
A Set of Ontology Design Patterns for Reengineering

SBVR Statements into OWL/SWRL Ontologies

E. Reynares1,, M.L. Caliusco1, M.R. Galli1,1

aCIDISI Research Center, UTN Santa Fe, B. Lavaysse 610, S3004EWB Santa Fe,
Argentina

bINGAR-UTN-CONICET, Avellaneda 3657, S3002GJC Santa Fe, Argentina

Abstract

The interest in the use of ontologies for creating more intelligent and effective
enterprise information systems has increased considerably in recent years.
The most critical aspects during the development of these systems are: (1)
to identify the ontology concepts and (2) to make explicit the business rules
by means of the ontology axioms.
In order to address these issues, mappings of business rules expressions to
ontology statements based on different languages were proposed. Despite the
efforts made in this area, some work remain to be done.
This work presents a set of ontology design patterns providing a way to obtain
an OWL/SWRL ontology by applying metamodel transformation rules over
the SBVR specification of a business domain. Patterns are rooted in the
structural specification of the standards, providing a set of mappings readily
usable for business people or developers concerned with the implementation
of a mapping tool. Moreover, translations from SBVR to SWRL language
are presented in order to fill the gap in the expressive power of SBVR and
OWL. The theoretical expressions of patterns are illustrated by means of an
example depicting the core structure of a fictitious company.

Keywords: ontology-driven information systems, ontology design pattern,
SBVR 1.1, OWL 2, SWRL

∗Corresponding author. Address: CIDISI Research Center, UTN Santa Fe, B. Lavaysse
610, S3004EWB Santa Fe, Argentina. Tel.: +54 0342 460 2390 int. 258 sub-int. 106

Preprint submitted to Elsevier December 1, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CONICET Digital

https://core.ac.uk/display/52482918?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

The application of semantic technologies for creating more intelligent and
effective enterprise information systems has increased considerably in recent
years. Ontologies in particular proved to provide strong benefits in a wide
range of settings and applications. For example, ontology reasoners can au-
tomatically prove the consistency of business models (?????). Ontologies
intended to be used at the analysis stage of a software development process
can be generated from main business knowledge sources (??). Ontologies can
also encapsulate the declarative specification of business knowledge into infor-
mation software systems, enabling unambiguous representation of knowledge
and efficient management of highly dynamic environments (?????).
Despite those significant applications, ontology development methodologies
remain to be an open research area. Most methodologies provide neither
enough details about employed techniques and activities nor detailed rec-
ommendations for reusing and reengineering ontologies. Moreover, they opt
for conventional strategies for identifying ontology concepts. New methods
and techniques should be explored to make this process more efficient and
handier for the software engineers, as it plays a critical role in the ontology
designing phase. (?).
Recent works highlight that ontological definitions of concepts in a formal
language do not differ much from descriptions of terms in natural language:
in both cases an expression is constructed by combining symbols according
to grammatical rules (??). Following such insight, some authors have pro-
posed the mapping of business rules expressions to ontology statements as
a building technique (???????). Such approaches are usually rooted in two
languages: (1) the Semantics of Business Vocabulary and Business Rules
(SBVR) and (2) the OWL Web Ontology Language (OWL). SBVR provides
business people with a linguistic way to semantically describe business con-
cepts and specify business rules independently of any information system de-
sign (?). OWL is selected as the receipt language of transformations because
it has evolved as a de-facto standard for a broad spectrum of applications
(?).
A first intent in that direction is explored in ?. The work combines OWL
1 (?) and SWRL expressions (?) to obtain a Platform Independent Model
(PIM) (?) from SBVR 1.0 business vocabulary and rules expressions.? and
? propose a set of transformations rooted in ORM conceptual modeling lan-

2

guage1, which is at the core of the SBVR proposal. ? also depict a tool which
implements translations of a set of ORM 2 constraints into a OWL 2 ontol-
ogy. ? proposes a reversible mapping between SBVR and OWL 2, offering a
way to exchange SBVR vocabularies between tools. An study analysing the
suitability of a subset of the SBVR metamodel for representing OWL 2 on-
tologies is depicted in ?. However, such proposals fails to provide an explicit
representation of the transformations (?), or they states logical foundations
that not be used directly to map SBVR expressions into OWL 2 statements
(??), or they take in account a very small set of the elements usually in-
volved in the stating of complex business rules (?), or they overlook specific
characteristics of the source metamodel of the transformations by following
the opposite direction to that considered in this work. ? and ? present a set
of structural based transformations that allows the automatable generation
of an OWL 2 ontology from SBVR specifications of a business domain. An
experiment aimed at obtaining empirical evidence about the feasibility of
the two latter proposals can be found in ?. Although the experiment stresses
the potential of the approach as an ontology development technique, it also
allows to recognize the need to improve the way the semantics of both meta-
models is reflected (??).
The recent publication of an improved version of SBVR language and the
empirical evidence found by the aforementioned experiment has motivated
the development of this work: it presents a set of ontology design patterns
providing a way to obtain an OWL/SWRL ontology by applying a set of
metamodel transformation rules over SBVR specification of a business do-
main. Transformations are rooted in the structural specification of both
standards rather than theoretical considerations of the language, providing
a set of mappings readily usable for business people or developers concerned
with the implementation of a mapping tool. Although the latest version
of OWL provides a set of constructors which enables the mapping of most
SBVR concepts, the proposal - different from previous work - also includes
some translations from SBVR to SWRL language as a way to fill the gap in
the expressive power of SBVR and OWL.
The rest of this paper is organized as follows. Section ?? presents some con-
ceptual foundations of the design pattern approach and its applications to the

1Object Role Modeling. The official site for conceptual data modeling. Accessible in:
http://orm.net/

3

ontology engineering field. Section ?? and Section ?? provides an overview
of the latest version of SBVR and OWL/SWRL specifications, respectively.
Section ?? presents patterns and illustrates them using an example. Finally,
Section ?? presents some discussions about the addressed topics, while con-
clusions and future research directions are presented in Section ??.

2. Background

This paper presents a set of ontology design patterns providing a way
to obtain an OWL/SWRL ontology by applying a set of metamodel trans-
formation rules over SBVR specification of a business domain. The term
design pattern was originally conceived in the architectural field for naming
a set of shared guidelines that help in solving design problems. Each pat-
tern describes a problem that occurs over and over again in an environment,
and describes the core of the solution to that problem (??). Design patterns
have evolved as a widely accepted notion in the software engineering area
(?) and their applicability has been extended to the ontology engineering
field (?????). In such contexts, the reusable nature of patterns assists with
the modeling of the common issues and improves interoperability by means
of proven solutions also known as best practices. Several experiments have
been performed showing that reusing ODP facilitates the development pro-
cess and improves the quality of the resulting ontology (?). So, the following
definition can be posed according to ? and ?:

Definition 1. An Ontology Design Pattern (ODP) is a modeling solution
aimed at solving a recurrent ontology design problem, which provides (1)
reuse, (2) guidance, and (3) communication benefits.

Moreover, ODPs have been grouped into six families for organization pur-
poses(?):

1. Structural family comprises patterns that are compositions of logical
constructors, solving a problem of expressibility and affecting - inter-
nally or externally - the overall shape of the ontology.

2. Correspondence patterns provide solutions to the problem of transform-
ing a conceptual model into an ontology. Patterns for creating semantic
associations between two existing ontologies also belong to this family.

4

3. Content patterns solve design problems for a specific domain. They
are content dependent, defining an explicit non logical vocabulary for
a specific domain of interest.

4. Reasoning patterns are oriented to obtain certain reasoning results,
based on the behaviour implemented in a reasoning engine, i.e.: classi-
fication, subsumption, inheritance, etc.

5. Presentation patterns deal with usability and readability of ontologies
from a user perspective: they are conceived as good practices that
support the reuse of ontologies by facilitating their evaluation and se-
lection.

6. Lexicon-Syntactic patterns are linguistic structures or schemas that
consist of certain types of words following a specific order, allowing
to generalize and extract some conclusions about the meaning they
express.

Furthermore, ontology design patterns can be separated into either the logical
or the conceptual group. While logical patterns are aimed at solving design
problems independently of any particular conceptualization, conceptual ones
solve design problems for specific domains. Most of the work in the field
has been performed in the conceptual group, proposing a wide spectrum of
content patterns for solving modeling issues in several domains2. Important
contributions to the logical group are presented in ? and ?. OWL 2 repre-
sentations of three patterns - i.e., diamond structures, reification of relations
and sequences of entities - are depicted in ?, also presenting how they can
be applied to various domains. A model, a method, and a technology for
reusing and reengineering non ontological resources when building ontologies
by means of reengineering patterns are presented in ?. However, the pat-
terns are conceived to translate classification schemes, thesauri, and lexica;
and they do not provide support for the mapping of complex expressions in
business rules.
This work is focused on the specification of a set of Schema Reengineering
Patterns, which belong to the aforementioned Correspondence family. A
Schema Reengineering Pattern (SRP) provides a way to obtain an ontol-
ogy by applying a set of metamodel transformation rules over a conceptual
model. The source conceptual model can be either an ontology, a thesaurus
concept, a data model pattern, a UML model, a linguistic structure, etc

2A list of the available ODPs can be found in http://ontologydesignpatterns.org

5

(?). SRPs presented in this paper define a set of rules for the generation
of an OWL/SWRL ontology from SBVR specification of a business domain.
The following subsections provide a brief description of the source and target
metamodels.

2.1. SBVR Overview

SBVR 1.1 is the latest version of a fact-oriented language for modeling
business domain information. It defines the vocabulary and grammar for doc-
umenting the semantics of business vocabularies, business facts, and business
rules by means of a controlled vocabulary readily understandable by business
people. SBVR has a sound theoretical foundation of formal logic: it is based
on first-order predicate logic with extensions into modal logic, i.e., some de-
ontic forms for expressing obligation and prohibition, and alethic forms for
expressing necessities and possibilities.
The fact-oriented approach of SBVR stems from the Business Rules Mani-
festo3 which states that rules are built on facts, and facts are built on concepts
as expressed by terms. In other words, terms express business concepts, facts
make assertions about these concepts, and rules constrain and support these
facts. In this way, the core of SBVR is composed of noun concepts and verb
concepts corresponding to the notions of terms and facts respectively, in ad-
dition to rules as restriction statements.
A noun concept is a concept that is the meaning of a noun or noun phrase,
which is specialized by: (1) general concepts, which are noun concepts classi-
fying things on the basis of their common properties; (2) individual concepts,
which are concepts corresponding to only one object thing and (3) roles,
which are noun concepts corresponding to things based on their playing a
part, assuming a function or being used in some situation. Additionally,
verb concept roles are defined as those roles that specifically characterizes
its instances by their involvement in an instance of a given verb concept. A
verb concept is a concept that is the meaning of a verb phrase that involves
one or more noun concepts. It can be used to represent unary relations -
i.e.,characteristic/unary verb concepts -, binary relations - i.e., binary verb
concept and even n-ary relations. Figure 1 shows the structural organization
of the aforementioned core concepts.
Finally, a SBVR rule is an element of guidance that introduces an obliga-

3http://www.businessrulesgroup.org/brmanifesto.htm

6

tion or a necessity. It is built by imposing restrictions over verb concepts
by means of modalities, quantifiers, and logical operators. All rules have an
associated modality determined by the logical modal operator that functions
explicitly or implicitly as its main operator; i.e.: an alethic modality of ne-
cessity is assumed if no modality is explicitly specified. Consequently, two
fundamental categories of rules can be distinguished: (1) structural rules,
which describe the way chosen by the business to organize the elements it
deals with, and (2) operative rules, which govern the conduct of business ac-
tivity and, in contrast to the structural ones, it can be violated in the affairs
of the business. Table ?? shows the alethic and deontic modal operators that
may be used by rule formulations. Figure 2 and Figure 3 depict quantifiers
and logical operators, respectively.

Modalities and their readings

necessity It is necessary that p
non-necessity It is not necessary that p

alethic possibility It is possible that p
impossibility It is impossible that p
contingency It is possible but not necessary that p
obligation It is obligatory that p
non-obligation It is not obligatory that p

deontic permission It is permitted that p
prohibition It is prohibited that p
optionality It is permitted but not obligatory that p

Table 1: SBVR Modal Operators

2.2. OWL 2 / SWRL Overview

OWL 2 Web Ontology Language (informally OWL 2) is the latest version
of an ontology language for Semantic Web with formally defined meaning ?.
OWL 2 ontologies provide classes, properties, individuals, and data values
and are stored as Semantic Web documents. It has been proposed by World
Wide Web Consortium (W3C) for the development of Semantic Web, but
it has gradually evolved into a de-facto standard for a broad spectrum of
applications.
An OWL 2 ontology is a formal description of a domain of interest interpreted

7

under a standardized semantics and allows useful inferences to be drawn.
Following, the three syntactic categories an OWL 2 ontology is based on are
briefly depicted.

1. Entities such as classes, properties, and individuals. They are the basic
elements of an ontology. For example, a class :Person can be used
to represent the set of all people; the object property :parent-of can
be used to represent the parent-child relationship; and the individual
:Peter can be used to represent a particular person named ‘Peter’.
Figure 4 depicts the structural specification of entities.

2. Expressions, representing complex notions in the described domain. For
example, a class expression describes a set of individuals in terms of the
restrictions on the individuals characteristics. Structural specification
of expressions is depicted in Figure 5.

3. Axioms, which are statements asserted to be true in the described do-
main. For example, a subclass axiom state that the class ‘Boy’ is a
subclass of the class ‘Person’. Figure 6 depicts the structural specifi-
cation of axioms.

OWL 2 ontology language defines several concrete syntaxes that can be used
to serialize and exchange ontologies. Among them, the functional style syntax
is used in the OWL 2 structural specification ? with the aim of stating
the semantics of OWL 2 constructors and allowing a compact writing of
ontologies.
Regarding the semantics of OWL 2, the language provide two different ways
of assigning meaning to ontologies: (1) the Direct Semantics (?) and (2) the
RDF-based Semantics (?). Direct Semantics provides a semantic compatible
with the model theoretic semantics of the SROIQ fragment of Description
Logic (?). However, some syntactic conditions must be imposed over an
ontology structure in order to ensure that it can be interpretable under such
semantic 4. In this case, the reasoning procedures applied over the ontology
are sound - i.e., only correct answers to queries are computed - and complete
- i.e., all correct answers are computed -. “OWL 2 DL” is used informally to
refer to OWL 2 ontologies satisfying the syntactic conditions and interpreted

4A full list of the conditions can be found in http://www.w3.org/TR/2012/REC-owl2-
syntax-20121211/#Ontologies

8

by means of the Direct Semantics. RDF-based Semantics can be applied to
a OWL 2 ontology without the restrictions before mentioned. “OWL 2 Full”
is used informally to refer to OWL 2 ontologies interpreted by means of the
RDF-Based Semantics. Nevertheless, a reasoning procedure applied over an
ontology interpreted under this semantic could not be complete: i.e., it is
not ensured that all correct answers to queries are computed.
The rest of this paper follows the structural specification insight to generate
OWL DL ontologies: it uses the functional style syntax to state OWL 2
ontology expressions, assigning meaning to them by means of the Direct
Semantics.
Semantic Web Rule Language (SWRL) is a proposal aimed at extending the
set of OWL 2 axioms to include Horn-like rules, enabling their combination
with an OWL 2 knowledge base (?). It defines an OWL model theoretic
semantics to provide a formal meaning for OWL ontologies including such
rules.
The rules are of the form of an implication between an antecedent - body -
and consequent - head - . The intended meaning can be read as: whenever
the conditions specified in the body hold, then the conditions specified in
the head must also hold. Both the body and the head consist of zero or
more atoms. An empty antecedent is treated as trivially true - i.e., satisfied
by every interpretation - so the consequent must be also satisfied by every
interpretation. An empty consequent is treated as trivially false - i.e., not
satisfied by any interpretation -, so the antecedent must also not be satisfied
by any interpretation. Multiple atoms are treated as a conjunction. The
rules with conjunctive consequents could be easily transformed into multiple
rules each with an atomic consequent. Atoms in these rules can be of the
form ‘C(x)’, ‘P(x,y)’, ‘sameAs(x,y)’ or ‘differentFrom(x,y)’, where ‘C’ is an
OWL 2 description, ‘P’ is an OWL 2 property, and ‘x’ and ‘y’ are either
variables, OWL 2 individuals, or OWL 2 data values.

3. Schema Reengineering Patterns

The theoretical expressions of the proposed patterns are presented in
the following subsections by grouping and sequencing them according to the
inherent logical order of the subject matter itself. Additionally, the patterns
are illustrated by means of an example depicting the core structure of a
fictitious company named INTCO (Figure 7). The company is organized into
departments, each of which is run by a chief and has a traditional hierarchical

9

organization: each employee is under one boss’s charge and each boss can
be in charge of 25 employees at the most - where employee and boss are
roles played by human resources of the company -. The amount of human
resources working in a given department determines its size. Moreover, a
set of skills and the existence of a senior degree is settled for each human
resource. Interns are a special kind of human resource: they do not have
a senior degree and cannot be the chief of any department. Even though
the example is quite simple, it turns to be complete enough to depict the
usefulness of the proposal5.

3.1. Core Mappings

The present subsection depicts the patterns for the translation of the con-
cepts that constitute the core of SBVR metamodel, which are fundamental
for the definition of the remaining ones.

3.1.1. General Concept

SBVR defines general concept as a “noun concept that classifies things on
the basis of their common properties”. A general concept is mapped to an
OWL 2 class, which is understood as a set of individuals.
Following the presented example, the ‘Human Resource’ general concept -
representing the people working at the company - is mapped to the ‘Human-
Resource’ OWL 2 class.

3.1.2. Unitary Concept

SBVR defines unitary concept as a “noun concept that always has one
instance at the most”. Although such definition corresponds to the widely
known notion of singleton in the Software Engineering field, OWL 2 does
not define a constructor to model concepts with one individual at the most.
However, it is possible to specify a SWRL statement to cover such lack of
expressibility:

Definition 2. SWRL restriction over singleton concepts:
Singleton C(?x), Singleton C(?y) → SameAs (?x, ?y)

5A complete SBVR specification of the example and the full ontology generated by the
application of patterns can be found in https://code.google.com/p/ontology-development-
srp-example/

10

As a consequence, an unitary concept is mapped to an OWL 2 class plus the
above presented SWRL sentence, stating that if more than one individual is
defined for such a class, then those individuals are actually the same.
According to the domain being modeled in the example, the INTCO or-
ganization is the only individual of the ‘Company’ general concept. So, the
existence of individuals belonging to the ‘Company’ OWL 2 class is restricted
by a similar SWRL rule to that of the previous filed: Company(?x), Com-
pany(?y) → SameAs (?x, ?y).

3.1.3. Verb Concept Role

SBVR defines role as a “noun concept that corresponds to things based on
their playing a part, assuming a function or being used in some situation”.
Rooted in that insight, a SBVR verb concept role “is a role that specifically
characterizes its instances by their involvement in an actuality that is an in-
stance of a given verb concept”. A verb concept role is understood as a point
of involvement in actualities that correspond to a verb concept. It incor-
porates characteristics from the verb concept - i.e., what the verb concept
requires of role instances - .
A SBVR verb concept role is mapped to an OWL 2 defined class in terms
of (1) the relationship that provides it with meaning and (2) the general
concept allowed to fill the role. In this way, the verb concept role is reified
as an OWL 2 class defined according to two object properties. The first one
represents the verb concept in which the role is involved. The second one
establishes the role player.
Binary verb concept ‘employee respond to boss’ binary verb concept used in
the example establishes the relation between employee and boss roles, which
are filled by instances of human resources. OWL 2 modeling of such roles by
the application of the proposed pattern is depicted in Figure 8.

3.1.4. Binary Verb Concept

SBVR defines binary verb concept as a “verb concept that has exactly two
roles”. The expressions ‘employee respond to boss’ and ‘human resource has
skill’ are examples of binary verb concepts. The first one establishes the
relation between employee and boss role, while the second one represents the
relation between a human resource and a skill - which is modeled by means
of a string -. As a consequence, the translation of a binary verb concept into
an OWL 2 statement is made according to the type of the involved roles.

11

If the verb concept relates two concepts, then the expression is mapped to an
OWL 2 object property with the corresponding domain and range. There-
fore, binary verb concept ‘employee respond to boss’ is mapped to ‘respond-
to’ OWL object property, with ‘Employee’ OWL 2 class as the domain and
‘Boss’ OWL 2 class as property range.
If the verb concept relates a concept with a literal, then the expression is
mapped to an OWL 2 data property stating that the class representing the
first role is connected to the corresponding datatype. So, binary verb con-
cept ‘human resource has skill’ is mapped to ‘has-skill’ OWL data property,
with ‘Human-Resource’ OWL 2 class as the domain and ‘string’ datatype
as property range.

3.1.5. Characteristic (Unary Verb Concept)

SBVR defines characteristic as a “verb concept that has exactly one role,
an abstraction of a property of an object or a set of objects”. The ‘human
resource has senior degree’ characteristic of the example represents the level
of experience of a given human resource.
A characteristic is mapped to an OWL 2 data property ranging over the
boolean datatype. As a consequence, the ‘human resource has senior degree’
characteristic is mapped to ‘has-senior-degree’ OWL 2 data property, with
‘Human Resource’ OWL 2 class as domain and boolean datatype as property
range.

3.1.6. Individual Concept

SBVR defines individual concept as a “concept that corresponds to only
one object”. ‘John Smith’ is an example of an individual concept representing
the instance with such a name that is a human resource of INTCO company.
An individual concept is mapped to an OWL 2 named individual, e.g., ‘John
Smith’ individual concept is mapped to ‘John Smith’ OWL 2 named indi-
vidual. However, it is important to note that the named individual created
by the application of this pattern does not belong to any particular class,
i.e., a given individual belongs to ‘Thing’ OWL 2 built-in class , which rep-
resents the set of all individuals. Assignment of an individual to a given class
requires a SBVR classification sentence (Section ??).

12

3.1.7. Classification

As shown in Section ??, the assignment of an OWL 2 named individual
to a given class requires a SBVR classification sentence. As a consequence, a
SBVR classification is mapped to an OWL 2 class assertion axiom ‘ClassAs-
sertion(C I)’ stating that a given individual ‘I’ belongs to a given class ‘C’.
Application of this pattern adds semantics to the modeling of an individual
by stating its membership to a particular class.

3.1.8. Atomic Formulation

SBVR defines an atomic formulation as a “logical formulation that is
based on a verb concept and has a role binding of each role”.
Let ‘John Smith respond to Ben Arten’ be an example of an atomic formula-
tion based on the previously defined binary verb concept ‘employee respond
to boss’. The atomic formulation has two role bindings: the first one binds
individual ‘John Smith’ to role ‘employee’ while the second one binds in-
dividual ‘Ben Arten’ to role ‘boss’. Another example is ‘John Smith has
mechanical engineering skills’, being an atomic formulation based on a verb
concept that represents the relation between a human resource and a skill.
As shown in the previous examples, the translation of an atomic formulation
into an OWL 2 statement must take into account the type of the involved
roles. If the verb concept the atomic formulation is based on relates two con-
cepts, then the expression is mapped to an OWL 2 positive object property
assertion ‘ObjectPropertyAssertion(OPE I1 I2)’ stating that individual ‘I1’
is connected by object property expression ‘OPE’ to individual ‘I2’. ‘John
Smith respond to Ben Arten’ formulation is an example of this type.
If the verb concept the atomic formulation is based on relates a concept with
a literal, then the expression is mapped to an OWL 2 positive data property
assertion ‘DataPropertyAssertion(DPE I lt)’ stating that individual ‘I’ is
connected by data property expression ‘DPE’ to literal ‘lt’. ‘John Smith has
mechanical engineering skill’ formulation is an example of this type.

3.2. Logical Operations

SBVR defines logical operation as a “logical formulation that formulates a
meaning based only on the truth or falseness of the meanings of one or more
logical operands, where each logical operand is a logical formulation playing
such a role”. The different kinds of logical operation are described in the
following subsections.

13

The mappings of the main SBVR logical operations - i.e., ‘logical negation’,
‘conjunction’, ‘disjunction’, and ‘equivalence’ operations - are depicted in the
following subsections. The remaining formulations - ‘exclusive disjunction’,
‘nand’, ‘nor’, and ‘whether-or-not’ - are easily translatable by the logical
combination of such mappings.

3.2.1. Logical Negation

SBVR defines logical negation as a “logical operation that has exactly one
logical operand and that formulates that the meaning of the logical operand is
false”. A SBVR logical negation is mapped to an OWL 2 expression accord-
ing to the type of the involved operand.
If the logical operand is verb concept relating concepts, then the formulation
is mapped to an OWL 2 ‘ObjectComplementOf(CE)’ expression, which
comprises all individuals that are not instances of the class expression ‘CE’.
Following the example, the expression‘intern does not have a senior degree’
expression presents a logical negation involving a general concept and a char-
acteristic. The sentence is mapped to the OWL 2 expression ‘ObjectComple-
mentOf(DataHasValue(:has-senior-degree true))’. Indeed, the expression
‘intern is not a chief of department’ presents a logical negation involving two
general concepts related by means of a binary verb concept. Such sentence
is mapped to the OWL 2 expression ‘ObjectComplementOf(ObjectSomeVal-
uesFrom(:is-chief-of :Department))’.
If the logical operand is an atomic formulation relating two individuals, then
the formulation is mapped to an OWL 2 ‘NegativeObjectPropertyAssertion(
OPE I1 I2)’ expression, stating that individual ‘I1’ is not connected by
object property expression ‘OPE’ to individual ‘I2’. The expression ‘Peter
Tomsom not respond to Ben Arten’ - stating that the first individual is not
under the charge of the second one as its boss - is mapped to the OWL 2 ex-
pression ‘NegativeObjectPropertyAssertion(:respond-to :Peter-Tomsom :Ben-
Arten)’
If the logical operand is an atomic formulation relating an individual with
a literal, then the formulation is mapped to an OWL 2 ‘NegativeDataProp-
ertyAssertion(DPE I lt)’ expression, stating that individual ‘I’ is not con-
nected by data property expression ‘DPE’ to literal ‘lt’. Following the exam-
ple, the sentence stating that ‘Peter Tomsom does not have a senior degree’
is mapped to the OWL 2 expression ‘NegativeDataPropertyAssertion(:has-
senior-degree :Peter-Tomsom true)’.

14

3.2.2. Conjunction

SBVR defines conjunction as a “binary logical operation that formulates
that the meaning of each of its logical operands is true”. A SBVR conjunction
is mapped to an OWL 2 expression according to the types of the involved
operands.
If the conjunction is applied over two verb concepts, then the formulation is
mapped to an OWL 2 ‘ObjectIntersectionOf(CE1 CE2)’ expression, which
contains all individuals that are instances of both ‘CE1’ and ‘CE2’ class ex-
pressions. The same mapping is applied if the conjunction is formulated over
two general concepts.
Also, ‘has senior degree and respond to’ is a conjunction example over ‘has
senior degree’ and ‘respond to’ verb concepts. The formulation is mapped
to an object intersection of sentence where each class expression represents
an involved verb concept. In the same way, ‘employee and boss’ expression
comprising all individuals that play both roles is mapped.
If the conjunction is applied over two datatypes containing a set of literals
- e.g., number, string, etc. -, then the formulation is mapped to an OWL
2 ‘DataIntersectionOf(DR1 DR2)’ expression, which contains all tuples of
literals that are contained in both ‘DR1’ and ‘DR2’ data ranges. For exam-
ple, ‘nonNegativeNumbers and NonPositiveNumbers’ formulation that only
contains number zero is mapped to a data intersection of sentence where
data ranges are represented by the corresponding datatypes.

3.2.3. Disjunction

SBVR defines disjunction as a “binary logical operation that formulates
that the meaning of at least one of its logical operands is true”. A SBVR
disjunction is mapped to an OWL 2 expression according to the types of the
involved operands.
If a SBVR disjunction is applied over two verb concepts, then the formula-
tion is mapped to an OWL 2 ‘ObjectUnionOf(CE1 CE2)’ expression, which
contains all individuals that are instances of at least one class expression
‘CEi’. The same mapping is applied if the disjunction is formulated over two
general concepts.
A disjunction example over such verb concepts is the ‘has senior degree or
has skill’ expression. The formulation is mapped to an object union of sen-

15

tence where each class expression represents an involved verb concept. In the
same way, an ‘employee or boss’ expression comprising all individuals that
play any of the two roles is mapped.
If the disjunction is applied over two datatypes containing a set of liter-
als, then the formulation is mapped to an OWL 2 ‘DataUnionOf(DR1 DR2

)’ expression, which contains all tuples of literals that are contained in at
least one data range ‘DRi’. For example, ‘nonNegativeNumbers or Non-
PositiveNumbers’ formulation containing all numbers is mapped to a data
union of sentence where data ranges are represented by the corresponding
datatypes.

3.2.4. Equivalence

SBVR defines equivalence as a “binary logical operation that formulates
that the meaning of its logical operands are either all true or all false”. A
SBVR equivalence is mapped to an OWL 2 expression according to the types
of the involved operands.
If equivalence is applied over two general concepts, then the formulation is
mapped to an OWL 2 ‘EquivalentClasses(CE1 CE2)’ expression, which
states that both ‘CE1’ and ‘CE2’ class expressions are semantically equiv-
alent to each other. Let ‘human resource is equivalent to person’ be an
example of an equivalence among two general concepts, then the formulation
is mapped to OWL 2 ‘EquivalentClasses(:Human-Resource :Person)’ sen-
tence.
If equivalence is applied over two verb concepts relating concepts, then the
formulation is mapped to an OWL 2 ‘EquivalentObjectProperties(OP1 OP2

)’ expression, which states that both ‘OP1’ and ‘OP2’ object property ex-
pressions are semantically equivalent to each other. The formulation ‘respond
to is equivalent to has boss’ is an equivalence example, which is mapped to
OWL 2 ‘EquivalentObjectProperties(:respond-to :has-boss)’ sentence.
If equivalence is applied over two verb concepts relating concepts with literals,
then the expression is mapped to an OWL 2 ‘EquivalentDataProperties(DP1

DP2)’ expression, which states that both ‘DP1’ and ‘DP2’ data property
expressions are semantically equivalent to each other. The formulation ‘has
senior degree is equivalent to is senior” is an equivalence example which is
mapped to OWL 2 ‘EquivalentDataProperties(:has-senior-degree :is-senior
)’ sentence.
If equivalence is applied over two individuals, then the formulation is mapped

16

to an OWL 2 ‘SameIndividual(I1 I2)’ expression, which states that both in-
dividuals ‘I1’ and ‘I2’ are equal to each other. The formulation ‘John Smith
is equivalent to J.S.’ is an equivalence example which is mapped to OWL 2
‘SameIndividual(:John-Smith :J.S.)’ sentence.

3.3. Quantifications

SBVR defines quantifications as “logical formulations introducing a vari-
able and meaning either: all referents of the variable satisfy a scope formula-
tion or a bounded number of referents of the variable exist and satisfy a scope
formulation, if there is one”.
The mappings of the main SBVR quantifications - i.e., ‘universal’, ‘existen-
tial’, ‘at most n’, ‘at least n’, and ‘exactly n’ quantifications - are depicted
in the following subsections. The remaining quantifications - ‘at most one’,
‘exactly one’, and ‘numeric range’ - are easily translatable in terms of such
mappings.

3.3.1. Universal Quantification

SBVR defines universal quantification as a “quantification that scopes
over a logical formulation and that has the meaning: for each referent of the
variable introduced by the quantification the meaning formulated by the logical
formulation for the referent is true”.
If quantification is applied over a verb concept relating concepts, then the
expression is mapped to an OWL 2 ‘ObjectAllValuesFrom(OPE CE)’ ex-
pression, which contains all those individuals that are connected by object
property expression ‘OPE’ only to individuals that are instances of class
expression ‘CE’. The expression ‘works in a given department’ is an univer-
sal quantification example, which states that a human resource works in a
department of the company. Such sentence is mapped to an OWL 2 ‘Objec-
tAllValuesFrom(:works-in :Department)’ statement.
If quantification is applied over a verb concept relating a concept with liter-
als, then the expression is mapped to an OWL 2 ‘DataAllValuesFrom(DPE
DR)’ expression, which contains all those individuals that are connected
by data property expression ‘DPE’ only to literals in data range ‘DR’. The
expression ‘has a given skill’ is an universal quantification example stating
that human resources have a skill. Such sentence is mapped to an OWL 2
‘DataAllValuesFrom(:has-skill string)’ statement.

17

3.3.2. Existential Quantification

An SBVR universal quantification scopes over a logical formulation with
the following meaning: for at least one referent of the variable introduced by
the quantification, the meaning formulated by the logical formulation for the
referent is true.
If quantification is applied over a verb concept relating concepts, then the
expression is mapped to an OWL 2 ‘ObjectSomeValuesFrom(OPE CE)’
expression, which contains all those individuals that are connected by ob-
ject property expression ‘OPE’ to an individual that is an instance of class
expression ‘CE’. The expression ‘is boss of some employee’ is an existential
quantification example, which is mapped to OWL 2 ‘ObjectSomeValuesFrom(
:is-boss-of :Employee)’ statement.
If quantification is applied over a verb concept relating a concept with literals,
then the expression is mapped to an OWL 2 ‘DataSomeValuesFrom(DPE
DR)’ expression, which contains all those individuals that are connected
by data property expression ‘DPE’ to literals in data range ‘DR’. The ex-
pression ‘has some skill’ is an existential quantification example, which is
mapped to OWL 2 ‘DataSomeValuesFrom(:has-skill string)’ statement.

3.3.3. At Most N Quantification

SBVR defines at most n quantification as a “quantification that has a
maximum cardinality ‘n’ - where ‘n’ is a positive integer - and that has the
meaning: the number of distinct referents of the variable introduced by the
quantification that exist and that satisfy a scope formulation, if there is one,
is not greater than the maximum cardinality”.
If quantification is applied over a verb concept relating concepts, then the
expression is mapped to an OWL 2 ‘ObjectMaxCardinality(n OPE CE)’
expression, which contains all those individuals that are connected by object
property expression ‘OPE’ to ‘n’ different individuals at the most, which are
instances of class expression ‘CE’. The expression ‘is boss of 25 employees
at the most’ is a quantification of this type, which is mapped to OWL 2
‘ObjectMaxCardinality(25 :is-boss-of :Employee)’ statement.
If quantification is applied over a verb concept relating a concept with literals,
then the expression is mapped to an OWL 2 ‘DataMaxCardinality(n DPE
DR)’ expression, which contains all those individuals that are connected by
data property expression ‘DPE’ to ‘n’ different literals at the most, in the
data range ‘DR’. The expression ‘has at most 1 size’ is a quantification of

18

this type, which is mapped to an OWL 2 ‘DataMaxCardinality(1 :has-size
integer)’ statement.

3.3.4. At Least N Quantification

SBVR defines at least n quantification as a “quantification that has a
minimum cardinality ‘n’ - where ‘n’ is a positive integer - and that has the
meaning: the number of distinct referents of the variable introduced by the
quantification that exist and that satisfy a scope formulation, if there is one,
is not less than the minimum cardinality”.
If quantification is applied over a verb concept relating concepts, then the
expression is mapped to an OWL 2 ‘ObjectMinCardinality(n OPE CE)’
expression, which contains all those individuals that are connected by object
property expression ‘OPE’ to at least ‘n’ different individuals that are in-
stances of class expression ‘CE’. The expression ‘is boss of at least 1 employee’
is a quantification of this type, which is mapped to OWL 2 ‘ObjectMinCar-
dinality(1 :is-boss-of :Employee)’ statement.
If quantification is applied over a verb concept relating a concept with lit-
erals, then the expression is mapped to an OWL 2 ‘DataMinCardinality(n
DPE DR)’ expression, which contains all those individuals that are con-
nected by data property expression ‘DPE’ to at least ‘n’ different literals
in data range ‘DR’. The expression ‘has at least 1 skill’ is a quantification
of this type, which is mapped to OWL 2 ‘DataMinCardinality(1 :has-skill
string)’ statement.

3.3.5. Exactly N Quantification

SBVR defines exactly n quantification as a “quantification that has a car-
dinality ‘n’ - where n is a positive integer - and that has the meaning: the
number of distinct referents of the variable introduced by the quantification
that exist and that satisfy a scope formulation, if there is one, equals the
cardinality”.
If the quantification is applied over a verb concept relating concepts, then
the expression is mapped to an OWL 2 ‘ObjectExactCardinality(n OPE CE
)’ expression, which contains all those individuals that are connected by ob-
ject property expression ‘OPE’ to exactly ‘n’ different individuals that are
instances of class expression ‘CE’. The expression ‘respond to exactly 1 boss’
is a quantification of this type, which is mapped to OWL 2 ‘ObjectExactCar-

19

dinality(1 :respond-to :Boss)’ statement.
If quantification is applied over a verb concept relating a concept with lit-
erals, then the expression is mapped to an OWL 2 ‘DataExactCardinality(
n DPE DR)’ expression, which contains all those individuals that are con-
nected by data property expression ‘DPE’ to exactly ‘n’ different literals in
data range ‘DR’. The expression ‘has exactly 1 size’ is a quantification of this
type, which is mapped to OWL 2 ‘DataExactCardinality(1 :has-size integer
)’ statement.

4. Discussion

This section presents some considerations about the proposed patterns.
First topic to address is about modalities. As stated in Section ?? - all SBVR
rules have an associated modality. Furthermore, an alethic modality of ne-
cessity is assumed if no modality is explicitly specified; i.e., the rule ‘each
human resource has at least 1 skill’ is equivalent to the alethic rule ‘it is
necessary that each human resource has at least 1 skill’. As a consequence,
even though a pattern for the translation of the alethic modality would not
be initially needed, the alternatives for the ontological modeling of deontic
rules should be explored.
Necessary characteristics of concepts is another important concern: SBVR
structural rules often propose necessary characteristics of concepts as stating
that something is always true about all instances of the concept. However, it
is important not to confuse the use of the word ‘each’ with the specification of
a universal restriction. Such expression implies the definition of a necessary
condition which is modeled as an OWL 2 subclass axiom. So, the statement
SubClassOf(C CE) relates class ‘C’ with its necessary characteristic ‘CE’
modeled as a class expression.
It should be highlighted that there is no mapping for the implication op-
eration in the patterns proposed in Section ??. OWL 2 language does not
provide primitives enabling the modeling of an implication sentence. How-
ever, SWRL language extends OWL 2 by means of Horn-like rules in the
form of an implication between an antecedent and a consequent, providing a
way to express such operation. The modeling of the SWRL restriction over
singleton concepts in Section ?? is an example of an implication sentence.

20

5. Conclusions and Future Work

This paper presents a set of explicitly formalized ontology design pat-
terns, providing a way to obtain an OWL/SWRL ontology by applying a
set of metamodel transformation rules over SBVR specification of a busi-
ness domain. The goal is to provide a ready to use set of transformations
for allowing domain experts to quickly obtain an ontology from a natural
language specification of their knowledge of the domain. Such facility is a
necessary and fundamental intermediate step into the overall research goal
of the authors: to provide an start-to-end environment for the development
of ontology-driven information systems, where the ontologies encapsulate the
declarative specification of business logic, (1) enabling unambiguous repre-
sentation of knowledge, (2) providing reasoning services to the software sys-
tem, and (3) improving the management of highly dynamic environments.
Regarding previous studies in this topic, a first proposal is explored in ?.
However, the mappings between the first versions of SBVR and OWL just
are illustrated by an example. Then, transformations are not explicitly for-
malized and consequently they cannot be generalized for other situations. In
the other hand, the works presented in ? and ? follow a formally grounded
approach by stating the logical foundations of the translations between the
underlying theories of SBVR 1.0 and OWL 2: i.e., from ORM to First Or-
der Logic (FOL). But SBVR does not reflect exactly ORM and OWL 2 is
based in a fragment of FOL. In consequence, ORM to FOL transformations
can not be used directly to map SBVR expressions into OWL 2 statements.
? proposes a reversible mapping between SBVR and OWL 2 with the goal
to allow to map a SBVR vocabulary to OWL 2 statements and back again
without loss of semantic information, offering a way to exchange SBVR vo-
cabularies between tools. However, the proposal considers a very small set
of the elements usually involved in the stating of complex business rules.
An study analysing the suitability of a subset of the SBVR metamodel for
representing OWL 2 ontologies is depicted in ?. Since the analysis follows
the opposite direction to that proposed in this work, specific characteristics
of the source metamodel of the transformations are overlooked. First, the
study does not take into account that the transformation of several SBVR
expressions in OWL 2 statements must be made according to the type of
the involved entities. Secondly, it does not define a way to fill the semantic
gap between SBVR and OWL 2. ? and ? also present a set of structural
based transformations that allows the automatable generation of an OWL

21

2 ontology from SBVR specifications of a business domain. Conducting of
an experiment aimed at obtaining empirical evidence about the feasibility
of such proposals has also allowed to recognize a set of transformations that
could be substantially improved in order to better reflect the semantics of
the involved metamodels(??). The recent publication of an improved version
of SBVR language and the empirical evidence found by the aforementioned
experiment has motivated the development of this work.
Regarding the evaluation of the proposed transformations, a “generate/test”
validation approach has been adopted given the inherently iterative nature
of the design science. While often an optimal solution remains intractable for
realistic problems, an heuristic strategy provides a good design that serves
for business purposes. Such perspective in the finding of a “good” solution
opens the question of how “goodness” can be measured. An alternative for
measuring the goodness of the transformations is to compare the proposed so-
lution with existing artifacts addressing the same problem (?). The valuable
findings obtained by following such approach on the empirical evaluation of
the previous version of the transformations (?) have motivated the adoption
of the same strategy in the assessing of the set of patterns presented in this
paper. A detailed analysis of the experience of several study groups applying
the patterns will be presented in the near future.
Such analysis involved the performing of an ontology quality evaluation task
by means of OQuaRE (??), a framework conceived for that purpose and
based on the SQuaRE standard for software quality evaluation (?). OQuaRE
considers ontologies as artifacts obtained by means of a building process and
evaluates them independently of any particular development process, defin-
ing a quality model divided into a series of dimensions. The set of charac-
teristics scores is the quality assessment result, enabling the identification
of strengths and flaws of an ontology. However, next studies will consider
the incorporation of the proposal of ?: an evaluation framework for the au-
tomatic structural assessment of taxonomic ontologies by means of a set of
formalised metrics. The work presents an algorithmic methodology for build-
ing taxonomies with formally specified content, which the authors claim to
be very valuable in settings where taxonomies are developed on the fly by
non-computer literate users. Beyond that, a formal evaluation method would
provide greater rigour to the proposed patterns. An interesting starting point
for a future work is to ensuring semantic equivalence between the ontology
and the original set of SBVR statement by means of the definition of a co-
morphism between the logics theory underlying both metamodels.

22

Furthermore, it is important to highlight that although the latest version
of OWL provides a set of constructors which enables the mapping of most
SBVR concepts, some important patterns - properties, partitive relations,
associations, categorizations, etc. - are still missing. Then, a short-term fu-
ture work is focused on the definition of patterns for the translation of the
aforementioned SBVR expressions. Introduction of such patterns will also
require the definition of a procedure to enforce the syntactic conditions im-
posed over the produced ontology structure, in order to ensure that it can
be interpretable under the Direct Semantic: i.e., just OWL 2 DL ontologies
should be produced as a way to maintain soundness and completeness of the
reasoning procedures. A medium-term future work is about the analysis of
the benefits of integrating the patterns approach to EDON (?), an evolu-
tionary method for building ontologies intended to be used as an structural
conceptual model of an information system. In a early stage, patterns would
be useful in a method that makes use of ontologies to encapsulate business
rules as a means of raising flexibility, extensibility, and ease in maintaining
of enterprise software systems. The implementation of a prototype that per-
forms the automatable translation of SBVR business domain specifications to
OWL 2 ontologies by implementing the set of proposed patterns is a practical
pursued goal.

Acknowledgements

The authors are grateful to Universidad Tecnológica Nacional (UTN),
Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), and
Agencia Nacional de Promoción Cient́ıfica y Tecnológica (ANPCyT) for their
financial support.

Figure Captions

F1GURE 1. SBVR Core Concepts
F2GURE 2. SBVR Quantifiers
F3GURE 3. SBVR Logical Operations
F4GURE 4. OWL 2 Entities
F5GURE 5. OWL 2 Expressions
F6GURE 6. OWL 2 Axioms
F7GURE 7. General structure of INTCO company
F8GURE 8. Role example

23

