

CHEMISTRY A European Journal

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2015

Total Synthesis and Absolute Configuration Assignment of MRSA Active Garcinol and Isogarcinol

Cecilia Socolsky^[a] and Bernd Plietker^{*[b]}

chem_201406077_sm_miscellaneous_information.pdf

Total Synthesis and Absolute Configuration Assignment of MRSA-active Garcinol and Isogarcinol

Cecilia Socolsky and Bernd Plietker*

Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, DE-70569 Stuttgart, Germany. Fax: (+49) 711 685 642 69. E-mail: bernd.plietker@oc.uni-stuttgart.de. Homepage: www.plietker-group.de

Part I	
Experimental procedures	S- 2
Dert II	
Parti	
NMR-Spectra	S- 5
Dort III	
X-ray data	S- 16
Dort IV/	
Partiv	
Computational details	S- 33

Experimental procedures

Preparation of compound 7:^[1]

To a cold solution (0 °C) of isoprene (4 mL, 40 mmol, 1 eq.) in 120 mL of $CH_2Cl_2 mCPBA$ 75% (9.36 g, 40 mmol, 1 eq.) was added slowly. After the addition was complete, the reaction mixture was allowed to warm to room temperature and was further stirred for 8 h. Then, it was washed with 1N NaOH solution (120 mL), and dried over Na₂SO₄. The resulting solution was dissolved in 60 mL of CH₃CN. Then, LiCl (1.7 g, 40 mmol, 1eq.) and acetyl chloride (3.77 g, 48 mmol, 1.2 eq.) were added successively. The slurry mixture was stirred at room temperature for 48 h, diluted with water and extracted with Et₂O. The combined organic layers were washed with NaHCO₃ (sat.), dried over Na₂SO₄, and the solvent was removed. The residue was filtered through a plug of silica gel using *n*-pentane-Et₂O (10:1) to afford a slightly yellow liquid as a mixture of isomers (64 % yield; 2.7 : 1.4 : 1).

¹**H NMR**: (CDCl₃, 300 MHz) δ 5.64 (1H, brt, J = 8.1 Hz), 4.62 (2H, s), 4.13 (2H, d, J = 8.1 Hz), 2.07 (3H, s), 1.82 (3H, brs); ¹³**C NMR**: (CDCl₃, 75 MHz) δ 170.9, 136.3, 125.7, 62.3, 39.7, 21.6, 21.0; **HR-ESI-MS**: *m/z* calculated for $[C_7H_{11}O_2^{35}CINa]^+/[C_7H_{11}O_2^{37}CINa]^+$: 185.0345/187.0316, found: 185.0325/ 187.0291.

¹**H NMR**: (CDCl₃, 300 MHz) δ 5.99 (1H, dd, J = 17.2, 10.6 Hz), 5.36 (1H, d, J = 17.2 Hz), 5.21 (1H, d, J = 10.6 Hz), 4.25 (1H, d, J = 11.5 Hz), 4.20 (1H, d, J = 11.5 Hz), 2.10 (3H, s), 1.68 (3H, s); ¹³**C NMR** (CDCl₃, 75 MHz) δ 170.4, 139.4, 115.7, 70.6, 67.7, 26.1, 20.8; **HR-CI-MS**: *m/z* calculated for [C₇H₁₂O₂³⁵Cl]⁺/[C₇H₁₂O₂³⁷Cl]⁺: 163.0526/165.0498, found: 163.0525/165.0492.

¹**H NMR**: (CDCl₃, 300 MHz) δ 5.10 (1H, br.s), 5.01 (1H, br. s), 4.57 (1H, t, J = 7.1 Hz), 4.29 (2H, d, J = 7.1 Hz), 2.07 (3H, s), 1.83 (3H, br.s); ¹³**C NMR** (CDCl₃, 75 MHz) δ 170.3, 141.0, 116.3, 65.4, 61.8, 20.7, 17.4.

[1] Yoo S.-H., Lee S.-H., Yi K.-Y., J. Nakcheol, Tet. Lett. 1990, 31, 6877-6880.

Figure S1. Comparison of the experimental ECD spectra of isoxanthochymol and isogarcinol.

wavelength (nm)

Part II: NMR data

Figure S2. Comparison of the ¹H NMR spectra of synthetic (\pm)-garcinol (**A**) and natural garcinol (**B**) in CDCl₃ (500 MHz). Due to the presence of traces of water in the sample of (\pm)-garcinol, the signals arising from the aromatic protons are shifted.

Figure S3. ¹³C NMR spectrum of (±)-garcinol in CDCl₃ (125 MHz).

Figure S4. Comparison of the ¹H NMR spectra of synthetic (±)-garcinol (**A**) and natural garcinol (**B**) (pyridine- d_5 , 500 MHz)*.

* water suppression was achieved via presaturation during the recycle delay.

Figure S6. Comparison of the ¹H NMR spectra of isoxanthochymol (**A**), isogarcinol obtained from racemic garcinol and isolated via chiral HPLC (**B**) and isogarcinol obtained from commercial enantiomerically pure garcinol (**C**) (CDCl₃, 500MHz).

Figure S7. ¹H NMR spectrum of isogarcinol (**3**) obtained from commercial enantiomerically pure garcinol (CDCl₃, 500MHz).

Figure S8. ¹³C NMR spectrum of isogarcinol (**3**) obtained from commercial enantiomerically pure garcinol in (CDCl₃-CD₃OD 5:1, 125 MHz).

Figure S9. ¹H NMR spectrum of isogarcinol (**3**) obtained from (\pm) -garcinol and purified by chiral HPLC (CDCl₃, 500MHz).

Figure S10. ¹H NMR spectrum of isogarcinol (**3**) obtained from commercial enantiomerically pure garcinol (acetone- d_6 , 500MHz).

Figure S11. ¹H NMR spectrum of isoxanthochymol (**4**) (CDCl₃, 500MHz).

Figure S12. ¹³C NMR spectrum of isoxanthochymol (**4**) (CDCl₃-CD₃OD 5:1, 125 MHz).

Figure S13. ¹H NMR spectrum of compound 7 (CDCl₃, 500 MHz).

Figure S14. ¹H NMR spectrum of compound **8** (CDCl₃, 500 MHz).

Figure S15. ¹H NMR spectrum of compound **9a** (CDCI₃, 500 MHz).

Figure S16. ¹H NMR spectrum of compound **9b** (CDCl₃, 500 MHz).

Figure S17. ¹H NMR spectrum of compound **10a** (CDCl₃, 500 MHz).

Figure S18. ¹H NMR spectrum of compound **10b** (CDCl₃, 500 MHz).

Figure S19. ¹H NMR spectrum of compound **12** (CDCl₃, 500 MHz).

Figure S20. ¹H NMR spectrum (300 MHz) of compound **13** (CDCl₃, 300 MHz).

Figure S21. ¹H NMR spectrum of compound **14** (CDCl₃, 500 MHz).

Figure S22. ¹H NMR spectrum of compound **15** (CDCl₃, 300 MHz).

Part III: X-ray data

Figure S23. X-ray structure of compound 11

Table S1. Crystal data and structure refinement for 11

Identification code	s20011m
Empirical formula	C27 H40 O6
Formula weight	460.59
Temperature	110(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P 21/c
Unit cell dimensions	a = 16.4986(10) A alpha = 90 deg. b = 8.6788(5) A beta = 112.833(2) c = 19.4564(12) A gamma = 90 deg.
Volume	2567.6(3) A ³
Z, Calculated density	4, 1.191 Mg/m^3
Absorption coefficient	0.083 mm^-1
F(000)	1000
Crystal size	0.38 x 0.34 x 0.25 mm
Theta range for data collection	2.14 to 30.53 deg.
Limiting indices	-23<=h<=23, -12<=k<=12, -27<=l<=27
Reflections collected / unique	79903 / 7838 [R(int) = 0.0336]
Completeness to theta = 30.53	99.7 %
Absorption correction	Semi-empirical from equivalents

Max. and min. transmission	0.7461 and 0.7111
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	7838 / 0 / 306
Goodness-of-fit on F^2	1.061
Final R indices [I>2sigma(I)]	R1 = 0.0407, wR2 = 0.1104
R indices (all data)	R1 = 0.0540, wR2 = 0.1167
Largest diff. peak and hole	0.371 and -0.262 e.A^-3

Table S2. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² x 10³) for s2001Im. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	Z	U(eq)
0(1)	7083(1)	3666(1)	6225(1)	19(1)
C(1)	7201(1)	4416(1)	6782(1)	13(1)
0(2)	5669(1)	7289(1)	5698(1)	24(1)
C(2)	6616(1)	5815(1)	6742(1)	13(1)
O(3)	6460(1)	1950(1)	9463(1)	21(1)
C(3)	7074(1)	7047(1)	7378(1)	14(1)
C(4)	7485(1)	6164(1)	8131(1)	14(1)
O(4)	6060(1)	4133(1)	8799(1)	30(1)
C(5)	8213(1)	5075(1)	8135(1)	15(1)
O(5)	8891(1)	1860(1)	7441(1)	33(1)
O(6)	9025(1)	4291(1)	7111(1)	24(1)
C(6)	7881(1)	3820(1)	7531(1)	14(1)
C(7)	5742(1)	5208(1)	6784(1)	16(1)
C(8)	5301(1)	3929(1)	6252(1)	21(1)
C(9)	5074(1)	2598(1)	6454(1)	28(1)
C(10)	6363(1)	6607(1)	5969(1)	17(1)
C(11)	6968(1)	6558(1)	5553(1)	24(1)
C(12)	7784(1)	7941(1)	7208(1)	19(1)
C(13)	6399(1)	8237(1)	7410(1)	19(1)
C(14)	7843(1)	7214(1)	8825(1)	20(1)
C(15)	8097(1)	6300(1)	9534(1)	20(1)
C(16)	8861(1)	6293(1)	10124(1)	24(1)
C(17)	9650(1)	7232(2)	10187(1)	37(1)
C(18)	8983(1)	5319(2)	10797(1)	39(1)
C(19)	7411(1)	2483(1)	7759(1)	17(1)
C(20)	7934(1)	1862(1)	8527(1)	17(1)
C(21)	7624(1)	1374(1)	9028(1)	17(1)
C(22)	6657(1)	1251(1)	8869(1)	18(1)
C(23)	8231(1)	833(1)	9792(1)	21(1)
C(24)	6199(1)	3435(1)	9368(1)	18(1)
C(25)	6132(1)	4063(1)	10061(1)	23(1)
C(26)	8646(1)	3176(1)	7361(1)	18(1)
C(27)	9756(1)	3821(2)	6925(1)	30(1)

O(1) - C(1)	1.2138(11)
C(1) - C(2)	1 5345(12)
C(1) C(2)	1 = 410(12)
C(1) = C(0)	1.0122(10)
O(2) - C(10)	1.2133(12)
C(2) - C(10)	1.5570(13)
C(2) - C(7)	1.5660(12)
C(2) - C(3)	1.5872(12)
O(3) - C(24)	1.3488(12)
O(3) - C(22)	1,4492(11)
C(3) - C(13)	1 5386(12)
C(3) C(13)	1 = 122 (12)
C(3) - C(12)	1.5455(15)
C(3) = C(4)	1.5566(13)
C(4) - C(5)	1.5265(12)
C(4) - C(14)	1.5430(13)
C(4)-H(4)	1.0000
O(4)-C(24)	1.2045(12)
C(5) - C(6)	1.5390(12)
C(5) - H(5A)	0.9900
C(5) - H(5B)	0 9900
O(5) - C(26)	1 2012(12)
O(5) - C(20)	1.2012(13)
O(6) - C(26)	1.3413(12)
O(6) - C(27)	1.4463(12)
C(6)-C(26)	1.5288(12)
C(6) - C(19)	1.5539(13)
C(7) - C(8)	1.4996(13)
C(7)-H(7A)	0.9900
C(7) - H(7B)	0 9900
C(8) - C(9)	1 3213(15)
C(0) = C(0)	1.5215(15)
C(0) = H(0)	0.9500
C(9) = H(9A)	0.9500
C(9)-H(9B)	0.9500
C(10) - C(11)	1.5092(14)
C(11)-H(11A)	0.9800
C(11)-H(11B)	0.9800
C(11)-H(11C)	0.9800
C(12) - H(12A)	0.9800
C(12) - H(12B)	0 9800
$C(12) - \Pi(122)$	0 9800
C(12) - H(12C)	0.9800
C(13) - H(13A)	0.9800
C(13) - H(13B)	0.9800
C(13)-H(13C)	0.9800
C(14)-C(15)	1.5031(14)
C(14)-H(14A)	0.9900
C(14)-H(14B)	0.9900
C(15) - C(16)	1.3361(14)
C(15) - H(15)	0.9500
C(16) - C(17)	1,5016(16)
C(10) C(17)	1 = 0 = 0 (17)
C(10) - C(10)	1.3030(17)
C(17) - H(17A)	0.9800
C(17) - H(17B)	0.9800
C(17)-H(17C)	0.9800
C(18)-H(18A)	0.9800
C(18)-H(18B)	0.9800
C(18)-H(18C)	0.9800
C(19) - C(20)	1,5060(13)
$C(19) - H(19\Delta)$	0 9900
C(10) $H(100)$	0.0000
С(ТА)-Н(ТАВ)	0.9900

Table S3. Bond lengths [A] and angles [deg] for s2001lm.

C(20)-C(21)	1.3351(13)
C(20) - H(20)	0.9500
C(21) - C(22) C(21) - C(23)	1.5002(13) 1.5085(13)
C(22) - H(22A)	0.9900
С(22)-Н(22В)	0.9900
C(23)-H(23A)	0.9800
C(23) - H(23B)	0.9800
C(23) - H(23C) C(24) - C(25)	0.9800 1 4978(14)
C(25) - H(25A)	0.9800
С(25)-Н(25В)	0.9800
С(25)-Н(25С)	0.9800
C(27) - H(27A)	0.9800
C(27) - H(27B) C(27) - H(27C)	0.9800
O(1) - C(1) - C(2)	119.95(8)
O(1)-C(1)-C(6)	117.97(8)
C(2) - C(1) - C(6)	121.77(7)
C(1) - C(2) - C(10) C(1) - C(2) - C(7)	108.99(7) 107.74(7)
C(1) - C(2) - C(7) C(10) - C(2) - C(7)	106.99(7)
C(1) - C(2) - C(3)	113.13(7)
C(10) - C(2) - C(3)	108.92(7)
C(7) - C(2) - C(3)	110.87(7)
C(24) - O(3) - C(22) C(13) - C(3) - C(12)	110.00(8) 107.03(8)
C(13) - C(3) - C(4)	110.46(7)
C(12)-C(3)-C(4)	111.17(7)
C(13) - C(3) - C(2)	110.45(7)
C(12) - C(3) - C(2) C(4) - C(3) - C(2)	110.06(7) 107.69(7)
C(4) - C(3) - C(2) C(5) - C(4) - C(14)	109.14(7)
C(5) - C(4) - C(3)	111.26(7)
C(14) - C(4) - C(3)	114.28(7)
C(5) - C(4) - H(4)	107.3
C(14) - C(4) - H(4) C(3) - C(4) - H(4)	107.3
C(4) - C(5) - C(6)	112.88(7)
C(4)-C(5)-H(5A)	109.0
C(6) - C(5) - H(5A)	109.0
C(4) - C(5) - H(5B) C(6) - C(5) - H(5B)	109.0
H(5A) - C(5) - H(5B)	107.8
C(26)-O(6)-C(27)	115.99(8)
C(26) - C(6) - C(5)	110.20(7)
C(26) - C(6) - C(1)	106.17(7) 113 36(7)
C(26) - C(6) - C(19)	109.49(7)
C(5) - C(6) - C(19)	112.30(7)
C(1) - C(6) - C(19)	105.01(7)
C(8) - C(7) - C(2)	115.01(8)
C(2) - C(7) - H(7A) C(2) - C(7) - H(7A)	108.5
C(8) - C(7) - H(7B)	108.5
С(2)-С(7)-Н(7В)	108.5
H(7A) - C(7) - H(7B)	107.5
C(9) - C(8) - C(7) C(9) - C(8) - H(8)	118 N
C(7) - C(8) - H(8)	118.0
C(8)-C(9)-H(9A)	120.0

C(8)-C(9)-H(9B)	120.0
H(9A)-C(9)-H(9B)	120.0
O(2) - C(10) - C(11)	119.31(9)
O(2) - C(10) - C(2)	119.26(8)
C(11) - C(10) - C(2)	121.43(8)
C(10) - C(11) - H(11A)	109.5
C(10) - C(11) - H(11B)	109.5
H(IIA) - C(II) - H(IIB)	109.5
U(11) - C(11) - H(11C)	109.5
H(11R) - C(11) - H(11C)	109.5
C(3) - C(12) - H(12A)	109.5
C(3) - C(12) - H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
C(3)-C(12)-H(12C)	109.5
H(12A) - C(12) - H(12C)	109.5
H(12B) - C(12) - H(12C)	109.5
C(3) - C(13) - H(13A)	109.5
U(12h) = U(12) = H(12B) H(12h) = U(12) = H(12B)	109.5
C(3) - C(13) - H(13C)	109.5
H(13A) - C(13) - H(13C)	109.5
H(13B) - C(13) - H(13C)	109.5
C(15) - C(14) - C(4)	111.48(8)
C(15)-C(14)-H(14A)	109.3
C(4)-C(14)-H(14A)	109.3
C(15)-C(14)-H(14B)	109.3
C(4) - C(14) - H(14B)	109.3
H(14A) - C(14) - H(14B)	108.0
C(16) - C(15) - C(14) C(16) - C(15) - H(15)	115 6
C(14) - C(15) - H(15)	115.6
C(15) - C(16) - C(17)	124.48(10)
C(15) - C(16) - C(18)	120.95(11)
C(17) - C(16) - C(18)	114.56(10)
C(16)-C(17)-H(17A)	109.5
C(16)-C(17)-H(17B)	109.5
H(17A) - C(17) - H(17B)	109.5
C(16) - C(17) - H(17C)	109.5
H(1/A) - C(1/) - H(1/C) H(17B) - C(17) - H(17C)	109.5
C(16) - C(18) - H(18a)	109.5
C(16) - C(18) - H(18B)	109.5
H(18A) - C(18) - H(18B)	109.5
C(16)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
C(20) - C(19) - C(6)	113.15(7)
C(20) - C(19) - H(19A)	108.9
C(6) - C(19) - H(19A)	108.9
C(20) - C(19) - H(19B) C(6) - C(19) - H(19B)	108.9
H(19A) - C(19) - H(19B)	107.8
C(21) - C(20) - C(19)	127.17(8)
С(21)-С(20)-Н(20)	116.4
С(19)-С(20)-Н(20)	116.4
C(20)-C(21)-C(22)	123.26(8)
C(20)-C(21)-C(23)	121.46(9)
C(22) - C(21) - C(23)	115.22(8)
O(3) - C(22) - C(21)	110.72(8)
U(3) - C(22) - H(22A)	109.5

C(21)-C(22)-H(22A)	109.5
O(3)-C(22)-H(22B)	109.5
C(21)-C(22)-H(22B)	109.5
H(22A) - C(22) - H(22B)	108.1
C(21) - C(23) - H(23A)	109.5
C(21) - C(23) - H(23B)	109.5
H(23A) - C(23) - H(23B)	109.5
C(21) - C(23) - H(23C)	109.5
H(23A) - C(23) - H(23C)	109.5
H(23B) - C(23) - H(23C)	109.5
O(4) - C(24) - O(3)	122.96(9)
O(4) - C(24) - C(25)	126.23(9)
O(3) - C(24) - C(25)	110.80(8)
C(24)-C(25)-H(25A)	109.5
C(24)-C(25)-H(25B)	109.5
H(25A)-C(25)-H(25B)	109.5
C(24)-C(25)-H(25C)	109.5
H(25A)-C(25)-H(25C)	109.5
H(25B)-C(25)-H(25C)	109.5
O(5) - C(26) - O(6)	123.55(9)
O(5) - C(26) - C(6)	125.74(9)
O(6) - C(26) - C(6)	110.71(8)
O(6)-C(27)-H(27A)	109.5
O(6)-C(27)-H(27B)	109.5
H(27A)-C(27)-H(27B)	109.5
О(б)-С(27)-Н(27С)	109.5
H(27A)-C(27)-H(27C)	109.5
H(27B)-C(27)-H(27C)	109.5

Table S4. Anisotropic displacement parameters (A^2 x 10^3) for s2001lm. Theanisotropic displacement factor exponent takes the form:-2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
	0.0 (1)	10/1)	10/1)		C (1)	1 / 1 \
O(1)	22(1)	19(1)	$\perp 7(\perp)$	-4(1)	6(I)	$\bot(\bot)$
C(1)	12(1)	13(1)	16(1)	0(1)	6(1)	-2(1)
0(2)	22(1)	27(1)	21(1)	6(1)	5(1)	7(1)
C(2)	12(1)	14(1)	13(1)	0(1)	4(1)	0(1)
0(3)	27(1)	18(1)	20(1)	2(1)	12(1)	6(1)
C(3)	14(1)	13(1)	15(1)	-1(1)	5(1)	0(1)
C(4)	14(1)	14(1)	13(1)	-2(1)	4(1)	0(1)
O(4)	40(1)	24(1)	31(1)	10(1)	18(1)	7(1)
C(5)	14(1)	14(1)	15(1)	-1(1)	3(1)	0(1)
0(5)	40(1)	24(1)	44(1)	9(1)	27(1)	15(1)
0(6)	20(1)	22(1)	37(1)	-5(1)	18(1)	-3(1)
C(6)	13(1)	12(1)	15(1)	0(1)	5(1)	1(1)
C(7)	12(1)	19(1)	17(1)	-1(1)	5(1)	-1(1)
C(8)	15(1)	27(1)	21(1)	-6(1)	6(1)	-4(1)
C(9)	22(1)	26(1)	36(1)	-8(1)	12(1)	-7(1)
C(10)	20(1)	15(1)	15(1)	0(1)	6(1)	-1(1)
C(11)	31(1)	25(1)	21(1)	5(1)	16(1)	4(1)
C(12)	19(1)	17(1)	21(1)	0(1)	8(1)	-4(1)
C(13)	20(1)	18(1)	20(1)	-2(1)	6(1)	4(1)
C(14)	22(1)	18(1)	16(1)	-5(1)	4(1)	0(1)

C(15) C(16) C(17)	20(1) 23(1) 20(1)	23(1) 26(1) 38(1)	16(1) 18(1) 40(1)	-5(1) -4(1) -1(1)	6(1) 4(1) -2(1)	-2(1) 3(1) -1(1)
C(18)	43(1)	48(1)	19(1)	4(1)	4(1)	5(1)
C(19)	16(1)	15(1)	17(1)	1(1)	5(1)	-2(1)
C(20)	15(1)	15(1)	19(1)	2(1)	5(1)	0(1)
C(21)	17(1)	13(1)	18(1)	-1(1)	5(1)	0(1)
C(22)	19(1)	19(1)	18(1)	-2(1)	9(1)	0(1)
C(23)	20(1)	22(1)	19(1)	3(1)	5(1)	-1(1)
C(24)	15(1)	16(1)	24(1)	1(1)	8(1)	0(1)
C(25)	23(1)	18(1)	27(1)	-3(1)	11(1)	1(1)
C(26)	15(1)	19(1)	17(1)	-1(1)	5(1)	2(1)
C(27)	20(1)	40(1)	37(1)	-11(1)	18(1)	-4(1)

Table S5. Hydrogen coordinates ($x \ 10^{4}$) and isotropic displacement parameters (A² x 10³) for s2001lm.

H(4)70095516818117H(5A)84794576863018H(5B)86785682805618H(7A)58724843729819H(7B)53256079668619H(8)51784086573726H(9A)51892406696433H(9B)47961832609033H(11A)67925712519137H(11B)75746395590737H(11C)69307536529037		x	У	Z	U(eq)
H(4)70095516818117H(5A)84794576863018H(5B)86785682805618H(7A)58724843729819H(7B)53256079668619H(8)51784086573726H(9A)51892406696433H(9B)47961832609033H(11A)67925712519137H(11B)75746395590737H(11C)69307536529037	T (A)			0101	1 17
H(5A)84794576863018H(5B)86785682805618H(7A)58724843729819H(7B)53256079668619H(8)51784086573726H(9A)51892406696433H(1A)67925712519137H(1B)75746395590737H(11C)69307536529037	1(4)	7009	5516	8181	10
H(5B)86785682805618H(7A)58724843729819H(7B)53256079668619H(8)51784086573726H(9A)51892406696433H(9B)47961832609033H(11A)67925712519137H(11B)75746395590737H(11C)69307536529037	1(5A)	84/9	4576	8630	18
H(7A)58724843729819H(7B)53256079668619H(8)51784086573726H(9A)51892406696433H(9B)47961832609033H(11A)67925712519137H(11B)75746395590737H(11C)69307536529037	1(5B)	8678	5682	8056	18
H(7B)53256079668619H(8)51784086573726H(9A)51892406696433H(9B)47961832609033H(11A)67925712519137H(11B)75746395590737H(11C)69307536529037	H('/A)	5872	4843	7298	19
H(8)51784086573726H(9A)51892406696433H(9B)47961832609033H(11A)67925712519137H(11B)75746395590737H(11C)69307536529037	H(7B)	5325	6079	6686	19
H(9A)51892406696433H(9B)47961832609033H(11A)67925712519137H(11B)75746395590737H(11C)69307536529037	H(8)	5178	4086	5737	26
H(9B)47961832609033H(11A)67925712519137H(11B)75746395590737H(11C)69307536529037U(12C)7500677020	H(9A)	5189	2406	6964	33
H(11A)67925712519137H(11B)75746395590737H(11C)69307536529037U(122)7500677020	I(9B)	4796	1832	6090	33
H(11B)75746395590737H(11C)69307536529037H(122)7500677020	H(11A)	6792	5712	5191	37
H(11C) 6930 7536 5290 37	H(11B)	7574	6395	5907	37
	H(11C)	6930	7536	5290	37
H(12A) 7500 8598 6770 29	H(12A)	7500	8598	6770	29
H(12B) 8177 7210 7107 29	H(12B)	8177	7210	7107	29
H(12C) 8124 8583 7638 29	H(12C)	8124	8583	7638	29
H(13A) 6707 9124 7708 29	H(13A)	6707	9124	7708	29
H(13B) 6024 7766 7639 29	H(13B)	6024	7766	7639	29
H(13C) 6034 8577 6903 29	H(13C)	6034	8577	6903	29
H(14A) 8363 7782 8824 24	H(14A)	8363	7782	8824	24
H(14B) 7388 7980 8802 24	H(14B)	7388	7980	8802	24
H(15) 7654 5639 9566 24	H(15)	7654	5639	9566	24
H(17A) 9521 7818 9725 55	H(17A)	9521	7818	9725	55
H(17B) 10151 6545 10267 55	H(17B)	10151	6545	10267	55
H(17C) 9795 7946 10608 55	4(17C)	9795	7946	10608	55
H(18A) 8452 4702 10702 59	H(18A)	8452	4702	10702	59
H(18B) 9087 5987 11229 59	I(18B)	9087	5987	11229	59
H(18C) 9488 4632 10899 59	H(18C)	9488	4632	10899	59
H(19A) 6836 2854 7740 20	H(19A)	6836	2854	7740	20
H(19B) 7297 1636 7392 20	H(19B)	7297	1636	7392	20
H(20) 8554 1812 8670 20	(20)	8554	1812	8670	20
H(22A) 6314 1772 8392 22	(22A)	6314	1772	8392	22
H(22B) 6482 152 8820 22	I(22B)	6482	152	8820	22
H(23A) 8843 964 9846 32	-(23A)	8843	964	9846	32
H(23R) 8119 -257 9852 32	1(23B)	8119	-257	9852	32
H(23C) = 8126 = 1442 = 10174 = 32	I(23C)	8126	1442	10174	32
$H(25\lambda) = 6723 = 4170 = 10450 = 24$	1(25C)	6723	4179	10450	34
H(25R) = 5790 = 3352 = 10234 = 24	1(25R)	5790	3350	10234	34

H(25C)	5840	5069	9953	34
H(27A)	10177	3236	7341	45
H(27B)	10045	4735	6830	45
H(27C)	9540	3173	6477	45

Table S6.Torsion angles [deg] for s2001lm.

O(1) - C(1) - C(2) - C(10)	-34.01(11)
C(6) - C(1) - C(2) - C(10)	152.47(8)
O(1) - C(1) - C(2) - C(7)	81 74(10)
C(6) - C(1) - C(2) - C(7)	-91 77(9)
C(0) - C(1) - C(2) - C(7)	-91.77(9)
O(1) - C(1) - C(2) - C(3)	-155.34(8)
C(6) - C(1) - C(2) - C(3)	31.15(11)
C(1) - C(2) - C(3) - C(13)	-168.19(7)
C(10) - C(2) - C(3) - C(13)	70.44(9)
C(7) - C(2) - C(3) - C(13)	-47.03(10)
C(1) - C(2) - C(3) - C(12)	73.84(9)
C(10) - C(2) - C(3) - C(12)	-47.52(9)
C(7) - C(2) - C(3) - C(12)	-164.99(7)
C(1) - C(2) - C(3) - C(4)	-47.49(9)
C(10) - C(2) - C(3) - C(4)	-168.86(7)
C(7) - C(2) - C(3) - C(4)	73 67(9)
C(13) - C(3) - C(4) - C(5)	-175 16(7)
C(12) C(2) C(4) C(5)	1/5.10(7)
C(12) - C(3) - C(4) - C(5)	-50.50(10)
C(2) = C(3) = C(4) = C(5)	54.14(9)
C(13) - C(3) - C(4) - C(14)	-51.00(10)
C(12) - C(3) - C(4) - C(14)	67.66(10)
C(2) - C(3) - C(4) - C(14)	-171.70(7)
C(14) - C(4) - C(5) - C(6)	171.33(8)
C(3) - C(4) - C(5) - C(6)	-61.65(10)
C(4) - C(5) - C(6) - C(26)	158.69(8)
C(4) - C(5) - C(6) - C(1)	39.87(10)
C(4) - C(5) - C(6) - C(19)	-78.95(9)
O(1) - C(1) - C(6) - C(26)	38.96(11)
C(2)-C(1)-C(6)-C(26)	-147.40(8)
O(1) - C(1) - C(6) - C(5)	160.08(8)
C(2) - C(1) - C(6) - C(5)	-26.28(11)
O(1) - C(1) - C(6) - C(19)	-7698(10)
C(2) - C(1) - C(6) - C(19)	96.66(9)
C(1) $C(2)$ $C(2)$ $C(2)$	50.00(5)
C(1) - C(2) - C(3)	-50.23(10)
C(10) - C(2) - C(7) - C(8)	00.03(IU) 174 F2(0)
C(3) - C(2) - C(7) - C(8)	-1/4.52(8)
C(2) - C(7) - C(8) - C(9)	120.48(10)
C(1) - C(2) - C(10) - O(2)	150.60(9)
C(7) - C(2) - C(10) - O(2)	34.36(11)
C(3) - C(2) - C(10) - O(2)	-85.54(10)
C(1)-C(2)-C(10)-C(11)	-30.06(11)
C(7) - C(2) - C(10) - C(11)	-146.30(9)
C(3)-C(2)-C(10)-C(11)	93.80(10)
C(5) - C(4) - C(14) - C(15)	-63.73(10)
C(3) - C(4) - C(14) - C(15)	170.98(8)
C(4) - C(14) - C(15) - C(16)	126.65(11)
C(14) - C(15) - C(16) - C(17)	-0.80(18)
C(14)-C(15)-C(16)-C(18)	178.42(11)
C(26)-C(6)-C(19)-C(20)	73.13(10)
C(5) - C(6) - C(19) - C(20)	-49.63(10)
C(1) - C(6) - C(19) - C(20)	-173.25(7)
	, /

C(6) - C(19) - C(20) - C(21)	142.86(10)
C(19)-C(20)-C(21)-C(22)	5.23(16)
C(19) - C(20) - C(21) - C(23)	-177.65(9)
C(24) - O(3) - C(22) - C(21)	93.99(10)
C(20) - C(21) - C(22) - O(3)	-132.11(10)
C(23) - C(21) - C(22) - O(3)	50.60(11)
C(22)-O(3)-C(24)-O(4)	6.07(14)
C(22)-O(3)-C(24)-C(25)	-172.65(8)
C(27)-O(6)-C(26)-O(5)	0.93(15)
C(27) - O(6) - C(26) - C(6)	-179.54(8)
C(5) - C(6) - C(26) - O(5)	119.05(11)
C(1) - C(6) - C(26) - O(5)	-117.81(11)
C(19) - C(6) - C(26) - O(5)	-4.94(13)
C(5) - C(6) - C(26) - O(6)	-60.47(10)
C(1)-C(6)-C(26)-O(6)	62.67(9)
C(19)-C(6)-C(26)-O(6)	175.54(8)

Figure S24. X-ray structure of compound 12

Table S7. Crystal data and structure refinement for compound 12

Identification code	s20841m
Empirical formula	C28 H42 O4
Formula weight	442.62
Temperature	100(2) K
Wavelength	0.71073 A
Crystal system, space group	Triclinic, P -1
Unit cell dimensions	a = 7.0512(4) A alpha = 87.953(3) b = 11.7101(7) A beta = 77.950(3) c = 16.0176(9) A gamma = 89.526(3)
Volume	1292.61(13) A^3
Z, Calculated density	2, 1.137 Mg/m^3
Absorption coefficient	0.074 mm ⁻¹

F(000)	484
Crystal size	0.22 x 0.16 x 0.12 mm
Theta range for data collection	1.74 to 28.35 deg.
Limiting indices	-9<=h<=9, -15<=k<=15, -21<=l<=21
Reflections collected / unique	33377 / 6440 [R(int) = 0.0402]
Completeness to theta = 28.35	99.6 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7421 and 0.7251
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	6440 / 0 / 296
Goodness-of-fit on F^2	1.068
Final R indices [I>2sigma(I)]	R1 = 0.0448, wR2 = 0.0795
R indices (all data)	R1 = 0.0777, wR2 = 0.0856
Largest diff. peak and hole	0.353 and -0.211 e.A^-3

Table S8. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² x 10³) for s2084Im. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	х	У	Z	U(eq)
O(1)	4100(1)	2000(1)	7000(1)	16(1)
O(1)	4198(1)	3988(1)	7889(1) FARG(1)	10(1)
C(1)	5200(2)	3270(1)	/4/6(1)	$\perp 3(\perp)$
0(2)	1668(1)	2109(1)	7817(1)	21(1)
C(2)	6635(2)	3659(1)	6662(1)	13(1)
O(3)	2816(1)	705(1)	8565(1)	17(1)
C(3)	7240(2)	2686(1)	5996(1)	16(1)
O(4)	6662(1)	5433(1)	5859(1)	22(1)
C(4)	7790(2)	1611(1)	6494(1)	16(1)
C(5)	6046(2)	1159(1)	7151(1)	16(1)
C(6)	5116(2)	2031(1)	7826(1)	13(1)
C(7)	8464(2)	4145(1)	6932(1)	16(1)
C(8)	8118(2)	4943(1)	7661(1)	20(1)
C(9)	9128(2)	4905(1)	8269(1)	24(1)
C(10)	5666(2)	4661(1)	6241(1)	16(1)
C(11)	3512(2)	4675(1)	6277(1)	21(1)
C(12)	5566(2)	2416(1)	5548(1)	21(1)
C(13)	8985(2)	3076(1)	5297(1)	21(1)
C(14)	8655(2)	620(1)	5920(1)	21(1)
C(15)	9669(2)	-248(1)	6386(1)	23(1)
C(16)	9080(2)	-1289(1)	6676(1)	27(1)
C(17)	10310(3)	-2050(1)	7126(1)	41(1)
C(18)	7193(2)	-1814(1)	6596(1)	40(1)
C(19)	2992(2)	1674(1)	8079(1)	15(1)
C(20)	882(2)	242(1)	8788(1)	22(1)

C(21) C(22) C(23) C(24) C(25) C(25) C(26) C(27)	6199(2) 5518(2) 7113(2) 6650(2) 6719(2) 3577(2) 2030(2)	1962(1) 2736(1) 2762(1) 3531(1) 3249(1) 2407(1) 3063(1)	8580(1) 9342(1) 9868(1) 10610(1) 11404(1) 9906(1) 9931(1)	15(1) 14(1) 18(1) 21(1) 27(1) 17(1) 23(1)
C(27)	2030(2)	3063(1)	9931(1)	23(1)
C(28)	3484(2)	1331(1)	10457(1)	24(1)

 Table S9.
 Bond lengths [A] and angles [deg] for s2084lm.

O(1) - C(1)	1 2163(14)
C(1) C(2)	1 = 5216(17)
C(1) - C(2)	1.5310(17)
C(1) - C(0)	1.0022(14)
O(2) - C(19)	1.2033(14)
C(2) - C(10)	1.5566(16)
C(2) - C(7)	1.5604(17)
C(2)-C(3)	1.5846(17)
O(3) - C(19)	1.3444(15)
O(3) - C(20)	1.4401(15)
C(3) - C(13)	1.5404(18)
C(3) - C(12)	1 5432(17)
C(3) - C(4)	1,5561(17)
O(4) = O(10)	1 21/12(15)
O(4) - C(10)	$1 = 2 \pm 40 (\pm 5)$
C(4) - C(5)	1.5201(17)
C(4) - C(14)	1.54/4(1/)
C(4) - H(4)	1.0000
C(5)-C(6)	1.5540(17)
C(5)-H(5A)	0.9900
C(5)-H(5B)	0.9900
C(6) - C(19)	1.5252(17)
C(6) - C(21)	1.5564(16)
C(7) - C(8)	1.5005(18)
C(7)-H(7A)	0.9900
C(7)-H(7B)	0.9900
C(8) - C(9)	1,3196(19)
C(8) - H(8)	0.9500
C(9) - H(9A)	0 9500
C(9) - H(9R)	0 9500
C(10) = C(11)	1 5076(18)
C(10) C(11)	1.5070(10)
C(11) - H(11A)	0.9800
C(11) - H(11B)	0.9800
C(11) - H(11C)	0.9800
C(12) - H(12A)	0.9800
С(12)-Н(12В)	0.9800
C(12)-H(12C)	0.9800
C(13)-H(13A)	0.9800
C(13)-H(13B)	0.9800
C(13)-H(13C)	0.9800
C(14) - C(15)	1.5026(18)
C(14)-H(14A)	0.9900
C(14)-H(14B)	0.9900
C(15) - C(16)	1.3283(19)
C(15)-H(15)	0.9500
C(16) - C(18)	1.501(2)
C(16) - C(17)	1,506(2)
C(17) - H(17A)	0.9800
C(17) - H(17R)	0 9800
(+ i + i + i + i + i + i + i + i + i +	0.2000

C(17)-H(17C)	0.9800
C(18)-H(18A)	0.9800
C(18)-H(18B)	0.9800
C(18)-H(18C)	0.9800
C(20)-H(20A)	0.9800
C(20)-H(20B)	0.9800
C(20)-H(20C)	0.9800
C(21)-C(22)	1.5398(17)
C(21)-H(21A)	0.9900
C(21)-H(21B)	0.9900
C(22)-C(26)	1.5184(18)
C(22)-C(23)	1.5407(17)
C(22)-H(22)	1.0000
C(23)-C(24)	1.4964(18)
C(23)-H(23A)	0.9900
C(23)-H(23B)	0.9900
C(24)-C(25)	1.3123(19)
C(24)-H(24)	0.9500
C(25)-H(25A)	0.9500
C(25)-H(25B)	0.9500
C(26)-C(27)	1.3235(18)
C(26)-C(28)	1.5054(18)
C(27)-H(27A)	0.9500
C(27)-H(27B)	0.9500
C(28)-H(28A)	0.9800
C(28)-H(28B)	0.9800
C(28)-H(28C)	0.9800
O(1) - C(1) - C(2)	118.36(11)
O(1) - C(1) - C(6)	119.15(11)
C(2) - C(1) - C(6)	122.26(10)
C(1) - C(2) - C(10)	107.30(9)
C(1) - C(2) - C(7)	107.01(10) 107.64(10)
C(1) - C(2) - C(3)	114 09(10)
C(1) = C(2) = C(3)	$109 \ 47(9)$
C(7) - C(2) - C(3)	$110 \ 30(10)$
C(19) = O(3) = C(20)	114 92(10)
C(13) - C(3) - C(12)	$107 \ 41(10)$
C(13) - C(3) - C(4)	110.14(10)
C(12) - C(3) - C(4)	110.78(10)
C(13) - C(3) - C(2)	110.18(10)
C(12) - C(3) - C(2)	110.90(10)
C(4) - C(3) - C(2)	107.46(9)
C(5) - C(4) - C(14)	108.57(10)
C(5)-C(4)-C(3)	111.18(10)
C(14) - C(4) - C(3)	114.23(10)
С(5)-С(4)-Н(4)	107.5
C(14)-C(4)-H(4)	107.5
C(3) - C(4) - H(4)	107.5
C(4) - C(5) - C(6)	114.77(10)
C(4) - C(5) - H(5A)	108.6
C(6) - C(5) - H(5A)	108.6
C(4) - C(5) - H(5B)	108.6
U(D) - U(D) - H(DB)	107 G
C(19) = C(5) = R(58)	108 22/01
C(19) - C(6) - C(5)	104 35(10)
C(1) - C(6) - C(5)	113 61(10)
C(19) - C(6) - C(21)	113.70(10)
C(1) - C(6) - C(21)	108.30(9)
C(5)-C(6)-C(21)	108.74(9)

C(8) - C(7) - C(2)	116.95(10)
C(8) - C(7) - H(7A)	108.1
C(2) - C(7) - H(7A)	108.1
C(8) - C(7) - H(7B)	108.1
C(2) - C(7) - H(7B)	108 1
$H(7\lambda) = C(7) = H(7R)$	107 3
C(9) - C(8) - C(7)	107.5 102 11(12)
C(0) C(0) C(1)	110 /
C(3) - C(3) - H(3)	110.1
C(7) - C(8) - H(8)	120.4
C(8) - C(9) - H(9A)	120.0
C(8) - C(9) - H(9B)	120.0
H(9A) - C(9) - H(9B)	120.0
O(4) - O(10) - O(11)	119.30(11)
O(4) - C(10) - C(2)	119.63(11)
C(11) - C(10) - C(2)	121.05(11)
C(10) - C(11) - H(11A)	109.5
C(10) - C(11) - H(11B)	109.5
H(IIA) - C(II) - H(IIB)	109.5
C(10) - C(11) - H(11C)	109.5
H(11A) - C(11) - H(11C)	109.5
H(11B) - C(11) - H(11C)	109.5
C(3) - C(12) - H(12A)	109.5
С(3)-С(12)-Н(12В)	109.5
H(12A)-C(12)-H(12B)	109.5
С(3)-С(12)-Н(12С)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
C(3)-C(13)-H(13A)	109.5
C(3)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
C(3)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
C(15) - C(14) - C(4)	112.14(11)
C(15)-C(14)-H(14A)	109.2
C(4) - C(14) - H(14A)	109.2
C(15)-C(14)-H(14B)	109.2
C(4)-C(14)-H(14B)	109.2
H(14A)-C(14)-H(14B)	107.9
C(16)-C(15)-C(14)	128.43(14)
C(16)-C(15)-H(15)	115.8
C(14)-C(15)-H(15)	115.8
C(15)-C(16)-C(18)	124.72(13)
C(15)-C(16)-C(17)	121.01(15)
C(18) - C(16) - C(17)	114.27(13)
C(16)-C(17)-H(17A)	109.5
C(16)-C(17)-H(17B)	109.5
H(17A)-C(17)-H(17B)	109.5
C(16)-C(17)-H(17C)	109.5
H(17A)-C(17)-H(17C)	109.5
H(17B)-C(17)-H(17C)	109.5
C(16)-C(18)-H(18A)	109.5
C(16)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
C(16)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
O(2)-C(19)-O(3)	123.36(11)
O(2)-C(19)-C(6)	125.96(11)
O(3)-C(19)-C(6)	110.24(10)
O(3)-C(20)-H(20A)	109.5

$\begin{array}{l} O(3) - C(20) - H(20B) \\ H(20A) - C(20) - H(20C) \\ H(20A) - C(20) - H(20C) \\ H(20B) - C(20) - H(20C) \\ C(22) - C(21) - C(6) \\ C(22) - C(21) - H(21A) \\ C(6) - C(21) - H(21B) \\ C(6) - C(21) - H(21B) \\ H(21A) - C(21) - H(21B) \\ C(26) - C(22) - C(21) \\ C(26) - C(22) - C(23) \\ C(26) - C(22) - C(23) \\ C(26) - C(22) - H(22) \\ C(21) - C(22) - H(22) \\ C(23) - C(22) - H(22) \\ C(24) - C(23) - C(22) \\ C(24) - C(23) - L(23A) \\ C(22) - C(23) - H(23A) \\ C(22) - C(23) - H(23B) \\ C(25) - C(24) - L(23B) \\ C(25) - C(24) - L(23B) \\ C(25) - C(24) - H(24) \\ C(23) - C(25) - H(25B) \\ H(25A) - C(25) - H(25B) \\ H(25A) - C(25) - H(25B) \\ H(25A) - C(25) - H(25B) \\ C(27) - C(26) - C(22) \\ C(28) - C(27) - H(27B) \\ C(26) - C(27) - H(27B) \\ H(27A) - C(27) - H(27B) \\ C(26) - C(28) - H(28B) \\ \end{array}$	109.5 109.5 109.5 109.5 109.5 118.67(10) 107.6 107.6 107.6 107.6 107.1 114.65(10) 108.58(10) 108.58(10) 107.5 107.5 107.5 107.5 107.5 108.9 108.9 108.9 108.9 108.9 108.9 108.9 107.7 125.91(13) 117.0 127.0 120
H(27A)-C(27)-H(27B) C(26)-C(28)-H(28A) C(26)-C(28)-H(28B) H(28A)-C(28)-H(28B) C(26)-C(28)-H(28C) H(28A)-C(28)-H(28C) H(28B)-C(28)-H(28C)	120.0 109.5 109.5 109.5 109.5 109.5 109.5

Table S10. Anisotropic displacement parameters (A^2 x 10^3) for s2084lm.The anisotropic displacement factor exponent takes the form:-2 pi^2 [h^2 a^* 2 U11 + ... + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
0(1)	16(1)	16(1)	16(1)	-1(1)	-4(1)	3(1)
C(1)	12(1)	16(1)	14(1)	0(1)	-6(1)	0(1)
0(2)	17(1)	22(1)	27(1)	4(1)	-8(1)	0(1)
C(2)	13(1)	13(1)	14(1)	0(1)	-3(1)	1(1)
0(3)	15(1)	16(1)	20(1)	4(1)	-2(1)	-3(1)
C(3)	17(1)	15(1)	13(1)	1(1)	-3(1)	2(1)

0(4)	27(1)	17(1)	22(1)	5(1)	-4(1)	-1(1)
C(4)	17(1)	15(1)	14(1)	0(1)	-2(1)	2(1)
C(5)	19(1)	13(1)	16(1)	0(1)	-4(1)	1(1)
C(6)	14(1)	13(1)	13(1)	1(1)	-3(1)	1(1)
C(7)	12(1)	19(1)	18(1)	1(1)	-2(1)	-1(1)
C(8)	16(1)	17(1)	26(1)	-2(1)	-2(1)	-2(1)
C(9)	24(1)	26(1)	23(1)	-4(1)	-3(1)	-5(1)
C(10)	21(1)	15(1)	11(1)	-1(1)	-2(1)	2(1)
C(11)	21(1)	24(1)	20(1)	4(1)	-6(1)	6(1)
C(12)	28(1)	18(1)	19(1)	-2(1)	-10(1)	3(1)
C(13)	26(1)	19(1)	16(1)	1(1)	1(1)	3(1)
C(14)	27(1)	18(1)	15(1)	0(1)	0(1)	5(1)
C(15)	27(1)	21(1)	19(1)	-4(1)	-2(1)	7(1)
C(16)	39(1)	20(1)	18(1)	-4(1)	1(1)	9(1)
C(17)	70(1)	25(1)	28(1)	2(1)	-9(1)	19(1)
C(18)	50(1)	23(1)	42(1)	-3(1)	3(1)	-4(1)
C(19)	17(1)	14(1)	13(1)	-2(1)	-2(1)	0(1)
C(20)	17(1)	22(1)	25(1)	4(1)	-1(1)	-6(1)
C(21)	12(1)	17(1)	14(1)	3(1)	-3(1)	1(1)
C(22)	14(1)	15(1)	14(1)	1(1)	-4(1)	1(1)
C(23)	13(1)	23(1)	18(1)	1(1)	-4(1)	-1(1)
C(24)	17(1)	21(1)	27(1)	-3(1)	-9(1)	-1(1)
C(25)	23(1)	35(1)	23(1)	-9(1)	-6(1)	6(1)
C(26)	16(1)	21(1)	15(1)	-5(1)	-4(1)	-2(1)
C(27)	16(1)	30(1)	24(1)	-9(1)	-4(1)	0(1)
C(28)	22(1)	30(1)	19(1)	3(1)	0(1)	-6(1)

Table S11. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for s2084lm.

	х	У	Z	U(eq)
Н(4)	8792	1848	6812	19
H(5A)	6456	478	7452	19
H(5B)	5045	911	6845	19
H(7A)	9240	3491	7084	20
H(7B)	9261	4550	6429	20
H(8)	7126	5502	7686	24
H(9A)	10128	4353	8257	29
H(9B)	8855	5429	8717	29
H(11A)	2914	5299	6632	32
H(11B)	2947	3945	6525	32
H(11C)	3274	4788	5699	32
H(12A)	5364	3068	5175	32
H(12B)	4377	2272	5979	32
H(12C)	5895	1738	5206	32
H(13A)	9133	2569	4815	32
H(13B)	10165	3049	5531	32
H(13C)	8769	3860	5103	32
H(14A)	7602	239	5712	25
H(14B)	9587	935	5416	25
H(15)	10891	-22	6486	27
H(17A)	11530	-1661	7136	62
H(17B)	10588	-2764	6823	62
H(17C)	9612	-2220	7713	62
H(18A)	6497	-1281	6281	60

H(18B)	6401	-1978	7167	60
H(18C)	7449	-2526	6288	60
H(20A)	27	779	9144	33
Н(20В)	903	-488	9105	33
H(20C)	402	121	8266	33
H(21A)	6127	1161	8804	18
H(21B)	7583	2132	8343	18
H(22)	5386	3528	9107	17
H(23A)	7318	1977	10082	21
H(23B)	8341	3019	9489	21
H(24)	6270	4291	10497	26
H(25A)	7091	2498	11547	32
H(25B)	6398	3797	11835	32
H(27A)	836	2858	10301	28
H(27B)	2114	3738	9579	28
H(28A)	2188	1256	10823	36
H(28B)	4453	1369	10814	36
H(28C)	3752	670	10093	36

 Table S12.
 Torsion angles [deg] for s2084lm.

O(1)-C(1)-C(2)-C(10)
O(1) - C(1) - C(2) - C(7)
C(6) - C(1) - C(2) - C(7)
C(6) - C(1) - C(2) - C(3)
C(1)-C(2)-C(3)-C(13)
C(10)-C(2)-C(3)-C(13)
C(7) - C(2) - C(3) - C(13) C(1) - C(2) - C(3) - C(12)
C(10) - C(2) - C(3) - C(12)
C(7) - C(2) - C(3) - C(12)
C(1) - C(2) - C(3) - C(4) C(10) - C(2) - C(3) - C(4)
C(7) - C(2) - C(3) - C(4)
C(13)-C(3)-C(4)-C(5)
C(12)-C(3)-C(4)-C(5) C(2)-C(3)-C(4)-C(5)
C(13)-C(3)-C(4)-C(14)
C(12)-C(3)-C(4)-C(14)
C(2)-C(3)-C(4)-C(14) C(14)-C(4)-C(5)-C(6)
C(3)-C(4)-C(5)-C(6)
O(1) - C(1) - C(6) - C(19)
C(2)-C(1)-C(6)-C(19)
C(2) - C(1) - C(6) - C(5)
O(1)-C(1)-C(6)-C(21)
C(2)-C(1)-C(6)-C(21)
C(4) - C(5) - C(6) - C(19) C(4) - C(5) - C(6) - C(1)
C(4) - C(5) - C(6) - C(21)
C(1)-C(2)-C(7)-C(8)
C(10) - C(2) - C(7) - C(8) C(3) - C(2) - C(7) - C(8)
C(2)-C(7)-C(8)-C(9)
C(1)-C(2)-C(10)-O(4)

-35.64(14)
149.86(10)
80.05(13)
-94.46(12)
-157.08(10)
28.42(15)
-168.00(10)
11.11(12)
-40.49(13) 73 22(13)
-47 02(13)
-165 28(10)
-48.00(13)
-168.23(10)
73.51(12)
-176.27(10)
-57.59(13)
63.70(12)
-52.99(14)
65.70(14)
-173.02(10)
175.15(10)
-58.38(13)
50.24(14)
-135.30(11)
10.02(10)
-19.92(15)
-73.45(13) 101 01(12)
151.01(12) 151.60(10)
33 94(14)
-86.74(12)
-45.56(14)
69.90(13)
-170.72(10)
138.49(13)
146.26(11)

C(7) - C(2) - C(10) - O(4)	30.46(15)
C(3) - C(2) - C(10) - O(4)	-89.44(13)
C(1)-C(2)-C(10)-C(11)	-35.41(15)
C(7)-C(2)-C(10)-C(11)	-151.21(11)
C(3)-C(2)-C(10)-C(11)	88.89(13)
C(5)-C(4)-C(14)-C(15)	-71.50(14)
C(3)-C(4)-C(14)-C(15)	163.81(11)
C(4) - C(14) - C(15) - C(16)	105.97(16)
C(14) - C(15) - C(16) - C(18)	-0.7(2)
C(14) - C(15) - C(16) - C(17)	179.47(13)
C(20) - O(3) - C(19) - O(2)	-2.83(17)
C(20) - O(3) - C(19) - C(6)	-175.58(10)
C(1)-C(6)-C(19)-O(2)	21.64(17)
C(5)-C(6)-C(19)-O(2)	-99.66(14)
C(21) - C(6) - C(19) - O(2)	142.02(12)
C(1) - C(6) - C(19) - O(3)	-165.84(9)
C(5) - C(6) - C(19) - O(3)	72.86(12)
C(21) - C(6) - C(19) - O(3)	-45.46(13)
C(19) - C(6) - C(21) - C(22)	-63.22(14)
C(1)-C(6)-C(21)-C(22)	57.12(14)
C(5)-C(6)-C(21)-C(22)	-178.98(10)
C(6)-C(21)-C(22)-C(26)	70.86(14)
C(6) - C(21) - C(22) - C(23)	-164.53(10)
C(26)-C(22)-C(23)-C(24)	-55.62(14)
C(21)-C(22)-C(23)-C(24)	177.57(11)
C(22)-C(23)-C(24)-C(25)	128.65(14)
C(21)-C(22)-C(26)-C(27)	-111.12(13)
C(23)-C(22)-C(26)-C(27)	125.49(12)
C(21)-C(22)-C(26)-C(28)	70.86(14)
C(23)-C(22)-C(26)-C(28)	-52.54(14)

Part IV: Computational details

Table S13. Cartesian coordinates of the lowest energy conformer of isogarcinol(optimized at PBE0/def2-SVPD)

Atom	X	V	7
<u> </u>	0 279939	-1 246920	-0 505373
Ċ	-0 397243	-0 741299	-1 814802
C	-0.980181	0.677841	-1 810228
C	0.025276	1 717766	-1 219995
Ċ	0.020270	1 202042	0 172308
C	1 2661/0	-0 138036	-0 131018
C	0.71/720	1 356631	0.131310
C	-0.7 14720	1 026145	1 100979
C	-0.507960	0.202664	1.190070
0	-1.002401	-0.292004	0 171520
0	2.402203	-0.299900	-0.171529
C	1.072000	2.100130	0.772031
	2.159000	1.701092	2.134149
	3.413081	1.400000	2.511109
	3.716226	1.098855	3.937812
C	4.604702	1.452366	1.600618
C	-0.648778	3.081216	-1.059506
C	1.1/1856	1.896450	-2.229400
С	-2.441507	0.741875	-1.293435
С	-3.325697	1.632288	-2.115260
С	-4.216776	2.541837	-1.685781
С	-4.476492	2.861046	-0.242448
С	-5.036590	3.338512	-2.660225
С	-2.115170	-0.438729	2.467767
С	-1.689901	-0.905199	3.802027
0	-3.276322	-0.157279	2.215621
0	-0.897439	1.989778	1.842401
С	-2.662537	-1.084626	4.801777
С	-2.293996	-1.518925	6.061096
С	-0.935627	-1.778984	6.349320
С	0.030768	-1.598486	5.362629
С	-0.345192	-1.163563	4.096509
0	-3.145216	-1.728456	7.092938
0	-0.579289	-2.200234	7.573087
0	-1.331267	-2.501460	0.860806
С	-0.760913	-3.815916	0.545679
С	0.742721	-3.624376	0.313151
С	0.979528	-2.585941	-0.773236
С	-1.522089	-4.368270	-0.649600
С	-1.055789	-4.635820	1.792440
Ċ	1.486117	-4.930050	-0.005910
Ċ	2.973178	-4.761248	0.072716
Ċ	3.871212	-4.814586	-0.925836
Ċ	5.334325	-4.608548	-0.656630

Table S13. (Continued)

С	3.530562	-5.068481	-2.365055
Н	-1.173698	-1.461848	-2.104297
Н	0.381117	-0.812506	-2.587234
н	-1.047494	0.943537	-2.876696
H	1 206269	3 157020	0 846844
H	2 509940	2 249086	0.074893
H	1 391023	1 736774	2 912834
н	4 457992	1 790611	4 369837
Н	4 161473	0.002187	3 006740
Н	2 817547	1 117605	4 567761
Н	5 086852	0.461720	1 617376
Н	5 361365	2 171005	1.017.070
Ц	1 357882	1 687364	0 560003
	4.337002	2 276020	0.000990
	-1.00//30	3.370020	-2.021130
	0.078014	3.852112	-0.777882
п	-1.448085	3.078202	-0.312819
H	1.885853	2.658740	-1.896135
Н	0.753706	2.237089	-3.185818
Н	1.734218	0.974746	-2.422021
Н	-2.501232	1.016583	-0.237622
Н	-2.849593	-0.281790	-1.342346
Н	-3.232758	1.498128	-3.200142
Н	-4.274190	3.926481	-0.044193
Н	-3.880096	2.260906	0.453507
Н	-5.539435	2.699603	-0.000481
Н	-6.114095	3.177417	-2.491963
Н	-4.806184	3.078921	-3.701595
Н	-4.860645	4.418485	-2.524327
Н	-3.710368	-0.880568	4.573020
Н	1.074332	-1.803411	5.603713
Н	0.415172	-1.019051	3.329628
Н	-4.057959	-1.539223	6.847375
Н	-1.364553	-2.273084	8.134516
Н	1.147698	-3.233756	1.264391
Н	0.641422	-2.987746	-1.737786
Н	2.055586	-2.400872	-0.869764
Н	-1.199260	-5.395320	-0.860916
H	-1.373195	-3.768279	-1.554693
H	-2 595468	-4 390582	-0 423972
H	-0 499599	-4 248684	2 655913
H	-0 784765	-5 687100	1 638865
H	-2 128387	-4 591631	2 018839
H	1 178644	-5 289651	-0 997221
н	1 182557	-5 702805	0 716445
H	3 355378	-4 540033	1 078255
Ц	5 7220/0	-3 761272	-1 2/5566
Ц	5 016070	-3.701370 5 102206	0 06/107
	0.9109/0 5 524040	-U.492090 1 112210	-0.904191 0 404769
<u> </u>	0.004049	-4.413210	0.404/00

Table S13. (Continued)

Н	3.856316	-4.219064	-2.987278
Н	2.461112	-5.226752	-2.540463
Н	4.074134	-5.950873	-2.739377

Transition	Excitation energy (nm)	Rotatory strength ^a (<i>R</i> x 10 ⁴⁰ cgs)	Oscillator strength <i>f</i>	Contributions	Weight ^{2*100}
1	299.28	5.6675	0.0075	$ \begin{array}{c} 163 \to 165 \\ 162 \to 165 \\ 163 \to 164 \\ 158 \to 164 \\ 158 \to 164 \\ 158 \to 165 \\ \end{array} $	44.5 32.7 9.2 2.8 2.5
2	296.11	15.8597	0.2178	$161 \rightarrow 164$ $157 \rightarrow 164$	83.8 7.3
3	292.64	-15.1239	0.0028	$162 \rightarrow 164$ $158 \rightarrow 164$ $159 \rightarrow 164$ $156 \rightarrow 164$ $155 \rightarrow 164$ $163 \rightarrow 164$	29.9 20.6 14.8 12.3 9.0 6.6
4	288.94	17.0056	0.0089	$162 \rightarrow 165$ $163 \rightarrow 165$ $162 \rightarrow 164$	51.4 37.3 2 4
5	271.01	-43.3838	0.0484	$160 \rightarrow 165$	84.9
6	266.86	-18.5630	0.0666	$159 \rightarrow 165$ $158 \rightarrow 164$ $157 \rightarrow 164$ $155 \rightarrow 164$ $156 \rightarrow 164$ $159 \rightarrow 165$ $161 \rightarrow 167$	5.9 41.2 20.1 19.6 4.8 2.8 2.6
7	266.28	-60.6100	0.1356	$\begin{array}{c} 159 \to 165 \\ 157 \to 164 \\ 158 \to 164 \\ 160 \to 165 \\ 155 \to 164 \\ 155 \to 164 \\ 155 \to 165 \end{array}$	40.2 18.6 15.3 7.5 6.4 2.5
8	246.95	-17.0178	0.0078	$159 \rightarrow 166$ $162 \rightarrow 166$ $163 \rightarrow 166$ $160 \rightarrow 166$	53.0 15.9 13.6 9.9
9	242.18	27.2995	0.0701	$155 \rightarrow 165$ $155 \rightarrow 165$ $158 \rightarrow 165$ $159 \rightarrow 165$ $160 \rightarrow 166$	74.9 9.2 3.1 3.1
10	223.61	52.5435	0.0469	$\begin{array}{c} 158 \rightarrow 166 \\ 156 \rightarrow 166 \\ 155 \rightarrow 166 \end{array}$	44.1 41.7 6.6

Table S14. TD-DFT results for isogarcinol (3)

11	223.21	22.3130	0.2260	$161 \rightarrow 167$	78.2
				$157 \rightarrow 164$	11.1
				157 → 176	2.0
12	204.75	-22.5088	0.0142	$162 \rightarrow 168$	40.0
				$163 \rightarrow 168$	34.1
				$162 \rightarrow 172$	3.9
				162 → 171	3.6
				$162 \rightarrow 173$	2.6
				$163 \rightarrow 172$	2.2
				$162 \rightarrow 169$	1.9
				$163 \rightarrow 144$	1.7
13	202.88	-6.6850	0.0081	$155 \rightarrow 166$	56.8
				$154 \rightarrow 165$	16.4
				$156 \rightarrow 166$	10.0
				$153 \rightarrow 165$	9.8
14	200.62	-10.9817	0.0372	$154 \rightarrow 165$	21.0
				155 → 166	19.1
				$154 \rightarrow 164$	11.6
				$153 \rightarrow 165$	11.3
				153 → 164	9.4
				$163 \rightarrow 173$	4.9
				$163 \rightarrow 168$	3.7
				162 → 168	3.2
				$156 \rightarrow 166$	1.8
				163 → 174	1.5
				$163 \rightarrow 170$	1.5
				162 → 173	1.2
15	200.42	43.4160	0.0454	163 → 173	20.5
				$163 \rightarrow 168$	13.7
				162 → 168	12.4
				163 → 174	7.0
				$154 \rightarrow 164$	6.7
				$162 \rightarrow 173$	5.9
				153 → 164	4.8
				163 → 170	3.6
				154 → 165	3.2
				155 → 166	2.8
				162 → 174	2.5
				163 → 171	2.2
				153 → 165	1.9
				160 → 168	1.9
				163 → 179	1.3
					-

Table S14. (Continued)

^{*a*} Excited states with -5 < R < 5 were not presented.

Atom	x	y	Z
С	-0.378447	0.478406	2.719992
С	0.299420	-0.025696	4.029667
С	0.882164	-1.444899	4.026545
С	-0.123705	-2.485414	3.438095
C	-0.724986	-1.972179	2.045473
Č	-1.364948	-0.629895	2.348488
C	0.615564	0.586606	1.591181
Č	0.408478	-1.796894	1.026152
Č	0.963021	-0 478330	0 813316
Õ	-2 560989	-0 468815	2 388693
C	-1 772147	-2 935869	1 446789
C	-2 259220	-2 532571	0.085108
C	-3 513899	-2 231564	-0 291666
C	-3 816892	-1 870869	_1 718400
C	-4 704530	-2 222026	0 619392
C	0.550106	-3 840133	3 278800
C	-1 260787	-2 662707	<i>A 4</i> 48207
C	2 3/3220	-1 500675	3 500106
C	2.040220	-7.309073	1 331552
C	1 118106	3 300615	3 002687
C	4.110130	3 630806	2 450500
C	4.038361	-4 105321	4 877629
C	2 015853	-0 333538	-0.252676
C	1 502611	0.140683	-0.232070
0	3 175502	-0 622208	-0.0021/0
0	0 707205	-2 761/36	0.375621
C	2 566362	0 322/70	2 583088
C	2.000002	0.322479	2.303000
C	2.199000	1 020627	-3.040307
C	0.042394	0.946460	-4.120099
C	-0.123170	0.040409	-3.143030
C	2 05240703	0.404000	-1.070914
0	3.032423	0.977007	-4.070004
0	0.400004	1.400200	-0.049092
0	1.232290	2.046025	1.001700
C	0.001922	3.040033	1.004022
C	-0.041000	2.004079	1.090/02
C	-1.077000	1.01/0/0	2.900099
	1.423911	3 262776	2.000000
C	0.90000	J.0UJ//U 1 161111	0.410390
C	-1.004429	4.101111 2.002470	2.210010
C	-3.07 1040	J.992410 1 017600	2.140723
	-3.900000 5 121601	4.04/002 2.011502	J. 140000 2 974206
	-0.40 102 1 2 624020	J.04 1303	2.0142UO 1 579010
U U	-3.024930	4.303591	4.3/8942

Table S15. Cartesian coordinates of the lowest energy conformer ofisoxanthochymol (optimized at PBE0/def2-SVPD)

Table S15. (Continued).

Н	1.076133	0.695091	4.317852
Н	-0.478527	0.046599	4.802420
н	0.950165	-1.709092	5.093325
н	-1.306058	-3.926904	1.373397
Н	-2 609192	-3 017891	2 145038
н	-1 491508	-2 508584	-0 693931
н	-4 559173	-2 562638	-2 149606
н	-4 261682	-0.864038	-1 778114
н	-2 018/78		-2 3/8703
н Ц	5 185865	1 230078	-2.340793
	-5.105005	2 0/1206	0.002303
	-5.401090	-2.941200	1 659007
	-4.457459	-2.400040	1.000997
	0.909040	-4.143022	4.240040
	-0.177340	-4.020202	2.990009
	1.349031	-3.847101	2.531789
н	-1.983964	-3.425512	4.116396
н	-0.851127	-3.002157	5.404950
н	-1.832084	-1.740860	4.639974
н	2.402494	-1.785535	2.453561
Н	2.751409	-0.485993	3.556763
Н	3.135394	-2.263492	5.416284
Н	4.173364	-4.696275	2.262694
Н	3.780633	-3.030875	1.763268
Н	5.439788	-3.470723	2.216856
Н	6.015820	-3.944981	4.708346
Н	4.708850	-3.844106	5.918796
Н	4.761778	-5.185402	4.743387
Н	3.613476	0.114371	-2.354694
Н	-1.168055	1.055210	-3.383797
Н	-0.512460	0.257532	-1.113292
Н	3.964144	0.782042	-4.625931
Н	1.273786	1.531539	-5.910539
Н	-1.247389	2.463106	0.948382
Н	-0.738622	2.220869	3.950450
Н	-2.153605	1.633105	3.084383
Н	1.101200	4.627931	3.068338
Н	1.275701	3.002068	3.764812
Н	2.497121	3.622519	2.632120
Н	0.399314	3.474821	-0.446060
Н	0.684405	4.915214	0.568229
н	2.028287	3,819590	0.189445
H	-1.275491	4.522174	3,207133
H	-1.281788	4.932717	1,492850
н	-3 455471	3 778837	1 136129
н	-5 818750	2 995729	3 465410
 Н	-6 013416	4 726270	3 180989
	0.010410	7.120210	0.100000

Table S15. (Continued).

Н	-5.633108	3.644254	1.813506
Н	-3.949328	3.454928	5.202900
Н	-2.555231	4.462463	4.752297
Н	-4.168155	5.186297	4.953017

Table S16. TD-DFT results for isoxanthochymol (4)

Transition	Excitation energy (nm)	Rotatory strength ^a (<i>R</i> x 10 ⁴⁰ cqs)	Oscillator strength f	Contributions	Weight ^{2*100}
1	296.18	-17.5915	0.2167	$161 \rightarrow 164$ $157 \rightarrow 164$	83.5 7 1
2	292.67	16.7429	0.0034	$162 \rightarrow 164$	28.6
				$158 \rightarrow 164$	20.6
				159 → 164	15.0
				$156 \rightarrow 164$	12.3
				$155 \rightarrow 164$	9.0
3	289.0	-16 8821	0 0089	$103 \rightarrow 104$ $162 \rightarrow 165$	0.0 50 9
0	200.0	-10.0021	0.0005	$102 \rightarrow 100$ $163 \rightarrow 165$	37.3
				$162 \rightarrow 164$	2.6
4	271.02	42.9551	0.0478	160 ightarrow 165	84.5
				159 ightarrow 165	5.9
5	266.95	20.3689	0.0728	158 → 164	39.1
				$157 \rightarrow 164$	21.9
				$155 \rightarrow 164$	18.4
				$150 \rightarrow 104$ $150 \rightarrow 165$	4.5
				$103 \rightarrow 103$ $161 \rightarrow 167$	2.8
6	266.27	57.3587	0.1291	$159 \rightarrow 165$	39.7
				158 → 164	17.2
				$157 \rightarrow 164$	16.8
				$155 \rightarrow 164$	7.3
				$160 \rightarrow 165$	7.1
7	040.00	40 7405	0.0077	$155 \rightarrow 165$	2.3
1	246.98	10.7405	0.0077	$159 \rightarrow 160$	52.3
				$102 \rightarrow 100$ $163 \rightarrow 166$	10.4
				$160 \rightarrow 160$	9.6
8	242.22	-27.2971	0.0695	155 → 165	74.3
				158 ightarrow 165	9.1
				159 → 165	3.1
				160 → 166	3.1
0	222.66	ED 6649	0.0459	$155 \rightarrow 164$	3.1
Э	223.00	-JZ.0040	0.0438	$100 \rightarrow 100$ 156 $\rightarrow 166$	44.∠ 11 7
				$150 \rightarrow 100$ $155 \rightarrow 166$	
10	223.24	-22.2292	0.2267	$161 \rightarrow 167$	78.3
			5.2207	157 → 164	11.1
				157 → 176	2.0

11	204.94	22.5005	0.0139	$162 \rightarrow 168$	40.4
				$163 \rightarrow 168$	33.8
				$162 \rightarrow 171$	3.7
				$162 \rightarrow 172$	3.6
				$162 \rightarrow 173$	2.7
				162 ightarrow 169	2.1
				$163 \rightarrow 172$	2.1
				$163 \rightarrow 174$	1.6
12	202.91	6.7889	0.0082	155 ightarrow 166	56.2
				154 ightarrow 165	16.8
				$156 \rightarrow 166$	9.9
				153 ightarrow 165	9.3
13	200.57	-33.6874	0.0587	$163 \rightarrow 173$	13.4
				154 ightarrow 164	11.7
				163 ightarrow 168	9.3
				154 ightarrow 165	8.8
				$162 \rightarrow 168$	8.5
				$153 \rightarrow 164$	8.2
				$155 \rightarrow 166$	8.1
				$163 \rightarrow 174$	5.4
				$153 \rightarrow 165$	4.8
				$162 \rightarrow 173$	3.9
				163 → 170	2.3
				$160 \rightarrow 168$	2.1
				$162 \rightarrow 174$	1.7
				$163 \rightarrow 171$	1.6
				$163 \rightarrow 179$	0.9
14	200.02	6.2107	0.0243	$154 \rightarrow 164$	37.4
				$153 \rightarrow 164$	22.8
				$154 \rightarrow 165$	16.5
				$153 \rightarrow 165$	9.6
				$155 \rightarrow 166$	4.0

Table S16. (Continued)

^{*a*} Excited states with -5 < R < 5 were not presented.