
An Approach for Automating Use Case
Refactoring

Alejandro Rago1,2, Paula Frade2, Miguel Ruival2, Claudia Marcos1,2

1 Instituto Superior de Ingeniería de Software Tandil (ISISTAN), CONICET
Campus Universitario, Paraje Arroyo Seco, B7001BBO, Tandil, Bs. As., Argentina

2 Facultad de Ciencias Exactas (ISISTAN), UNICEN University
Campus Universitario, Paraje Arroyo Seco, Tandil, Bs. As., Argentina

{arago,cmarcos}@exa.unicen.edu.ar - {maripau07,miguebt}@gmail.com

Abstract. Carrying out requirements capture and modeling activities
successfully is not easy, often requiring a thoughtful analysis of clients’
needs and demanding an adequate expertise from analysts. To ensure a
fluid communication among stakeholders, analysts must take advantage
of modeling techniques while describing requirements and exploit reuse
and abstraction practices so as to avoid redundancy (for instance, using
relations between use cases). Unfortunately, these practices are seldom
applied because inspecting requirements such as textual use cases by
hand, looking out for faulty or duplicate functionalities, is a challeng-
ing and error-prone activity. In this context, we introduce an assistive
approach called ReUse that searches redundancy deficiencies in use case
specifications and allows to fix them with relation-based refactorings. Our
approach makes use of text processing and sequence alignment techniques
to discover deficiencies (e.g., duplicate functionality). We have evaluated
ReUse in five case studies, achieving promising results.

Keywords: use case refactoring, sequence alignment, requirement de-
fect, domain classification, requirements engineering

1 Introduction

Successful software projects commonly attain a clear understanding of clients’
needs. Elaborating a “good” requirements specification is a key aspect to achieve
this goal, which permits to describe and thus communicate functionalities of
a system effectively through the software development process [9]. Despite the
experience the industry has gained in the last decades regarding Requirements
Engineering (RE), software companies still have trouble for eliciting, document-
ing and managing requirements. Many projects fail to deliver working software
within time and budget due to poor quality requirements [11]. In general, re-
quirements are specified with textual descriptions written in natural language.
Use cases, for instance, are a widespread and powerful technique to document
requirements. Use cases are simple to communicate [10] and are supported by

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CONICET Digital

https://core.ac.uk/display/52482808?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


guidelines of good practices [5]. Yet, in practice these use cases exhibit a num-
ber of deficiencies, such as: duplicate functionality [4], lack of abstraction [13],
tangled and scattered descriptions [3].

Deficient specifications, apart from being complex to analyze and communi-
cate, entail many problems throughout the software development process. Re-
cently, several researchers have focused on the identification of deficiencies in tex-
tual specifications and the development of mechanisms to solve them [14,19,13].
These mending mechanisms are usually arranged in refactoring catalogues for
requirements. However, applying a catalogue to an existing specification is a re-
sponsibility of the analyst, who must inspect requirements by hand in order to
find potential deficiencies that can (and should) be improved. In this context,
we propose an approach called ReUse that helps analysts to improve use case
specifications. ReUse performs an iterative analysis of textual specifications to
identify potential deficiencies and explores refactoring catalogues to find them a
proper solution for those deficiencies. The approach is implemented in a proto-
type tool that simplifies the interaction of analysts during the improvement of
the requirements. The contributions of this work are two-fold. First, we defined
an iterative approach that progressively improves requirements specifications in
an automated fashion and guides the analysts for searching deficiencies and se-
lecting/executing refactorings. Second, we developed a component to discover
duplicate functionality by combining natural language processing and machine
learning with sequence alignment techniques (generally used in bioinformatics
for genetic research). In order to evaluate the performance of our prototype,
we have performed a series of experiments in five publicly-available case stud-
ies. The results obtained so far are encouraging, correctly detecting most of the
deficiencies and suggesting the right refactorings for fixing them.

The rest of this work is organized as follows. Section 2 reviews related works
that have addressed requirements deficiencies and refactorings. Section 3 intro-
duces our tool approach and describes the organization of its components. Sec-
tion 4 reports the results obtained in the experiments. Finally, Section 5 gives
the conclusions and analyzes future lines of work.

2 Related Work

In the last decade, there has been a growing interest in strategies for improving
the “quality” of requirement specifications. By quality we mean that require-
ments must be clear, unambiguous and essential (i.e., non-redundant). Specifi-
cally, several authors have developed approaches and tools to achieve this goal.
The general schema of requirements improvement can be organized into three
parts: (i) the evaluation (or analysis) of textual specifications, (ii) the identifi-
cation of deficiencies and (iii) the application of refactorings.

On one hand, only a few works have explored the search for deficiencies to
guide and focus the general improvement process of requirement documents.
The most comprehensive study is that of Ciemniewska et al., who developed
techniques to identify defects in use case specifications [4]. Defects are classified in



three levels: specifications, use cases and steps. The specifications level comprises
behavioral duplication. The use cases level comprises use cases that are too short
or too long, complex extensions, among other defects. The steps level comprises
intricate syntactical expressions, actor omissions, among other problems. Despite
this work does not propose refactorings for the defects, it is relevant because it
defines simple heuristics to automatically detect defects in the text.

On the other hand, other works have addressed the definition of refactoring
catalogues. Some of those works formalize the requirements analysis process by
means of the Goal Question Metrics (GQM) method [17]. GQM prescribes the
creation of an evaluation and improvement plan, defining a measurement models
to assess the quality of software products. For instance, Ramos et al. instantiated
the GQM framework for use cases [13]. Their approach, called AIRDoc, allows
to iteratively improve the quality of use cases via evaluations and refactorings.
The approach describes a series of steps that can solve each of the problems.
However, the identification of defects has to be manually made by an analyst.

With similar goals, some works have focused on fixing deficiencies of the
requirements in textual documents. Rui et al. studied the application of refac-
torings to use cases [14]. Their refactorings are described using a meta-model of
use cases. The model comprises concepts at different levels, such as use cases,
textual scenarios and actors, among others. However, the task of determining
“where” and “how” to apply such refactorings in the text is uncertain, and this
responsibility is left to the analysts’ criteria. In the same line, Yu el al. suggested
that to ensure the construction of use cases with a correct granularity and proper
abstraction level, we have to look for “shared” functionality, avoiding duplicate
behavior and promoting reuse relations [19]. To this end, their work introduces
a catalogue of refactorings to solve duplicate functionality in software specifi-
cations. The catalogue makes use of the concept of episodes to operationalize
refactorings. An episode is defined recursively as: a complex behavior that is
composed of more simpler scenarios, or an atomic unit of behavior (i.e., an in-
teraction between an actor and the system). To execute a refactoring, an analyst
has to align the episode model to a particular specification and then make the
transformation required. Similarly to [14], identifying the location of the defects
is out of the scope of Yu’s research.

3 ReUse: an Approach for Refactoring Use Cases

To ease the analysts’ efforts to inspect requirements documentation and ensure
the specifications comply with quality criteria, we propose an iterative approach
that allows to automate the refactoring of use cases. This approach, called ReUse
(Refactoring Assistant for Use Cases), can support the search for deficiencies in
use case specifications in an automated fashion and then assist analysts to mend
the problems found. The ReUse approach receives as input a set of textual use
case specifications and the analyses of early aspects (optionally made with a
third-party tool). In addition to those inputs, the approach also makes use of a
series of artifacts specially developed for ReUse. These artifacts are the quality



measures for use cases and a refactoring catalog. A measure defines the properties
that expose a particular kind of deficiency. The refactoring catalogue contains
solutions to pre-existing deficiencies in use cases.

Fig. 1. Approach for Refactoring Use Cases

The ReUse approach is organized into four main activities that altogether
contribute to the improvement of use cases (see Figure 1). The activity Evalu-
ate Use Case Specification has the objective of finding deficiencies in textual
requirements using quality measures. As output, this activity generates a set of
potential problems, viz. behavioral duplication, lack of abstraction or improper
relations between use cases. The activity Determine Candidate Refactor-
ings has the objective of deducing which refactorings are fit for solving the
problems found earlier. The activity Select Refactoring has the objective
of establishing which of the suggested refactorings is more beneficial in terms of
requirements quality. With this purpose, refactorings are prioritized using sev-
eral factors, producing a “ranking” of refactorings. The ranking is presented to
the analysts, who will then choose either the refactoring with highest priority
or another one according to their personal criteria and expertise. Finally, the
activity Apply Refactoring takes the selected refactoring and executes it on
the textual specification. This means to perform a series of transformations on
the text to systematically mend the deficiency and solve the problem. When a
particular refactoring requires additional information (e.g., the name of a newly
created use case), the analyst is prompted on demand. The output of this last ac-
tivity is a partially-improved use case specification, which constitutes the input
of the next iteration of the approach.

ReUse is implemented as a number of Eclipse plugins, which allow analysts
to intervene in each activity of the iterative process of the approach. Figure 2
shows how the prototype tool displays several deficiencies found in a system. To
better understand the approach, the activities of the approach will be further
explained with an example. Let us consider the following subset of use cases from
an Online Shopping System (Figure 3). The specification of this system consists



Fig. 2. User Interface of the Prototype Tool

of five use cases. The Login use case allows each user, either employee or client,
to identify himself/herself in the system The Add Product and Add Supplier use
cases allow company employees to register new products and suppliers to the
system. Finally, the Buy Product and Cancel Order use cases allow customers
to purchase items and cancel a previous purchase that has not been sent yet. In
the sequel, we describe each activity of the ReUse approach.

Fig. 3. Use Cases of the Online Shopping System



3.1 Evaluate Use Case Specification

This activity collects information from textual specifications that allows to rec-
ognize existing deficiencies. The results of analyzing the use cases are a set
of metrics regarding particular quality goals. For instance, after inspecting the
Login and Cancel Order use cases, ReUse will find evidences of duplicate func-
tionality deficiencies, since both use cases describe the steps required to enter
into the system.

Table 1. Questions and Metrics associated with each Quality Objective

Quality Goal Question Metric

Reuse /

Modifi-

ability

Q1: Are there duplicate portions of functionality?
Are there sections in the specifications that,

although written in different terms, describe the
very same behavior?

M.1.1: Duplicated
functionality blocks

Q2: Are non-functional requirements
encapsulated and well modularized?

M.2.1: Non functional
requirements not modularized

Q3: Are functional requirements encapsulated
and well modularized?

M.3.1: Functional
requirements not modularized

Understand-

ability /

Maintain-

ability

Q4: Are there elements in the model that lack of
value and meaning? Are there use cases that do

not comply with UML semantics?

M.4.1: Wrongly defined or
meaningless actors

M.4.2: Wrongly defined or
meaningless use cases

M.4.3: Inadequate relations
between use cases

Q5: Are requirements specifications simple but
yet representative of user’s needs?

M.5.1: Overly large use cases
M.5.2: Overly short use cases
M.5.3: “Happy” use cases
(without alternative flows)

We chose to instantiate the schema of objectives, questions and metrics pro-
posed by the GQM (Goal-Question-Metric) method [17] for searching deficiencies
in requirements specifications. GQM defines an ordered number of activities for
inspecting software artifacts such as textual use cases, or architectural models,
among others. First, we determined a set of quality goals and accompanying
questions to respond if those goals are fulfilled. We considered two quality goals:
(i) Reuse / Modifiability, that ascertains the level of reuse and support for change
of requirements documents by observing the encapsulation and duplication of in-
formation, and (ii) Understandability / Maintainability, that ascertains the level
of clarity and readability of requirements by observing simplicity and intelligi-
bility markers, as well as the correct use of UML relations in use case models.

For actually discovering whether a quality goal is satisfied, each of its ac-
companying questions came loaded with a set of metrics to answer them (see
Table 1). The metrics also have an associated gathering procedure that indicates
how they should be measured. Those procedures can be rather simple, e.g. eval-



uating the length of a use case, or they can be significantly more complex, e.g.,
determining sections in the document with duplicate functionality descriptions.
The most interesting procedure in ReUse is the one that detects duplicate func-
tionality. Automating this procedure is not easy because software requirements
are written in natural language, bringing along difficulties such as synonyms or
ambiguities, among others. To overcome such obstacles, we combined Machine
Learning (ML) techniques [1,12] with Sequence Alignment (SA) algorithms [16].

Fig. 4. Hierarchy of Domain Actions for Use Cases

The strategy proposed to compare use case steps (that describe interactions
with the system) and thus locate duplication consists of identifying abstractions
in use cases so as to clarify their intention and semantics. An abstraction removes
the particularities of each expression and makes it possible to deal with use
case steps by their intention and not by the terms that define them. Figure 4
depicts the type of categories (i.e., abstractions) that we defined for the use
case domain. Such categories, called Domain Actions (DAs), are arranged in
a hierarchical structure that goes from classes of actions (at roots) to specific
actions (at leaves). DAs are a refinement of the work presented in [15]. Use case
specifications are processed with a previously trained DA classifier, generating a
discretization of every use case step and revealing their “true” semantic meaning.

After classifying the steps, the search for duplicate functionality is performed
by comparing the DAs found in the use cases. For this purpose, DAs of particular
use case sections like a basic flow are assembled in what we called sequences.
Under this new representation, we use a sequence alignment algorithm (provided



Table 2. Refactorings available in ReUse

Refactoring Description Priority

Generate

Inclusion

Relation

Add inclusion relation between two use cases to avoid
duplicate functionality

High

Generate

Extension

Relation

Add extension relation between two use cases to avoid
duplicate functionality

High

Generate

Generalization

Relation

Add generalization relation among use cases
promoting abstraction of shared functionality

High

Extract Early

Aspect

Encapsulates crosscutting concerns related to an early
aspect

Medium

Extract Use Case Divide use case that describes more than one
functional requirements, reducing its complexity

Medium

Unify Use Case Unify several use cases that describe functional
requirements that are very simple, improving the
maintainability of the use case model

Medium

Remove de

Inclusion /

Extension /

Generalization

Relation

Delete a relation that, due to the evolution of
requirements, has lost meaning in the model and does
not comply with use cases semantics (e.g., including a
use case that no other use case includes)

Low

Remove Use Case

/ Actor

Remove an element of the use case model lacking of
meaning, either because it was duplicated or it is
obsolete after requirements evolution

Low

by JAligner3) that, treating use case specifications as DNA chains, computes the
similarity between portions of functionality described in the use cases. The com-
parison made with the algorithm finds the relative position among two sequences
that maximizes their similarity (behaviorally speaking) using a customizable
scoring system. For more information, the reader is referred to [16].

3.2 Determine Candidate Refactorings

The second activity is for determining which instruments (given by use cases)
can mend the deficiencies identified before. To achieve this goal, ReUse analyzes
different kind of refactorings for each problem. A refactoring is a solution for
a particular deficiency that makes sense when certain conditions are met. Our
approach is equipped with a refactoring catalogue derived from related works
[14,18,19]. The same derivation took special care for the (semi)automation of
the improvement process. Table 2 enumerates the list of refactorings available.
Each refactoring has five parts: (i) an application context (i.e., the conditions),

3 http://jaligner.sourceforge.net



(ii) a general description of the solution, (iii) a systematic mechanism to execute
the refactoring (in the text), (iv) a priority, and (v) samples that explain the
refactoring in action. As example, Table 3 gives details on the different parts of
the Generate Inclusion Relation refactoring.

Table 3. Detailed Refactoring: Generate Inclusion Relation

Generate Inclusion Relation

Context There is a portion of functionality duplicated in the basic flows of two or
more use cases, which is not affected by any condition. If in one of the use
cases the duplication covers the complete basic flow, then some special
considerations are made because it is an special case of the refactoring.

Solution Create a new use case encapsulating the duplicate functionality and
generate an inclusion relation from the base use cases to the newly created
one. Finally, remove the duplicated functionality of the base use cases.

Mechanism 1. Create a new use case in which the duplicated functionality is not
encapsulated in some other use case of the model. Reference it as the use
case to be included.
2. Name the use case accordingly.
3. Identify the sequence of use case steps to be removed of each base use
case.
4. Move the use case steps from the base use cases to the included one.
5. Move the actors no longer participating in the base use cases to the
included one, and copy the ones that participate on all of them.
6. Move the alternative flows of the base use cases that are exceptions of
the sequence moved to the included use case.
7. Remove the duplicated use case steps from the base use cases.
8. Generate an inclusion relation between the base and the included use
cases.
9. Modify the specification of the base use cases making an explicit
reference to the included use case.

In order to establish if a refactoring for a particular problem is appropriate,
the approach analyzes the use case model along with the collected metrics and
evaluates if the necessary conditions are satisfied. For instance, observing the
metric that assessed duplicate functionality between use cases it is possible to
suggest a refactoring whose goal is the reuse of functional descriptions, such as
Generate Inclusion Relation. Furthermore, for that refactoring to be appli-
cable, the approach must check that the duplication occurs on basic flows of the
two use cases (a requisite for this kind of relations). As example, Figure 5 shows
an excerpt of two use cases of the Online Shopping System that are considered
for improvement by means of an inclusion refactoring. After the analyses are
done, the he refactorings suggested with ReUse and their impact over the use
cases can be visualized graphically, as depicted in Figure 2.



Fig. 5. Determining Candidate Refactorings in two Use Cases

3.3 Select Refactoring

The third activity in our approach assists analysts to chose some of the suggested
refactoring to mend an individual deficiency in the current iteration. Since cer-
tain deficiencies are more relevant and bring greater benefits in the quality of
requirements specifications, ReUse helps the users of the tool by generating a
ranking of the suggested refactorings. The underlying idea here is that the an-
alysts should probably solve the most important deficiency first. The score of
each refactoring is computed considering two factors: the confidence of detection
of the deficiency and the priority of the problem (obtained from the refactor-
ing). The confidence value indicates the “trust” we have regarding the detection
of repeated chains. In the case of duplicate functionality, the sequence align-
ment algorithm produces information regarding the certainty of the matched
use cases. The priority value is associated to each refactoring, and it indicates
the relevance of the problem address (see Table 2). Moreover, there is specific
information about each refactoring that allows to weight the priority. For ex-
ample, before the execution of a Generate Inclusion Relation refactoring,
we can take into account the percentage of the use case affected by duplication.
Using these parameters, the approach is able to compile a list of refactorings
ranked by importance.

3.4 Apply Refactoring

The fourth activity, which is also the last of the iterative improvement schema
defined in ReUse, has the objective of applying the refactoring selected by an an-
alyst to textual use cases. In order to “execute” the refactoring, the tool searches
the selected refactoring in the catalogue and runs the sequence of steps de-
scribed in its mechanism part. This mechanism transforms a faulty specification
into one of better quality. Considering the previous example, Figure 6 shows
the result of applying the Generate Inclusion Relation refactoring to a
duplicate functionality deficiency. Since the duplication is already encapsulated
within the Login use case, creating a new use case is not necessary (see Figure



Fig. 6. Executing a Use Case Refactoring

5). Regarding the Cancel Order use case, the approach only has to remove the
duplicate use case steps (numbered from 1 to 5) because there are not actors or
alternative flows that need to be deleted. Once these steps are subtracted, an
inclusion relation is added from Cancel Order to Login. This means adding an
explicit reference from the former to the latter use case.

4 Preliminary Evaluation

With the purpose of validating our approach, we conducted a series of exper-
iments with publicly-available cases-studies. The main goal of this preliminary
evaluation was to corroborate the performance of the approach to identify defi-
ciencies (mainly, duplicate functionality) and suggest refactorings to solve them.
The experiments were carried out on five systems, namely: DLibraCRM [4],
MobileNews [4], WebJSARA [4], HWS [8], y CRS [2]. The first three sys-
tems comprise use case specifications that are part of the Software Development
Studio (SDS) project. The use case models of DLibraCRM, MobileNews y
WebJSARA contain 15, 15 and 29 use cases, respectively. The length of the
requirements in these systems is of approximately 13, 12 and 22 textual pages,
respectively. The fourth system is called Course Registration System (CRS) [2],
a distributed system used to manage courses and registrations of a university.
The documentation of CRS contains 8 use cases (approximately 20 pages). The
fifth and last case study is the Health Watcher System (HWS) [8], a web sys-
tem that mediates between citizens and municipal government to attend health-
related topics. The documentation of HWS contains 9 use cases (approximately
19 pages).

For quantifying the performance of the approach, we chose to adapt measures
derived from the Information Retrieval field [12]. Similar experimental assess-
ments have used these measures before [4], observing the values of Precision,
Recall and F-Measure to draw empirical conclusions. In the context of our work,
there are to factors at play: (i) the interpretation of the measures in this exper-
iment, and (ii) the reference solution (baseline) used to compare the outputs of
the tool and so compute the measures. On one hand, Precision gauges the rate of
correct suggestions (TP: true positives) in contrast to incorrect suggestions (FP:
false positives). False positives can be caused by the identification of a deficiency



that actually is not, as well as the recommendation of a wrong refactoring for a
true deficiency. This measure is computed as: Precision = tp

tp+fp . On the other
hand, Recall gauges the rate of correct suggestions (TP) in contrast to the real
number of deficiencies in the case-studies. This means that to compute Recall,
we need to know the deficiencies that the tool omitted (FN: false negatives).
This measure is computed as: Recall = tp

tp+fn .
To prevent biasing the experimentation, we entrusted the analysis of the use

case specifications of the case-studies to four senior functional analysts. They
were in charge of manually inspecting textual documents, identifying faulty
or duplicate requirements in the specifications and deciding which alternatives
would help to improve the use cases. The analysts worked individually and had
approximately eight hours to complete this task. Next, we arranged a meeting
with the analysts, in which they could present their discoveries. After a con-
structive discussion, they reached to a mutual agreement about the deficiencies
in the case-studies. The result of this exercise allowed us to elaborate a refer-
ence solution, that embodies the reasoning of the analysts and permits to make
comparisons and thus compute Precision and Recall.

The evaluation aimed at corroborating if the approach can discover the de-
ficiencies in the use cases, and if it works well on real-world requirements spec-
ifications. The experiments comprised running ReUse in the five case studies,
without taking into account the intervention of human analysts. The deficiencies
and refactorings outputted with the tool were executed progressively, selecting
in each iteration the recommendation at the top of the ranking generated by
the approach. The results of this experiment were compare to the reference so-
lutions of the case-studies. This way, we were able to compute Precision and
Recall. Since the case-studies did not contain simple mistakes, like meaningless
use cases or actors, the evaluation is mainly focused on duplicate functionality.
It is worth noting that during the experiments, we were forced to make some ex-
ceptions regarding the suggestions of the prototype. Particularly, the approach
could identify remarkably similar functional descriptions among two or more
use cases, that did not necessarily indicate the presence of a deficiency. For ex-
ample, use cases that describe interactions about create-retrieve-update-delete
operations (CRUD) are usually written using the same terms, and consequently
our tool marked them as candidate duplicate functionality. For the sake of the
evaluation, we preferred to omit those suggestions in such instances.

Table 4. Experimental Results of ReUse

DLibraCRM MobileNews WebJSARA CRS HWS Total

TP 9 5 12 3 13 43

FP 6 1 10 1 7 25

FN 0 1 6 0 0 7

Precision 0.60 0.83 0.54 0.75 0.65 0.63

Recall 1.00 0.83 0.66 1.00 1.00 0.86



Table 4 summarizes the results of the experiment. The prototype recovered
most of the deficiencies and also recommended the correct refactoring (~85%
recall), without making many mistakes (~65% precision). In some of the case-
studies, like DLibraCRM, CRS and HWS, our tool identified all the deficien-
cies of the specifications, achieving a 100% recall. The deficiencies were com-
plemented with candidate refactorings. The majority of the refactorings recom-
mended were Generate Inclusion Relation, Generate Extension Re-
lation and Unify Use Cases. In MobileNews and WebJSARA, our tool
obtained a ~85% and ~65% recall, respectively. Particularly, we noticed that
the prototype got many FN in WebJSARA. This situation is attributed to
a poor detection of duplicate functionality, which ultimately caused the omis-
sion of some refactorings (mainly, Generate Generalization Relation and
Generate Inclusion Relation).

Regarding precision, the prototype attained acceptable results. In Mobile-
News and WebJSARA, our tool achieved precision values above 75%. In the
rest of the case-studies, the tool got a lightly lower precision than before, av-
eraging a 60%. This drop in precision was caused by a faulty detection of du-
plicate functionality, resulting in an incorrect recommendation of refactorings,
such as Generate Inclusion Relation and Generate Extension Rela-
tion. However, the portion of the use cases mistakenly marked as duplicated
share substantial lexical and semantic similarities (i.e., their terms and domain
actions).

The experiments demonstrated the potential of our prototype. For an as-
sistive RE tool like ours, we think that it is preferable having an acceptable
precision to achieve a high recall. This line of thinking has also been followed
in other evaluations of automated RE tools [6,7]. Nevertheless, it would be in-
teresting to quantify the quality of duplicate functionality identification (i.e.,
boundaries) and the advantages of producing a ranking of refactorings before
recommending the analysts.

5 Conclusions

In this article, we presented an approach called ReUse that facilitates the ana-
lysts’ tasks for assessing the quality of requirements specifications, finding defi-
ciencies and providing means to mend them in a iterative fashion. The approach
is implemented as a prototype tool that supports the analysis of textual use cases
by combining advanced text processing techniques. Specially, ReUse leverages
on a domain-specific classifier (of use cases) to obtain an abstract representa-
tion of the requirements and, using this knowledge, adapts a sequence alignment
technique to search for duplicate functionality. Thereafter, redundant function-
ality is compared with a catalogue of use case refactorings, recommending the
best-suited solutions that allow to (semi-)automatically solve the deficiencies.

We performed a preliminary evaluation with five publicly-available case stud-
ies covering different system domains. The results of the experiments were en-
couraging, achieving a very good Recall and an acceptable Precision. Attaining



a high Recall means that the prototype was able to identify the majority of
the deficiencies in the documents, which is really important from the analysts’
viewpoint. The Precision was significantly lower than Recall, what means that
the tool is prone to make some mistakes identifying deficiencies and recommend-
ing refactorings. Still, we are confident that a human analyst will discard these
mistakes by just taking a quick look at the outputs of ReUse.

Despite the satisfactory results, we could notice some limitations of the ap-
proach during the experiments as well. For instance, the techniques employed
failed to differentiate those behaviors that were similarly written from those
that are actually similar (e.g., CRUD use cases). Furthermore, ReUse some-
times failed to identify well the boundaries of duplicate functionality. As future
work, we are analyzing alternatives to refine the hierarchy of domain actions so
as to better capture the semantics of use cases. Also, we are planning to adjust
the parameters of the sequence alignment technique to improve the detection of
duplicate functionality. Furthermore, we will evaluate the tool with more case
studies to assess the performance of ReUse.

References

1. Baeza-Yates, R., Ribeiro-Neto, B., et al.: Modern information retrieval, vol. 463.
ACM press New York. (1999)

2. Bell, R.: Course registration system. http://sce.uhcl.edu/helm/RUP_course_
example/courseregistrationproject/indexcourse.htm (2011)

3. Chernak, Y.: Building a foundation for structured requirements. aspect-oriented
re explained - part 1. Better Software (January 2009)

4. Ciemniewska, A., Jurkiewicz, J.: Automatic Detection of Defects in Use Cases.
Master’s thesis, Poznan University of Technology (2007)

5. Cockburn, A.: Writing effective use cases, vol. 1. Addison-Wesley Reading (2001)
6. Cuddeback, D., et al.: Automated requirements traceability: The study of human

analysts. In: 18th IEEE Int. Req. Eng. Conf. pp. 231 –240 (October 2010)
7. Dekhtyar, A., et al.: On human analyst performance in assisted req. tracing: Sta-

tistical analysis. In: 19th IEEE Int. Req. Eng. Conf. pp. 111 –120 (2011)
8. Greenwood, P.: Tao: A testbed for aspect oriented software development. http:

//www.comp.lancs.ac.uk/~greenwop/tao/ (2011)
9. Hull, E., Jackson, K., Dick, J.: Requirements Engineering. Springer (2010)
10. Jacobson, I., et al.: The unified software development process. A-W (1999)
11. Kamata, M.I., Tamai, T.: How does req. quality relate to project success or failure?

In: Procs. of the 15th IEEE Int. Req. Eng. Conf. pp. 69–78 (2007)
12. Manning, C., et al.: Introduction to Information Retrieval. CUP (2008)
13. Ramos, R., et al.: Quality improvement for use case model. In: SBES’09. pp. 187–

195. IEEE (2009)
14. Rui, K., Butler, G.: Refactoring use case models: the metamodel. In: Procs. of the

26th Australasian Computer Science Conf. pp. 301–308 (2003)
15. Sinha, A., et al.: An analysis engine for dependable elicitation of natural language

use case description and its application to industrial use cases. IBM Report (2008)
16. Smith, T., Waterman, M.: Identification of common molecular subsequences. Jour-

nal of Molecular Biology 147(1), 195 – 197 (1981)

http://sce.uhcl.edu/helm/RUP_course_example/courseregistrationproject/indexcourse.htm
http://sce.uhcl.edu/helm/RUP_course_example/courseregistrationproject/indexcourse.htm
http://www.comp.lancs.ac.uk/~greenwop/tao/
http://www.comp.lancs.ac.uk/~greenwop/tao/


17. Van Solingen, R., Berghout, E.: The Goal/Question/Metric Method: a practical
guide for quality improvement of software development. McGraw-Hill (1999)

18. Xu, J., Yu, W., Rui, K., Butler, G.: Use case refactoring: a tool and a case study.
In: 11th APSE Conf. pp. 484–491. IEEE (2004)

19. Yu, W., Li, J., Butler, G.: Refactoring use case models on episodes. In: Procs. of
the 19th Int. Conf. on Aut. Soft. Eng. pp. 328–335. IEEE (2004)


	An Approach for Automating Use Case Refactoring
	Introduction
	Related Work
	ReUse: an Approach for Refactoring Use Cases
	Evaluate Use Case Specification
	Determine Candidate Refactorings
	Select Refactoring
	Apply Refactoring

	Preliminary Evaluation
	Conclusions


