to estimate the values of constraints and objectives of various
shapes in a large portion of the domain. Many different tech-
niques, algorithms, and interpolating functions have been
proposed to reproduce the real functions. Neural networks
[18], for example, have been widely used for function approx-
imations implemented as meta-models in case of time-
consuming simulations. Anyway, most metamodels include
some sort of surrogate update procedure, thus increasing the
computational effort. These reasons induce the scientific
community to continue to search for effective optimization
algorithms independently from the research going on in
surrogate optimization.

In this paper two hybridized PSO algorithms are evalu-
ated in terms of the computational effort required to solve
real world engineering problems. The comparative study is
made in terms of two stopping criteria based on a fixed
iteration number and a fixed threshold to evaluate the quality
of solutions and the convergence to near-optimal solutions,
respectively.

The paper is organized as follows: Section 2 presents the
basic concepts of the particle swarm optimization meta-
heuristic and the two PSO algorithms used in this study.
Section 3 shows the performance comparison for both algo-
rithms and the conclusions obtained from the study. General
conclusions and future work are stated in Section 4.

2. The Approaches

The approaches used in this paper are described below. The
first, named “simple constrained particle swarm optimiza-
tion” (SiCPSO, for short, developed by the second author),
is based on the classical PSOmodel [19], but it incorporates a
mechanism to handle constraints and a different equation for
updating the positions of particles. The second one, named
“minimized computational effort particle swarm optimiza-
tion” (MCEPSO, for short, developed by the first author), is
also derived from the classical PSO model, but it includes
a number of methodologies aimed to reduce the number of
objective function calculations which often take most of the
CPU time in real world optimization problems.

2.1. Classical PSOModel. The classic PSO algorithm operates
on a population of individuals, named particles. Such particles
consist of vectors of real numbers, and each vector position is
named dimension. The algorithm iterates searching for solu-
tions and saves the best position found so far for the particles
(“global best”, gbest model). The best value reached by each
particle (“personal best”, pbest) is also stored. The particles
evolve using two update formulas, one for the velocity of
particles and another for its position, in the following way:

𝑘
𝑣
𝑖

𝑑
=
𝑘−1
𝑣

𝑖

𝑑
+ 𝑐1𝑟1 (

𝑘
𝑥

pbest
𝑑
−
𝑘
𝑥
𝑖

𝑑
) + 𝑐2𝑟2 (

𝑘
𝑥

gbest
𝑑
−
𝑘
𝑥
𝑖

𝑑
) ,

(1)

𝑘
𝑥
𝑖

𝑑
=
𝑘−1
𝑥
𝑖

𝑑
+
𝑘
𝑣
𝑖

𝑑
, (2)

where 𝑘 is the current iteration at the moment of updat-
ing, 𝑘𝑣𝑖

𝑑
is the velocity of the particle 𝑖 at the dimension

𝑑, 𝑐1 is the personal learning factor, and 𝑐2 is the social
learning factor. 𝑟1 and 𝑟2 are two random numbers within the
range [0, 1], which are used to introduce stochastic values to
determine how much of each factor is added. 𝑘𝑥pbest

𝑑
is the

dimension 𝑑 of the best position reached by the particle 𝑖
at iteration 𝑘 and 𝑘𝑥gbest

𝑑
is the best position reached by any

particle in the entire swarm at iteration 𝑘. 𝑘𝑥𝑖
𝑑
is the value of

the particle 𝑖 at the dimension 𝑑 at iteration 𝑘.
Some modifications to (1) have been proposed with the

goal to alleviate negative effects related to the parameters of
such equation. The concept of the inertia weight 𝑤 [7] was
proposed to reduce strong attractions to the best positions
previously reached, information that is included in the previ-
ous velocity.The following equation shows this modification:

𝑘
𝑣
𝑖

𝑑
= 𝑤
𝑘−1
𝑣
𝑖

𝑑
+ 𝑐1𝑟1 (

𝑘
𝑥
pbest
𝑑
−
𝑘
𝑥
𝑖

𝑑
) + 𝑐2𝑟2 (

𝑘
𝑥
gbest
𝑑
−
𝑘
𝑥
𝑖

𝑑
) ,

(3)

where 𝑤 is usually a value within the range [0, 1] and it is
preferably decreased over the time.

Another modification to (1) considers a constriction
factorX [20] whose goal is to balance global exploration and
local exploitation of the swarm.The following equation shows
this modification:

𝑘
𝑣
𝑖

𝑑
=X [
𝑘−1
𝑣

𝑖

𝑑
+𝑐1𝑟1 (

𝑘
𝑥
pbest
𝑑
−
𝑘
𝑥
𝑖

𝑑
) +𝑐2𝑟2 (

𝑘
𝑥
gbest
𝑑
−
𝑘
𝑥
𝑖

𝑑
)] ,

(4)

whereX has a default value [20] of 0.729, but it could be set
to a different value.

Many other variants have been proposed in order to
increase the exploration step and obtain a fast convergence.
For example, in [21] the authors used a decreasing propor-
tional coefficient and a random exploration velocity, in [22]
the velocity equationwasmodifiedwith the addition of a term
simulating the center of the mass used in the Big Bang-Big
Crunch algorithm, and in [23] the authors presented a PSO
with a learning strategy based on the simulation of the human
social communication behavior. For the same purpose,
SiCPSO and MCEPSO are proposed and described below.

2.2. The SiCPSO Approach. The modifications introduced in
the SiCPSO approach with respect to the classical PSOmodel
are described as follows.

2.2.1. Updating Particles. Previous works [24, 25] presented
a combined equation to updating the positions of particles.
Those used the update equation presented by Kennedy and
Eberhart [26]. Here, a different version of that formula is
employed (shown in (5)), as follows. Instead of using the
common equation (2) (which uses (4) to update the velocity)
in all the iterations, it is selected with a probability of 0.925.
The rest of the time a Gaussian formula depicted in (5) is
used. In this case, the position of each particle is randomly
chosen from a Gaussian distribution with the mean selected
as the average between the best position recorded for the



Journal of Engineering 3

particle and the best in the swarm. The standard deviation
is the difference between these two values:

𝑘
𝑥
𝑖
= 𝑁(

𝑘
𝑥
pbest
+
𝑘
𝑥
gbest

2

,







𝑘
𝑥
pbest
−
𝑘
𝑥
𝑔best



) , (5)

Where 𝑘𝑥𝑖
𝑑
is 𝑖th particle to be updated at iteration 𝑘, 𝑁

is the Gaussian random generator, and 𝑘𝑥pbest and 𝑘𝑥gbest
are, respectively, the best position reached by the 𝑖th particle
at iteration 𝑘 and the best position reached by any particle
in the swarm. The probability of selection adopted (0.925),
was selected after performing a Latin hypercube design [27]
(LHD) study.

2.2.2. Handling Constraints. The constraint-handling meth-
od used in the proposed approach is one of the simplest. It
is based on the following rule: “a feasible particle is preferred
over an infeasible one.” This constraint-handling scheme is
used when the pbest and gbest particles must be chosen
at every iteration of the algorithm. It is carried out after
updating each particle in the swarm and just before selecting
new values for pbest and gbest particles. The method works
as is described below.

(i) If the particle is feasible but its corresponding pbest
was infeasible, then the pbest is updated with the new
value of the particle.

(ii) If the particle is infeasible but its pbest is feasible, then
no change is made.

(iii) If both particle and pbest are infeasible, then the
one closer to the feasible region is chosen. In order
to do that, the algorithm stores the largest violation
obtained for each constraint in each iteration. When
an individual is found to be infeasible, the sum of its
constraints violations (this value is normalized with
respect to the largest violation stored so far) is the one
considered as its distance to the feasible region.

The same process is applied to select the gbest particle at
each iteration of the algorithm.

2.2.3. Keeping Mechanism. The keeping mechanism is
applied to control that all the dimensions in all particles are
within the allowable bounds. Those bounds are determined
by the range (upper and lower limits) of each design variable
corresponding to the problem that the algorithm is solving. If
some particle dimension after the updating process exceeds
the upper limit, that dimension will be reinitialized to the
lower limit corresponding to the design variable that it
represents. Using the lower limit the possibility that in the
next iterations the same dimension exceeds again the upper
limit is reduced.

2.2.4. SiCPSO Pseudocode. Pseudocode 1 shows the pseu-
docode of SiCPSO algorithm.At the beginning of the process,
the vectors of position and velocity of each particle are initial-
ized (lines 2 and 3). After evaluating the particles and obtain-
ing the best values pbest and gbest (lines 4 and 5), the swarm
begins to evolve. During the evolutionary process, new values

(0) SiCPSO:
(1) Swarm Initialization
(2) initialize positions
(3) initialize velocities
(4) Evaluate fitness of each particle
(5) Record pbest for each particle and gbest
(6) Swarm flights through the search space
(7) DO
(8) FOR 𝑖 = 1 TO numberOfparticles DO
(9) FOR 𝑗 = 1 TO numberOfdimensions DO
(10) Update velocities with (4)
(11) IF flip(0.925)
(12) Update particles with (2)
(13) ELSE
(14) Gaussian update with (5)
(15) END
(16) END
(17) END
(18) Keeping particles
(19) Evaluate fitness of each particle
(20) Record pbest and gbest
(21) WHILE(not stop condition)
(22) result=bestOfTheSwarm()
(23) RETURN(result)

Pseudocode 1: Pseudocode of SiCPSO.

of pbest and gbest are chosen and both the velocity and the
position of each particle are updated (lines 6 to 21) until the
stop condition is reached. At line 18, the keeping mechanism
is applied. After that, the particles are evaluated and new
“best” values are recorded (lines 19 and 20). Finally, the best
value reached by the swarm is returned (lines 22 and 23).

2.3.TheMCEPSOApproach. MCEPSO is based on the classi-
cal PSO approach using (3), which uses the concept of inertia
weight to update the velocity of the particles. In MCEPSO,
constraints are classified into “side constraints” and “physical
constraints”. Side constraints (often referred to as “geometri-
cal constraints”) are limitations directly expressed in terms
of upper and lower bounds for the design variables. On the
other hand, physical constraints are restrictions expressed on
quantities that aremore complex functions of the design vari-
ables. Sometimes, physical constraints evaluation may only
be achieved by running some external and time-consuming
programs. Often, however, physical constraints are complex
analytical equations limiting the design space but not requir-
ing any external code to run. In this case, it is possible to order
the different steps required by the optimization process as
follows: firstly, side constraints are quickly calculated because
they are a simple comparison between each particles position
and the bounds; secondly, physical constraints are evaluated
because they are functions of each particles position, but they
do not require time-consuming programs for evaluation; and,
finally, the objective function is evaluated because this very
frequently requires a significant computational effort.

In the development of MCEPSO, the assumption that
constraints are evaluated more quickly than the objective has
been done, as it often happens. In case both constraints and



4 Journal of Engineering

Side
constraints
respected?

Yes

Yes

No

No

Evaluate physical
constraints

Physical
constraints
respected?

Evaluate objective
function

Identification of pbest
and gbest

Fictitious objective function
=

previously calculated objective function
+

penalty function (constraint violation)

Figure 1: MCEPSO flowchart.

objectives are to be evaluated in one simulation, simulation
is run one time only, saving constraints and objectives to be
loaded in different moments of the algorithm execution.

On the basis of these general considerations, MCEPSO
has been structured in order to reduce, as much as possible,
the computational effort of optimizations. As described in
Figure 1, at each iteration and for each particle of the swarm,
MCEPSO firstly evaluates if the particle is within side con-
straints. In case it is not,MCEPSO avoids calculating physical
constraints and the objective function. Instead, it calculates a
fictitious objective functionwhich is the previously calculated
objective function for the last feasible position occupied
by the particle plus a penalty function proportional to the
distance of the nonfeasible present particle’s position from
bounds. On the contrary, if the particle is within side con-
straints, the evaluation of physical constraints is performed. If
physical constraints are infringed,MCEPSO calculates a ficti-
tious objective functionwith a penalty function proportional,
this time, to physical constraints infringement. Otherwise,
just in case both side constraints and physical constraints are
respected, the intensive task of evaluating the objective func-
tion is performed. After this, pbest and gbest are updated and
the objective function values for feasible particles are stored
to be used, in the following iterations, as fictitious objectives
in case that the same particle becomes infeasible. If no values

have yet been stored to be used for infeasible particles to
calculate the fictitious objective, the constraint infringement
term is added to a reference value for the objective function
(an “order of magnitude” of the expected fitness) that the user
should supply. A number of previous numerical tests have
shown an increase of the algorithm efficiency if the penalty
functionweight is gradually increasedwhen the same particle
continues to be infeasible iteration after iteration.

It is important to highlight that, in a large number of
practical engineering optimizations, thementioned approach
avoids impossible rather than intensive calculations. In fact,
very often particles positions represent “parameters” of a
numerical model. In structural optimizations, for example,
some particular combinations of the design variables, even
if respecting side constraints, could lead to nonphysical situa-
tions for which a finite element program crashes, interrupting
then the optimization process. In structural design and in
many other disciplines where optimization is implemented,
physical constraints infringement usually cannot be tolerated
even if the optimization process however requires a fitness
value for each particle to continue. So, an alternative mecha-
nism to supply the optimizer with fitness values for infeasible
particles is needed. And the proposed penalty approach is
thought to force the variables to reenter the design domain
as soon as possible.



Journal of Engineering 5

2.3.1. Handling Constraints. EAs have no implicit mechanism
to deal with constraints. A large number of different method-
ologies have been proposed, but most of them are based on
penalty functions. Penalty functions are added to the objec-
tive function in order to penalize infeasible design pointswith
respect to feasible ones. An efficient way to express a penalty
function is to calculate it in terms of distance from the feasible
space. The penalty function is then added to the objective
function to obtain a fictitious objective value. However, in a
large number of practical optimization problems, troubles are
encountered in using this approach because constraints are
often required to be strictly satisfied.The classical application
is structural optimization in which, for example, a negative
value for a design variable representing an element thickness
is meaningless and could cause the external structural pro-
gram to crash. An obvious alternative to solve this problem is
a penalty term 𝑃(pres𝑋) for the present candidate pres

𝑋 to be
added to the last feasible fitness value 𝑓(last feas𝑋) identified
before the constraint violation, as follows:

𝑓 (
pres
𝑋)

= {

𝑓 (
pres
𝑋) , if pres

𝑋 feasible,
𝑓 (

last feas
𝑋) + 𝑟 ∗ 𝑃 (

pres
𝑋) , if pres

𝑋 infeasible,
(6)

Where pres
𝑋 is the particle position at the present iteration,

𝑓(
last feas

𝑋) is the previous design vector respecting all
constraints, and 𝑟 is a multiplying factor set to amplify
constraint violation in the penalty evaluation. The penalty
function 𝑃(pres𝑋) has the following expression equation:

𝑃 (
pres
𝑋)

=

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

𝑁

∑

𝑖=1

[max (0, 𝑥𝐿
𝑖
−

pres
𝑥𝑖)

2

+min (0, 𝑥𝑈
𝑖
−

pres
𝑥𝑖)

2

] ,

if pres
𝑋 ∉ [𝑋

𝐿
, 𝑋
𝑈
] ,

𝑃

∑

𝑗=1

min (0, 𝑔𝑗(
pres
𝑋))

2

,

if pres
𝑋 ∈ [𝑋

𝐿
, 𝑋
𝑈
] ,

(7)

where 𝑘𝑋𝑗 = [
𝑘
𝑥1

𝑗
,
𝑘
𝑥2

𝑗
, . . . ,
𝑘
𝑥𝑁

𝑗
] is the 𝑗th particle

position at the 𝑘th iteration and 𝑋𝐿 and 𝑋𝑈 are lower and
upper bounds, respectively. In this way, unnecessary (and
sometimes meaningless) fitness calculations are avoided and
an efficient mechanism to force particles to re-enter the
design space is implemented.

3. Performance Comparison

A common choice to understand pros and cons of opti-
mization algorithms is to test them using standard bench-
mark problems. The problems themselves and the respective
numerical settings are selected to be the same used in a large
number of previous studies, in order to concentrate the atten-
tion to the optimization algorithm itself. In this paper, four of

themost widely used benchmark problemswere selected.The
authors established common numerical settings to be able to
compare the results obtained by each one of the two proposed
algorithms.Welded beamdesign (E01), pressure vessel design
(E02), speed reducer design (E03), and tension/compression
spring design (E04) are well-known test problems used in the
evaluation of algorithm performances [10–12, 14, 22]. Mathe-
matical formulations of the four problems used in this study
are reported in the appendix. All the mentioned benchmark
problems are characterized by nonlinear objective functions
and/or nonlinear constraints. Particularly, the benchmark
functions E01–E04 used in the present study are characterized
by a dimensionality varying from 4 to 7. Optimization
algorithms show a different behavior as the search space
dimension increases and more efficient strategies are neces-
sary in order to increase the exploration. Anyway, although
the difficulty of an optimization problem generally increases
with dimensionality,many real-world problems can be solved
by decomposing them into a number of smaller subproblems
involving a limited number of decision variables while con-
sidering the rest as constants [28]. This is why many engi-
neering problems, as in the aerospace sector in which the pre-
sented algorithms were developed, are influenced by groups
of parameters with limited interactions among the groups
themselves. And this is reflected by the selected benchmark
problems E01–E04 that are suitable to be applied as test
functions to represent real-world optimization problems.

Two different kinds of tests were carried out in order to
compare the algorithms’ behaviour, using the same parame-
ters for each test.
SiCPSO:

(i) learning factors: 𝑐1 = 𝑐2 = 1.8,
(ii) constriction factor: X = 0.8 (velocity update based

on (4)),
(iii) probability of Gaussian equation: 0.075.

MCEPSO:

(i) learning factors: 𝑐1 = 2.0; 𝑐2 linearly increased at each
iteration, from 1.0 to 2.0,

(ii) inertia weight: 𝑤 linearly decreased at each iteration,
from 0.9 to 0.4 (velocity update based on (3)).

For both, SiCPSO and MCEPSO, the mentioned numer-
ical settings were established after several empirical tests.

3.1. Fixed Iterations Tests. This test aims to evaluate the
quality of the solutions obtained by the optimizers in terms
of different values: best, mean, worst and standard deviation
over 50 independent runs (executions) for each problem.
The stopping condition for each run is based on the number
of iterations performed. In other words, for each problem
the optimizer run for a fixed number of iterations and the
objective function final value are obtained at the end of each
single run.Then, for statistics purposes, comparing the values
obtained at the final iteration for each of the 50 runs, the best,
the worst, the mean, and standard deviation are calculated.



6 Journal of Engineering

In order to understand the influence of the swarm
size on the performance of each algorithm, the tests were
carried out keeping constant the total number of function
evaluations executed. For real optimization problem, 30000
is a considerable number of function evaluations and for this
reason was adopted in this experimental study.

The results obtained for fixed iterations tests (FIT) are
summarized in Tables 1 and 2. Table 1 shows the best values
obtained for each algorithm after 3000 iterations, considering
a population of 10 particles. Table 2 shows the best values
obtained for each algorithm after 1500 iterations, considering
a population of 20 particles.

From the observations of Tables 1 and 2, it is possible to
note that both algorithms find a “best” solution, over the 50
performed runs, which is very close, or event coincident, to
the optimal values for the benchmark problems, both for 10
and 20 particles.Thebehaviour of the two algorithms is differ-
ent for the “mean” values. MCEPSO performs better for E01
both for 10 and 20 particles, but SiCPSO gives better results
thanMCEPSO for E02. For E03 and E04, both the algorithms
show, more or less, the same results. About the standard
deviation, MCEPSO performs better for E01 for both 10 and
20 particles. But SiCPSOworks better thanMCEPSO for E02.
For E03 and E04, the behaviour of the two algorithms is quite
similar both for 10 and 20 particles. About the “worst” values,
MCEPSO performs better than SiCPSO for E01. On the
contrary, SiCPSO gets lower values than MCEPSO for E02.
For E03 and E04, performances are quite similar. In general,
it is possible to conclude that MCEPSO obtains better results
for E01 while SiCPSO works better for E02. Results obtained
for E03 and E04 are very close for the two algorithms.

It is important to highlight that the initialization tech-
niques used for the algorithms represent an important issue
affecting the values obtained in the very first iterations of each
run. This aspect influences the behaviour of each algorithm
in the first iterations, promoting large differences between
MCEPSO and SiCPSO.

For MCEPSO, the swarm is randomly initialized within
side constraints, but there is no guarantee that the initial
swarm respects physical constraints. Since the constraint-
handling technique adopted for MCEPSO is basically a
penalty function approach, in the very first iterations the
objective value is probably inflated due to physical constraints
infringement (see (6) and (7) and Figure 1). That is, at the
beginning of the search process, MCEPSO has a fitness
enlarged by the penalty term because (probably) the solutions
are not feasible.

The initialization technique used for SiCPSO is similar to
MCEPSO’s; that is, the swarm is randomly initialized within
side constraints. The difference in the very first iterations
could be caused, then, by the constraint-handling technique
adopted for SiCPSO, because if at least one solution is feasible
(or close to a feasible one), the whole swarm is guided quickly
to a feasible zone. In that manner, SiCPSO is able to obtain
feasible solutions at the first search stages.

Tables 3, 4, 5, and 6 show a summary of results of each
engineering problem obtained with the algorithms more
representative of the state of the art in optimization. In the
tables, the first column shows the name of the algorithm and

the second one the number of fitness evaluations (FEs) used
to obtain the best results.The third column shows the number
of different executions (runs) performed by each algorithm.
This value is used to calculate the statistical values: mean and
standard deviation which are shown in columns five (mean)
and six (St. Dev.).The best value and the worst value obtained
by each algorithm considering all the executions are shown in
columns four (best) and seven (worst).

Observing the tables it is possible to conclude that both
SiCPSO and MCEPSO achieve the known best values with
mean and standard deviation values comparable to the state-
of-the-art algorithms for the same engineering problems.

3.2. Fixed Threshold Tests. The second kind of tests carried
out within the present work has been named “fixed threshold
tests” (FTT). Asmentioned before, in these tests, the attention
is focused on the convergence speed which means the quick-
ness, expressed in terms of number of function evaluations,
needed to reduce the objective value below a fixed threshold.
Computing time is considered here less significant than the
function evaluations number because it is machine depen-
dent. These tests have fundamental importance in practical
optimization. The possibility of reaching a quasi-optimal
solution in an affordable number of function evaluations is
crucial when dealing with time-consuming problems. It is
sufficient to highlight to the reader the huge number of design
problems in which optimization cannot be faced because
performance evaluations are obtained by solving complex
physical problems, needing long calculations to get a solution
for each design parameters set. Many studies are contin-
uously done in the field of numerical solution techniques
in order to reduce the computational costs; besides that, a
challenge for evolutionary algorithms is needed to supply
the designer with optimization algorithms requiring only the
number of evaluations strictly needed to get an acceptable
approximation to the optimal solution. In order to measure
the convergence speed of an algorithm, an intuitive choice
could be to fix a quasi-optimal solution and then counting the
number of evaluations needed for reaching a value respecting
that threshold. Repeating such a test for a significant number
of times gives significant statistics to evaluate that previously
defined as convergence speed of the algorithm. In this study,
the threshold was arbitrarily fixed 20% higher than the best
known value for each of the four benchmark problems. Of
course, the choice of a quasi-optimal solution which is 20%
far from the best known optimum has no particular numeri-
cal meaning. It simply represents a reasonable approximation
of the solution that is used, within the present study, to
compare the algorithms behaviour.

It is interesting to note than both algorithms work in
different ways due the mechanisms they have to evaluate the
particles; that is, SiCPSO evaluates fitness and constraints
at the same time for all particles, in each iteration. Instead,
MCEPSO, in an attempt to reduce the number of unnecessary
calculations, evaluates the fitness only if all constraints are
satisfied; otherwise, it avoids the calculation for the current
particle, replacing its true uncalculated fitnesswith a fictitious
one. This is the reason why for the MCEPSO algorithm the
number of fitness evaluations are reported separately with



Journal of Engineering 7

Table 1: FIT: results with 10 particles: 3000 iterations. Statistics over 50 runs.

Pr. Best Best Mean Mean St. Dv. St. Dv. Worst Worst
MCEPSO SiCPSO MCEPSO SiCPSO MCEPSO SiCPSO MCEPSO SiCPSO

E01 1.724852 1.724852 1.7343 2.1871 0.0243 0.4762 1.8811 3.4460
E02 6059.714335 6059.714335 6286.2411 6194.1437 265.6660 143.5273 6820.4147 6424.0662
E03 2996.348166 2996.348165 2996.3495 2996.3481 0.0027 0.0000 2996.3560 2996.3481
E04 0.012665 0.012665 0.0134 0.0136 0.0007 0.0010 0.0156 0.0170

Table 2: FIT: results with 20 particles: 1500 iterations. Statistics over 50 runs.

Pr. Best Best Mean Mean St. Dv. St. Dv. Worst Worst
MCEPSO SiCPSO MCEPSO SiCPSO MCEPSO SiCPSO MCEPSO SiCPSO

E01 1.724852 1.724852 1.7333 1.9590 0.0178 0.2557 1.8043 2.6175
E02 6059.714335 6059.714335 6274.2285 6172.3441 202.7861 140.6302 6820.4101 6410.0867
E03 2996.348165 2996.348165 2996.3482 2996.3481 0.0000 0.0000 2996.3482 2996.3481
E04 0.012666 0.012665 0.0132 0.0133 0.0005 0.0005 0.0146 0.0146

respect to the number of constraints evaluations, while for
the SiCPSO only one value corresponding to fitness and
constraints evaluations is reported in Tables 8 and 9 for each
problem. This performance study is described in two ways:
SiCPSO (FCE: fitness and constraints) evaluations against
MCEPSO fitness evaluations (FEs) and SiCPSO (FCE: fitness
and constraints) evaluations against MCEPSO constraints
evaluations (CEs).

As it was explained before for FIT study, FTT have
also been performed using 10 and 20 particles in order to
understand if there is any influence of the swarm size on the
convergence speed. About the experiments of the algorithms
considering 10 particles, each run stops after executing 3000
iterations or after reaching the stop condition𝑓(x) < 𝐵with x
a feasible solution and𝐵 a threshold determined by the values
in Table 7. The statistics are calculated over 50 complete
runs, with reinitializations of runs if the 3000 iterations were
reached but not the stop condition.

Table 8 shows the values obtained for Problem E01 with
10 particles. SiCPSO obtained a minimum best FCE although
the best value corresponds toMCEPSOwhich is composed by
a low number of fitness evaluations combined with a higher
amount of constraints evaluations. In fact, SiCPSO FCE is
lower than MCEPSO CE (that shows the difficulty of E01 for
MCEPSO) compared with the FE which is quite lower. The
variability of mean values between MCEPSO and SiCPSO
over the 50 runs are similar to the bests; that is, SiCPSOFCE is
higher than FE but lower thanCE (the last ones ofMCEPSO).
The standard deviation value of SiCPSO is slightly higher
compared with those of MCEPSO; the same occurs with the
worst values. That could indicate that SiCPSO presents more
variability; that is, many iterations are needed for finding a
solution that satisfies the stop condition. It is important to
note that SiCPSO stalled in 20 runs (over the 50) so 20 re-
initializations were necessary to obtain a solution. MCEPSO
did not have to repeat any run, possibly because this problem
is more difficult for SiCPSO than for MCEPSO.

The results obtained for E02 with 10 particles (Table 8)
indicate that SiCPSO quickly reached a good solution

obtaining the minimum FCE. MCEPSO needed some more
FE to obtain the best results (in average) and many CEs.That
fact is observed also in the low mean, standard deviation and
worst FCE values obtained by SiCPSO compared with those
(higher) FE values of MCEPSO. It is important to note that
the values corresponding to the constraints evaluations are
higher than those corresponding to the fitness evaluations of
MCEPSO, specially the one corresponding to the worst val-
ues. The last could indicate that for MCEPSO the evaluations
of E02’s constraints are themost difficult part (comparedwith
the evaluation of the function, FE).

Problem E03 with 10 particles (Table 8) seems to be easy
to solve for both algorithms because they could reach the
solution with few FCE. Nevertheless SiCPSO used lower FCE
compared with the CE of MCEPSO although that obtained
the solution with only one evaluation of the objective func-
tion and found that value in the first particle evaluated.
SiCPSO obtained the solution in the first iteration so the
minimum number of FCE is 10 (because all particles were
evaluated).

The minimum FE for E04 with 10 particles (Table 8)
was obtained by MCEPSO (FE and CE) although SiCPSO
obtained lower FCE mean values compared with the CE
mean value of MCEPSO. The higher standard deviation was
obtained by SiCPSO. The worst value of FCE (over the 50
runs)was obtained by SiCPSOwhich states that the algorithm
needed many evaluations in some runs to reach a good
solution comparedwith the lower values ofMCEPSO (FE and
CE). Both algorithms had to repeat a stalled run.

Table 9 shows the results obtained by both algorithms
using 20 particles with 1500 iterations. For Problem E01,
SiCPSO found a solution with a lower number of FCE com-
pared with the higher value of CE of MCEPSO, although the
last algorithm needed a lower number of fitness evaluations
to obtain a solution (FE). The FCE mean of SiCPSO is a
higher value when it is compared with the MCEPSO FE
but not too much different to that of MCEPSO CE value.
SiCPSO obtained a higher standard deviation which states
that the variability of FCE is bigger than that of MCEPSO.



8 Journal of Engineering

Table 3: Results for E01: welded beam design.

Algorithm FEs Runs Best Mean St. Dev. Worst
(𝜇 + 𝜆)-ES1 30000 30 1.724852 1.777692 8.8𝐸 − 2 2.074562
𝜖PSO2 5000 NA 1.7258 1.8073 1.2𝐸 − 1 2.1427
HPSACO3 NA 30 1.724849 1.727564 8.3𝐸 − 3 1.759522
NM-PSO4 80000 30 1.724717 1.726373 3.5𝐸 − 3 1.733393
HEA-ACT5 200000 30 2.380957 2.380971 1.3𝐸 − 5 2.381021
PSOLVER6 297 30 1.724717 1.724717 1.6𝐸 − 11 1.724717
CPSOSA7 2450 30 1.724852 1.724853 1.7𝐸 − 5 1.724861
GABC8 30000 30 1.724 1.763 3.3𝐸 − 2 NA
PSO9 30000 30 1.724897 1.730813 1.0281𝐸 − 2 1.767000
GDA10 20000 20 1.724852 1.724852 0 1.724852
SiCPSO 30000 50 1.724852 1.9590 2.557𝐸 − 1 2.6175
MCEPSO 30000 50 1.724852 1.7333 1.78𝐸 − 2 1.8043
NA stands for not available.
1[8], 2[9], 3[10], 4[11], 5[12], 6[13], 7[14], 8[15], 9[16], and 10[17].

Table 4: Results for E02: pressure vessel design.

Algorithm FEs Runs Best Mean St. Dev. Worst
(𝜇 + 𝜆)-ES1 30000 30 6059.701610 6379.938037 2.1𝐸 + 2 6820.397461

𝜖PSO2 50000 NA 6059.7143 6136.7744 1.123306𝐸 + 2 6410.0868

HPSACO3 NA NA NA NA NA NA
NM-PSO4 NA NA NA NA NA NA
HEA-ACT5 200000 30 NA NA NA NA
PSOLVER6 310 30 6059.7143 6059.7143 4.63𝐸 − 12 6059.7143
CPSOSA7 2450 30 6059.7143 6059.7143 2.26𝐸 − 06 6059.7146
GABC8 30000 30 6059.714 6218.515 1.9𝐸 + 02 NA
PSO9 NA NA NA NA NA NA
GDA10 20000 20 6059.83905683 6149.72760669 2.1077𝐸 + 2 6823.60245024

SiCPSO 30000 50 6059.714335 6172.3441 1.406302𝐸 + 2 6410.0867

MCEPSO 30000 50 6059.714335 6274.2285 2.027861𝐸 + 2 6820.4101

NA stands for not available.
1[8], 2[9], 3[10], 4[11], 5[12], 6[13], 7[14], 8[15], 9[16], and 10[17].

That variability is observed in the high number of SiCPSO
FCE needed to reach a solution in some runs SiCPSO had
to reinitialize 9 runs while MCEPSO only 2 runs. Again,
for Problem E01, SiCPSO presents more difficulties than
MCEPSO in the process to find a solution respecting the
established stop condition established.

For the Problem E02 with 20 particles, SiCPSO obtained
the minimum FCE indicating that it quickly reaches a
solution (see Table 9). MCEPSO needed just some more FEs
and many CEs to obtain the solution. That fact is observed
also in the low mean, standard deviation and worst FCE
values obtained by SiCPSO compared with those (higher)
of MCEPSO. Note that the values corresponding to the
MCEPSO constraints evaluations are higher than those
corresponding to the fitness evaluations, specially those of
the worst values. The last affirmation could indicate that for
MCEPSO the evaluations of constraints of E02 are the most
difficult part to optimize. Also MCEPSO had to re-initialize
3 runs while SiCPSO did not have any.

Table 9 shows the results for Problem E03 with 20
particles. Both algorithms had similar behaviour for that of

the 10-particles case.That is, E03 seems to be easy to solve for
MCEPSO and SiCPSO. They could reach the solution with
few FEs. Nevertheless SiCPSO used lower FCE compared
with those CEs of MCEPSO. In fact, note that MCEPSO
obtained the solution with only one evaluation of the objec-
tive function (FE) and found that value in the first particle
evaluated. Also it is important to observe that 50 evaluations
of constraints were needed to find the best result. SiCPSO
obtained the solution in the first iteration so the minimum
number of FCE is 20; that is, all particles were evaluated.

For Problem E04 with 20 particles, Table 9 shows that
the best values of FE and CE were obtained by MCEPSO
compared with the FCE needed by SiCPSO. The worst value
of FCE (over the 50 runs) was obtained by SiCPSO which
states that the algorithm needed many evaluations in some
run to reach a good solution (compared with the lower values
of MCEPSO) although no run had to be repeated. MCEPSO
had to re-initialize 5 runs.

Concluding this experimental study it is interesting to
observe that SiCPSO obtained better FCE mean values for
all problems with 10 and 20 particles (except for E01 and



Journal of Engineering 9

Table 5: Results for E03: speed reducer design.

Algorithm FEs Runs Best Mean St. Dev. Worst
(𝜇 + 𝜆)-ES1 30000 30 2996.348094 2996.348094 0 2996.348094
𝜖PSO2 NA NA NA NA NA NA
HPSACO3 NA NA NA NA NA NA
NM-PSO4 NA NA NA NA NA NA
HEA-ACT5 200000 30 2994.4991 2994.6134 7.0𝐸 − 2 2994.7523
PSOLVER6 NA NA NA NA NA NA
CPSOSA7 NA NA NA NA NA NA
GABC8 30000 30 2996.783 2996.783 0 2996.783
PSO9 5000 30 3000.8 NA NA NA
GDA10 20000 20 2996.348072 3094.556809 2.448𝐸 − 1 3016.492651
SiCPSO 30000 50 2996.348165 2996.3481 0 2996.3481
MCEPSO 30000 50 2996.348165 2996.3482 0 2996.3482
NA stands for not available.
1[8], 2[9], 3[10], 4[11], 5[12], 6[13], 7[14], 8[15], 9[16], and 10[17].

Table 6: Results for E04: tension/compression spring design.

Algorithm FEs Runs Best Mean St. Dev. Worst
(𝜇 + 𝜆)-ES1 30000 30 0.012689 0.013165 3.9𝐸 − 4 0.014078

𝜖PSO2 NA NA NA NA NA NA
HPSACO3 NA NA NA NA NA NA
NM-PSO4 80000 30 0.00126302 0.0126314 1.5824𝐸 − 05 0.012719
HEA-ACT5 200000 30 0.012665233 0.012665234 1.49𝐸 − 09 0.01266524
PSOLVER6 253 30 0.0126652 0.0126652 2.46𝐸 − 9 0.0126652
CPSOSA7 NA NA NA NA NA NA
GABC8 30000 30 0.126 0.127 2.8𝐸 − 4 NA
PSO9 30000 30 1.724897 1.730813 1.0281𝐸 − 2 1.767000
GDA10 20000 20 0.0126652296 0.0140793687 2.966889𝐸 − 4 0.0128750789
SiCPSO 30000 50 0.012665 0.0133 5.0𝐸 − 4 0.0146
MCEPSO 30000 50 0.012666 0.0132 5.0𝐸 − 4 0.0146
NA stands for not available.
1[8], 2[9], 3[10], 4[11], 5[12], 6[13], 7[14], 8[15], 9[16], and 10[17].

Table 7: Stop condition used in FTT.

Problem Best known Stop condition
𝑓(x∗) 𝑓(x) ≤ 𝑓(x∗) + 20%

E01 1.724852 𝑓(x) ≤ 2.0698
E02 6059.714335 𝑓(x) ≤ 7, 271.7
E03 2996.348165 𝑓(x) ≤ 3595.6
E04 0.012665 𝑓(x) ≤ 0.0152

E04 with 20 particles) if these values are compared with
MCEPSO CE. On the other hand, MCEPSO obtained better
mean FE values for E01, E03, and E04 with 10 and 20 particles
if these values are compared with FCE values of SiCPSO.
These results show a fair bahavior of both algorithms for the
engineering problems studied.

4. Conclusions and Future Work

In this paper, a performance study is presented using
two different PSO-based approaches to solve engineering

optimization problems. The comparison between the
approaches is mainly based on the behaviour observed in
finding acceptable solutions in a reasonable amount of
iterations rather than achieving the best possible optimum
in an unlimited number of calculations. The possibility of
determining an approximation of the optimal solution in
an affordable calculation time is, in fact, crucial in many
disciplines in which optimization is used.

Both algorithms are based on the classical PSO approach
but implementing different methodologies to improve its
performance. In SiCPSO, the position of each particle is
determined with values obtained fromGaussian and uniform
distributions in order to improve the search space exploration
capability. SiCPSO implements a mechanism to handle con-
straints based on the rule that “a feasible particle is preferred
to an unfeasible one.” In MCEPSO, fitness calculation is
performed if and only if all constraints are satisfied; other-
wise a fictitious fitness is determined and used. MCEPSO
also implements a penalty function approach to deal with
constraints. The penalty function is thought to deal with



10 Journal of Engineering

Table 8: FTT: number of evaluations obtained with 10 particles: 3000 iterations. Statistics over 50 complete runs.

Problem Mean Mean St. Dv. St. Dv. Best Best Worst Worst Rep. Runs Rep. Runs
MCEPSO SiCPSO MCEPSO SiCPSO MCEPSO SiCPSO MCEPSO SiCPSO MCEPSO SiCPSO

FE E01 300.7 1061.4 177.9 1070.2 48 130 855 5620 0 20
CE E01 1376.1 814.3 221 3753
FE E02 572.9 193.8 1151.9 62.4 99 30 8337 370 0 0
CE E02 1769.2 3082.1 284 22103
FE E03 13.4 98.4 16.8 50.9 1 10 77 210 0 0
CE E03 537.9 557.2 27 2716
FE E04 166.5 1223.3 247.4 3514.7 11 190 1383 22480 1 1
CE E04 1488.2 1495.5 150 7251

Table 9: FTT: number of evaluations obtained with 20 particles: 1500 iterations. Statistics over 50 complete runs.

Problem Mean Mean St. Dv. St. Dv. Best Best Worst Worst Rep. Runs Rep. Runs
MCEPSO SiCPSO MCEPSO SiCPSO MCEPSO SiCPSO MCEPSO SiCPSO MCEPSO SiCPSO

FE E01 413.9 2292.8 266.3 3904.6 33 140 1340 18320 2 9
CE E01 1804.7 1153.5 176 5294
FE E02 453.8 255.2 166 73.6 83 80 901 400 3 0
CE E02 1421.3 662.1 226 3603
FE E03 13.8 134.4 11.1 71.68 1 20 44 760 0 0
CE E03 287 248.7 50 1730
FE E04 132 3231.6 125.9 5968.6 2 240 746 27720 5 0
CE E04 1147.5 846 40 5083

a large number of engineering problems where constraint
infringement is not tolerable because it represents nonphysi-
cal situations.

On the basis of the experiments performed, it can be
concluded that SiCPSO takes less iterations (in FIT) to
initially decrease the fitness function because MCEPSO is
more influenced by the penalty function when dealing with
nonfeasible particles in the first iterations. In the same tests,
SiCPSO shows higher values of the standard deviation with
respect to MCEPSO. When the algorithms are compared in
terms of number of calculations to converge below a fixed
threshold (in FTT), it is difficult to come to a general conclu-
sion, because MCEPSO incorporates a mechanism to avoid
unneeded fitness calculations. Generally speaking, MCEPSO
achieves acceptable approximations of the optimum in less
FEs but it takes more CEs than SiCPSO. Then, from this
experimental study it is possible to state that both algorithms
represent good alternatives to solve engineering optimization
problems.

Further experiments with other real optimization prob-
lems could be interesting to test the algorithms in order
to determine if the performance of both of them is still
acceptable and comparable. Also, for future research it could
be considered to try to merge the positive aspects of the two
algorithms compared here. An attractive idea could be to
implement in a single algorithm the distinction between fit-
ness and constraint calculations avoiding sometimes impos-
sible evaluations in practical engineering problems, with
the constraint-handling technique used in SiCPSO in order

to avoid the negative drawbacks of the penalty function
approach.

Appendix

Engineering design problems used to test the algorithm
proposed.

E01:Welded BeamDesignOptimization Problem.Theproblem
aims to design a welded beam with minimum cost, subject to
some constraints [29]. Welded beam structure consists of a
beam A and the weld required to hold it to member B. The
objective is to find theminimum fabrication cost, considering
four design variables: 𝑥1, 𝑥2, 𝑥3, 𝑥4 and constraints of shear
stress 𝜏, bending stress in the beam 𝜎, buckling load on the
bar 𝑃𝑐, and end deflection on the beam 𝛿. The optimization
model is summarized in the next equation:

Minimize: 𝑓 (x)

= 1.10471𝑥
2

1
𝑥2 + 0.04811𝑥3𝑥4 (14.0 + 𝑥2)

(A.1)

subject to the following physical constraints:

𝑔1 (x) = 𝜏 (x) − 13600 ≤ 0,

𝑔2 (x) = 𝜎 (x) − 30000 ≤ 0,

𝑔3 (x) = 𝑥1 − 𝑥4 ≤ 0,



Journal of Engineering 11

𝑔4 (x) = 0.10471 (𝑥
2

1
) + 0.04811𝑥3𝑥4 (14 + 𝑥2) − 5.0 ≤ 0,

𝑔5 (x) = 0.125 − 𝑥1 ≤ 0,

𝑔6 (x) = 𝛿 (x) − 0.25 ≤ 0,

𝑔7 (x) = 6000 − 𝑃𝑐 (x) ≤ 0,
(A.2)

with

𝜏 (x) = √(𝜏)2 + (2𝜏𝜏) 𝑥2
2𝑅

+ (𝜏

)
2
,

𝜏

=

6000

√2𝑥1𝑥2

,

𝜏

=

𝑀𝑅

𝐽

,

𝑀 = 6000 (14 +

𝑥2

2

) ,

𝑅 =
√
𝑥
2

2

4

+ (

𝑥1 + 𝑥3

2

)

2

,

𝐽 = 2{𝑥1𝑥2
√2[

𝑥
2

2

12

+ (

𝑥1 + 𝑥3

2

)

2

]} ,

𝜎 (x) = 504000
𝑥4𝑥
2

3

,

𝛿 (x) = 65856000

(30 × 10
6
) 𝑥4𝑥
3

3

,

𝑃𝑐 (x) =
4.013 (30 × 10

6
)√𝑥
2

3
𝑥
6

4
/36

196

×(1 −

𝑥3
√(30 × 10

6
) /4 (12 × 10

6
)

28

) ,

(A.3)

with side constraint: 0.1 ≤ 𝑥1, 𝑥4 ≤ 2.0, and 0.1 ≤ 𝑥2, 𝑥3 ≤
10.0.

Best known solution: 𝑥∗ = (0.205730, 3.470489,

9.036624, 0.205729), where 𝑓(𝑥∗) = 1.724852.

E02: Pressure Vessel Design Optimization Problem.The prob-
lem considers a compressed air storage tank with a working
pressure of 3000 psi and a minimum volume of 750 ft3. A
cylindrical vessel is capped at both ends by hemispherical
heads. Using rolled steel plate, the shell is made in two halves
that are joined by two longitudinal welds to form a cylinder.
The objective is minimize the total cost, including the cost of
the materials forming the welding [30]. The design variables
are thickness 𝑥1, thickness of the head 𝑥2, the inner radius
𝑥3, and the length of the cylindrical section of the vessel 𝑥4.

The variables 𝑥1 and 𝑥2 are discrete values which are integer
multiples of 0.0625 inch. Then, the formal statement is

Minimize: 𝑓 (x) = 0.6224𝑥1𝑥3𝑥4 + 1.7781𝑥2𝑥
2

3

+ 3.1661𝑥
2

1
𝑥4 + 19.84𝑥

2

1
𝑥3,

(A.4)

subject to

𝑔1 (x) = − 𝑥1 + 0.0193𝑥3 ≤ 0,

𝑔2 (x) = − 𝑥2 + 0.00954𝑥3 ≤ 0,

𝑔3 (x) = − 𝜋𝑥
2

3
𝑥
2

4
−

4

3

𝜋𝑥
3

3
+ 1296000 ≤ 0,

𝑔4 (x) = 𝑥4 − 240 ≤ 0,

(A.5)

with side constraints 1×0.0625 ≤ 𝑥1, 𝑥2 ≤ 99×0.0625, 10.0 ≤
𝑥3, and 𝑥4 ≤ 200.0. As 𝑥1 and 𝑥2 deal with integer values, they
are truncated to the nearest integer.

Best known solution: 𝑥∗ = (0.8125, 0.4375, 42.098446,
176.636596), where 𝑓(𝑥∗) = 6059.714335.

E03: Speed Reducer Design Optimization Problem.The design
of the speed reducer [31] is considered with the face width
𝑥1, module of teeth 𝑥2, number of teeth on pinion 𝑥3, length
of the first shaft between bearings 𝑥4, length of the second
shaft between bearings 𝑥5, diameter of the first shaft 𝑥6, and
diameter of the first shaft 𝑥7 (all variables are continuous
except 𝑥3 that is an integer). The weight of the speed reducer
has to be minimized subject to constraints on bending stress
of the gear teeth, surface stress, transverse deflections of the
shafts, and stresses in the shaft. The problem is

Minimize: 𝑓 (x)

= 0.7854𝑥1𝑥
2

2
(3.3333𝑥

2

3
+ 14.9334𝑥3 − 43.0934)

− 1.508𝑥1 (𝑥
2

6
+ 𝑥
2

7
) + 7.4777 (𝑥

3

6
+ 𝑥
3

7
)

+ 0.7854 (𝑥4𝑥
2

6
+ 𝑥5𝑥

2

7
) ,

(A.6)

subject to

𝑔1 (x) =
27

𝑥1𝑥
2

2
𝑥3

− 1 ≤ 0,

𝑔2 (x) =
397.5

𝑥1𝑥
2

2
𝑥
2

3

− 1 ≤ 0,

𝑔3 (x) =
1.93𝑥
3

4

𝑥2𝑥3𝑥
4

6

− 1 ≤ 0,

𝑔4 (x) =
1.93𝑥
3

5

𝑥2𝑥3𝑥
4

7

− 1 ≤ 0,

𝑔5 (x) =
1.0

110𝑥
3

6

√(

745.0𝑥4

𝑥2𝑥3

)

2

+ 16.9 × 10
6
− 1 ≤ 0,



12 Journal of Engineering

𝑔6 (x) =
1.0

85𝑥
3

7

√(

745.0𝑥5

𝑥2𝑥3

)

2

+ 157.5 × 10
6
− 1 ≤ 0,

𝑔7 (x) =
𝑥2𝑥3

40

− 1 ≤ 0,

𝑔8 (x) =
5𝑥2

𝑥1

− 1 ≤ 0,

𝑔9 (x) =
𝑥1

12𝑥2

− 1 ≤ 0,

𝑔10 (x) =
1.5𝑥6 + 1.9

𝑥4

− 1 ≤ 0,

𝑔11 (x) =
1.1𝑥7 + 1.9

𝑥5

− 1 ≤ 0,

(A.7)

with side constraints 2.6 ≤ 𝑥1 ≤ 3.6, 0.7 ≤ 𝑥2 ≤ 0.8, 17 ≤
𝑥3 ≤ 28, 7.3 ≤ 𝑥4 ≤ 8.3, 7.8 ≤ 𝑥5 ≤ 8.3, 2.9 ≤ 𝑥6 ≤ 3.9, and
5.0 ≤ 𝑥7 ≤ 5.5.

Best known solution: 𝑥∗ = (3.500000, 0.7, 17, 7.300000,
7.800000, 3.350214, 5.286683), where 𝑓(𝑥∗) = 2996.348165.

E04: Tension/Compression Spring Design Optimization Prob-
lem. This problem [32, 33] minimizes the weight of a ten-
sion/compression spring subject to constraints of minimum
deflection, shear stress, surge frequency, and limits on outside
diameter and on design variables. There are three design
variables: the wire diameter 𝑥1, the mean coil diameter
𝑥2, and the number of active coils 𝑥3. The mathematical
formulation of this problem is

Minimize: 𝑓 (x) = (𝑥3 + 2) 𝑥2𝑥
2

1
, (A.8)

subject to

𝑔1 (x) = 1 −
𝑥
3

2
𝑥3

7178𝑥
4

1

≤ 0,

𝑔2 (x) =
4𝑥
2

2
− 𝑥1𝑥2

12566 (𝑥2𝑥
3

1
) − 𝑥
4

1

+

1

5108𝑥
2

1

− 1 ≤ 0,

𝑔3 (x) = 1 −
140.45𝑥1

𝑥
2

2
𝑥3

≤ 0,

𝑔4 (x) =
𝑥2 + 𝑥1

1.5

− 1 ≤ 0,

(A.9)

with side constraints 0.05 ≤ 𝑥1 ≤ 2.0, 0.25 ≤ 𝑥2 ≤ 1.3, and
2.0 ≤ 𝑥3 ≤ 15.0.

Best known solution: 𝑥∗ = (0.051690, 0.356750,

11.287126), where 𝑓(𝑥∗) = 0.012665.

Acknowledgment

The research work of the second author is partially funded by
CONICET (Argentina).

References

[1] A. Ben-Tal andA.Nemirovski, “Robust optimization—method-
ology and applications,”Mathematical Programming, vol. 92, no.
3, pp. 453–480, 2001.

[2] D. Bertsimas and M. Sim, “Robust discrete optimization under
ellipsoidal uncertainty sets,” Technical Report Working Paper,
MIT, 2004.

[3] Y. Kanno and I. Takewaki, “Evaluation andmaximization of ro-
bustness of trusses by using semidefinite programming,” in Pro-
ceedings of the 6th World Congress on Structural and Multidisci-
plinary Optimization (WCSMO ’05), J. Herskovits, S. Mazorche,
and A. Canelas, Eds., Rio de Janeiro, Brazil, 2005.

[4] X. Du and W. Chen, “Towards a better understanding of mod-
eling feasibility robustness in engineering design,” Journal of
Mechanical Design, Transactions of the ASME, vol. 122, no. 4,
pp. 385–394, 2000.

[5] D. Indraneel, “Robustness optimization for constrained nonlin-
ear programming problems,” Engineering Optimization, vol. 32,
no. 5, pp. 585–618, 2000.

[6] I. Doltsinis and Z. Kang, “Robust design of structures using
optimization methods,” Computer Methods in Applied Mechan-
ics and Engineering, vol. 193, no. 23–26, pp. 2221–2237, 2004.

[7] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,”
in Evolutionary Computation Proceedings, IEEE World Con-
gress on Computational Intelligence, pp. 69–73, 1998.

[8] E. Mezura-Montes and C. A. Coello Coello, “Useful infeasible
solutions in engineering optimization with evolutionary algo-
rithms,” in Proceedings of the 4th Mexican international Confer-
ence on Advances in Artificial Intelligence (MICAI ’05), pp. 652–
662, Springer, 2005.

[9] T. Takahama and S. Sakai, “Solving constrained optimization
problems by the 𝜀 constrained particle swarm optimizer with
adaptive velocity limit control,” in Proceedings of the IEEE Con-
ference on Cybernetics and Intelligent Systems, pp. 1–7, June 2006.

[10] A. Kaveh and S. Talatahari, “Engineering optimization with
hybrid particle swarm and ant colony optimization,” Asian
Journal of Civil Engineering, vol. 10, pp. 611–628, 2009.

[11] E. Zahara and Y. T. Kao, “Hybrid Nelder-Mead simplex search
and particle swarm optimization for constrained engineering
design problems,” Expert Systems with Applications, vol. 36, no.
2, pp. 3880–3886, 2009.

[12] Y. Wang, Z. Cai, Y. Zhou, and Z. Fan, “Constrained optimi-
zation based on hybrid evolutionary algorithm and adaptive
constraint-handling technique,” Structural and Multidisciplina-
ry Optimization, vol. 37, no. 4, pp. 395–413, 2009.

[13] A. H. Kayhan, H. Ceylan, M. T. Ayvaz, and G. Gurarslan,
“Psolver: a new hybrid particle swarm optimization algorithm
for solving continuous optimization problems,” Expert Systems
with Applications, vol. 37, pp. 6798–6808, 2010.

[14] Y. Zhou and S. Pei, “A hybrid co-evolutionary particle swarm
optimization algorithm for solving constrained engineering
design problems,” Journal of Computers, vol. 5, no. 6, pp. 965–
972, 2010.

[15] M. Tuba, N. Bacanin, and N. Stanarevic, “Guided artificial bee
colony algorithm,” in Proceedings of the 5th European Confer-
ence on European Computing Conference (ECC ’11), pp. 398–
403, World Scientific and Engineering Academy and Society
(WSEAS), Stevens Point, Wisc, USA, 2011.

[16] H. Nahvi and I. Mohagheghian, “A Particle Swarm Opti-
mization algorithm for mixed variable nonlinear problems,”



Journal of Engineering 13

International Journal of Engineering, Transactions A: Basics, vol.
24, no. 1, pp. 65–78, 2011.

[17] A. Baykasoglu, “Design optimization with chaos embedded
great deluge algorithm,” Applied Soft Computing, vol. 12, no. 3,
pp. 1055–1067, 2012.

[18] X. Chen and Y. Li, “Enhance computational efficiency of neural
network predictive control using pso with controllable random
exploration velocity,” in Proceedings of the 4th International
Symposium on Neural Networks: Advances in Neural Networks
(ISNN ’07), pp. 813–823, Springer, 2007.

[19] R. Eberhart and J. Kennedy, “New optimizer using particle
swarm theory,” in Proceedings of the 6th International Sympo-
sium on Micro Machine and Human Science (MHS ’95), pp. 39–
43, October 1995.

[20] M. Clerc and J. Kennedy, “The particle swarm-explosion, sta-
bility, and convergence in a multidimensional complex space,”
IEEE Transactions on Evolutionary Computation, vol. 6, no. 1,
pp. 58–73, 2002.

[21] X. Chen and Y. Li, “A modified PSO structure resulting in
high exploration ability with convergence guaranteed,” IEEE
Transactions on Systems, Man, and Cybernetics B, vol. 37, no. 5,
pp. 1271–1289, 2007.

[22] A. Kaveh, S. Talatahari, and B. Farahmand Azar, “An improved
hpsaco for engineering optimum design problems,” Asian Jour-
nal of Civil Engineering, vol. 12, no. 2, pp. 133–141, 2010.

[23] Y. Liu and B. Niu, “A novel pso model based on simulating
human social communication behavior,” Discrete Dynamics in
Nature and Society, vol. 2012, Article ID 791373, 21 pages, 2012.

[24] L. Cagnina, S. Esquivel, andC. Coello-Coello, “A particle swarm
optimizer for constrained numerical optimization,” in Parallel
Problem Solving from Nature—PPSN IX, T. Runarsson, H. G.
Beyer, E. Burke, J. Merelo-Guervs, L. Whitley, and X. Yao, Eds.,
vol. 4193 of Lecture Notes in Computer Science, pp. 910–919,
Springer, Berlin, Germany, 2006.

[25] L. Cagnina and S. Esquivel, “Global numerical optimization
with a bi-population particle swarm optimizer,” in Proceedings
of the 13rd Congreso Argentino en Ciencias de la Computación
(CACIC ’07), pp. 1452–1463, Corrientes, Argentina, 2007.

[26] J. Kennedy and R. Eberhart, “Bare bones particle swarms,” in
Proceedings of the IEEE Swarm Intelligence Symposium, pp. 80–
89, 2003.

[27] M. D. Mckay, R. J. Beckman, andW. J. Conover, “A comparison
of three methods for selecting values of input variables in the
analysis of output from a computer code,” Technometrics, vol.
42, no. 1, pp. 55–61, 2000.

[28] K. Tang, X. Li, P. N. Suganthan, Z. Yang, and T. Weise, “Bench-
mark functions for the cec’2010 special session and competition
on large-scale global optimization,” Tech. Rep., University of
Science and Technology of China (USTC), School of Computer
Science and Technology, Nature Inspired Computation and
Applications Laboratory (NICAL), Anhui, China, 2010.

[29] K. M. Ragsdell and D. T. Phillips, “Optimal design of a class
of welded structures using geometric programming,” ASME
Journal of Engineering for Industries, vol. 98, no. 3, pp. 1021–1025,
1976.

[30] E. Sandgren, “Nonlinear integer and discrete programming in
mechnical design optimization,” Journal of Mechanisms, Trans-
missions, and Automation in Design, vol. 112, no. 2, pp. 223–229,
1990.

[31] J. Golinski, “An adaptive optimization system applied to
machine synthesis,”Mechanism and MachineTheory, vol. 8, no.
4, pp. 419–436, 1973.

[32] J. Arora, Introduction to Optimum Design, McGraw-Hill, New
York, NY, USA, 1989.

[33] A. Belegundu, A study of mathematical programming methods
for structural optimization [Ph.D. thesis], Department of Civil
Environmental Engineering, University of Iowa, Iowa City,
Iowa, USA, 1982.


