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Abstract  

17β-Estradiol (E2) protects several non-reproductive tissues from apoptosis, including skeletal muscle. 

Previously, we showed that E2 at physiological concentrations prevented apoptosis induced by H2O2 in 

skeletal myoblasts. As we have also demonstrated a clear beneficial action of this hormone on skeletal 

muscle mitochondria, the present work further characterizes the signaling mechanisms modulated by E2 

that are involved in mitochondria protection, which ultimately result in antiapoptosis. Here, we report that 

E2 through estrogen receptors (ERs) inhibited the H2O2-induced PKCδ and JNK activation, which results 

in the inhibition of phosphorylation and translocation to mitochondria of the adaptor protein p66Shc. In 

conjunction, the inhibition by the hormone of this H2O2-triggered signaling pathway results in protection of 

mitochondrial potential membrane. Our results provide basis for a putative mechanism by which E2 

exerts beneficial effects on mitochondria, against oxidative stress, in skeletal muscle cells. This article is 

protected by copyright. All rights reserved 
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Introduction  

The steroid 17β-estradiol (E2) has been shown to serve as a protective agent in several tissues and 

organs not involved in reproduction (Wang et al., 2006; Spyridopoulos et al., 1997). There is evidence 

demonstrating that skeletal muscle is a target tissue for E2 (Milanesi et al., 2008; Vasconsuelo et al., 

2008). In agreement with these observations, muscle pathologies such as sarcopenia have been 

associated to decreased levels of estrogens (Dionne et al., 2000). It has been well established that the 

hormone acts through genomic mechanisms underlying the regulation of nuclear gene transcription but 

also nongenomic actions are a common property of steroid hormones and are frequently associated with 

the activation of various protein-kinase cascades. Previously, it was shown that E2 at physiological 

concentrations prevented apoptosis in skeletal myoblasts involving MAPKs, HSP27, and the survival 

PI3K/Akt pathway, which phosphorylates and inactivates proapoptotic members of the Bcl-2 family 

(Vasconsuelo et al. 2008, 2010, Ronda et al. 2010). Moreover, the steroid was able to abolish the typical 

changes of apoptosis such as nuclear fragmentation, cytoskeleton disorganization, mitochondrial 

reorganization/dysfunction and cytochrome c release induced by H2O2 (Vasconsuelo et al., 2008). 

Recently, we observed that E2 regulates mitochondrial functions, resulting in protection of the organelle. 

Thus, we found that the hormone could elicit an antiapoptotic effect via modulation of the mitochondrial 

permeability transition pore (mPTP) and the antioxidant enzyme manganese superoxide dismutase 

(MnSOD) (La Colla et al., 2013). However, a detailed description of the molecular actions triggered by E2 

exerting its antiapoptotic effects has not been reported yet. Interestingly, studies indicate that a possible 

mechanism of regulation of mPTP is through a protein encoded by the SHC gene, p66Shc, which has 

been proposed to have a central role in apoptosis. In fact, expression and phosphorylation of this adaptor 

protein has been shown to play an important role in signaling events leading to cell death in response to 

oxidative stress (Migliaccio et al., 1999; Pellegrini and Baldari, 2009), due to persistent mPTP opening 

(Almeida et al., 2010). Therefore, misregulation of upstream pathways involved in p66Shc expression and 

phosphorylation may cause sustained activation of this pore, which ultimately induces cell death.  

Signaling molecules, including members of the MAPK family as well as protein kinase C (PKC), have 

been shown to be involved in the regulation of apoptosis. PKC represents a family of at least 12 

serine/threonine kinases that participate having either pro- or antiapoptotic activities depending on the 

stimulus and cell type (Gutcher et al, 2003). PKCδ is generally associated with apoptotic effects whose 

regulation by this isoform is rather complex (Blass et al., 2001; Reyland 2007). Numerous apoptotic 
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stimuli may activate PKCδ by phosphorylation of tyrosine residues (Konishi et al., 1997) and the resulting 

function depends on various factors, including its localization and the presence of other pro- and 

antiapoptoic signaling molecules. For instance, JNK, which is one of the key mediators of stress signaling 

(Hibi et al., 1993), is able to be phosphorylated/activated by PKCδ (Yoshida et al., 2002).   

JNK is essential for apoptosis that is mediated by mitochondrial dysfunction (Chambers and 

LoGrasso, 2011). However, it is not clear what events downstream of this kinase activation contribute to 

the ultimate cellular damage.  Of interest, it has been reported that both JNK and PKCδ are targets of E2 

regulation (Shanmugam et al., 1999; Yao et al., 2007). Nevertheless, the molecular mechanism 

modulated by the steroid in which these kinases are involved is not fully established.     

In this work, we postulate that E2 protects skeletal myoblasts against apoptosis induced by H2O2 

preventing PKCδ, JNK and p66Shc expression and phosphorylation, hence avoiding sustained mPTP 

opening. These studies are of relevance to skeletal muscle physiology as the cell line C2C12 is an 

appropriate experimental model of satellite cells. C2C12 myoblasts resemble the satellite cells that 

surround mature myofibers. As differentiated adult skeletal muscle fibers have scarce ability to repair and 

regenerate themselves when a cellular injury exists, satellite cells have the capacity to proliferate and 

differentiate vital properties to repair the injured tissue (Yoshida et al., 1998). In this context, satellite cells 

and their response to oxidative stress are important to mature skeletal muscle performance and function. 

Of significance for our work, enhanced satellite cell apoptosis has been related to compromised recovery 

potential in skeletal muscle of aged animals (Jejurikar and Kuzon 2003, Jejurikar et al., 2006). The 

knowledge of the molecular mechanism underlying the antiapoptotic action of E2 in these cells is relevant 

to understand the hormone protective effects and could help to further characterize the causes of satellite 

cells loss in view of a future therapeutic impact.  

Materials and methods 

Materials  

Anti-p-PKCδ Tyr311 antibodies (1:1000), anti-PKCδ (1:1000) and JNK inhibitor SP600125, were 

purchased from Cell Signaling Technology, Inc. (Danvers, MA, USA). Anti-p-JNK (1:1000) and anti-JNK 

(1:500) were from Santa Cruz Biotechnology, Inc. Anti-β-tubulin (1:1000) antibody was obtained from 

Thermo Fisher Scientific, Inc. (Rockford, IL, USA). Anti-p-p66Shc ser36 (1:1000 for Western blot analysis 

and 1:50 for immunocytochemistry) was purchased from Abcam (Cambridge, MA, USA). 
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Tetramethylrhodamine methyl ester (TMRM) dye was provided by Molecular Probes (Eugene, OR, USA). 

The PKC inhibitor chelerythrine was from Alomone (Jerusalem, Israel). Phorbol 12-myristate 13-acetate 

(PMA) was from Promega. MitoTracker Red (MitoTracker Red CMXRos) dye and Cy2-conjugated anti-

mouse secondary antibody (1:200) were provided by Molecular Probes (Eugene, OR, USA). E2 and 

fulvestrant were from Sigma-Aldrich (St. Louis, MO, USA). The ECL blot detection kit was provided by 

Perkin-Elmer, Inc (Waltham, MA, USA). The protein molecular weight marker was from Amersham 

(Buckinghamshire, England). All the other reagents used were of analytical grade. The High Pure RNA 

Isolation kit was from Roche Diagnostics (Mannheim, Germany). The High Capacity cDNA Reverse 

Transcription Kit and the KAPA SYBR® FAST qPCR Kit Master Mix Universal were from Applied 

Biosystems Inc (CA, USA).   

Cell culture and treatment 

 C2C12 murine skeletal myoblasts obtained from American Type Culture Collection (Manassas, 

VA, USA) were cultured in growth medium (DMEM) supplemented with 10% heat-inactivated (30 min, 

56°C) fetal bovine serum, 1% nistatine, and 2% streptomycin. These highly myogenic cells have been 

widely used to study muscle functions (Burattini et al., 2004, Vasconsuelo et al., 2008, Pronsato et al., 

2012). Cells were incubated at 37°C in a humid atmosphere of 5% CO2 in air. The treatments were 

performed with 70–80% confluent cultures (120000 cells/cm2) in medium without serum for 30 min. Then, 

10-8M E2, fulvestrant (1 μM, 1h) prior to addition of 10-8M E2, vehicle 0.001% isopropanol (control) or the 

corresponding inhibitors (SP600125, Chelerythrine) were added 1h before induction of apoptosis with 

hydrogen peroxide (H2O2). H2O2 was diluted in culture medium without serum to 0.5 mM in each assay 

(Jiang et al., 2011; Vasconsuelo et al., 2008). After treatments, cells were lysed using a buffer composed 

of 50 mM Tris–HCl (pH 7.4), 150 mM NaCl, 0.2 mM Na2VO4, 2 mM EDTA, 25 mM NaF, 1 mM 

phenylmethylsulfonyl fluoride (PMSF), 1% NP40, 20 mg/ml leupeptin, and 20 mg/ml aprotinin. Protein 

concentration was estimated by the method of Bradford (1976).  

Subcellular fractionation 

C2C12 cells were scrapped and homogenized in ice-cold Tris–EDTA-sucrose buffer (50 mM Tris–

HCl (pH 7.4), 1 mM EDTA, 250 mM sucrose, 1 mM DTT, 0.5 mM PMSF, 20 mg/ml leupeptin, 20 mg/ml 

aprotinin, and 20 mg/ml trypsin inhibitor) using a Teflon-glass hand homogenizer. Total homogenate free 

of debris was used in order to isolate the different fractions. Nuclear pellet was obtained by centrifugation 
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at 800 g for 15 min at 4°C. The supernatant was further centrifuged at 10000g for 30 min at 4°C to yield 

the mitochondrial pellet. The remaining supernatant was further centrifuged at 40000g for 1h at 4°C to 

obtain the cytosolic fraction. Pellets were resuspended in lysis buffer (50 mM Tris–HCl (pH 7.4), 150 mM 

NaCl, 0.2 mM Na2VO4, 2mM EDTA, 25mM NaF, 1mM PMSF, 20 mg/ml leupeptin, and 20 mg/ml 

aprotinin). Protein concentration of the fractions was estimated by the method of Bradford (1976) and 

Western blot assays were performed. Cross contamination between fractions was assessed by 

immunoblot analysis using anti-VDAC as mitochondrial marker. 

Western blot analysis 

Protein samples (20 µg) were mixed with buffer (400 mM Tris–HCl (pH 6.8), 10% SDS, 50% glycerol, 

500 mM dithiothreitol (DTT), and 2 mg/ml bromophenol blue), boiled for 5 min, and resolved by 10–12% 

SDS–PAGE according to the method of Laemmli (1970). Fractionated proteins were electrotransferred to 

polyvinylidene fluoride membranes (Immobilon-P; PVDF) and then blocked for 1h at room temperature 

with 5% nonfat dry milk in PBS containing 0.1% Tween-20 (PBS-T). Blots were incubated overnight with 

the primary antibodies: anti-p-PKCδ, anti-PKCδ, anti-VDAC and anti-β-tubulin using anti-rabbit secondary 

antibodies for all of them; anti-p-JNK, anti-JNK and anti-p-p66Shc with anti-mouse secondary antibodies. 

The membranes were washed with PBS-T before incubation with HRP-conjugated secondary antibodies. 

The ECL blot detection kit was used. Relative migration of unknown proteins was determined by 

comparison with molecular weight markers. When needed, membranes were stripped with stripping buffer 

(62.5 mM Tris–HCl (pH 6.7), 2% SDS, 50 mM β-mercaptoethanol), washed with PBS 1% Tween-20 and 

blocked for 1h with 5% non-fat dry milk in PBS-T. The blots were then treated as before using other 

antibodies. Relative quantification of bands was performed using ImageJ software (NIH, USA). 

Terminal Transferase dUTP Nick End Labeling (TUNEL) assays  

After the corresponding treatments, TUNEL assays were performed according to manufacturer’s 

directions (Promega, Madison, USA). Briefly, cells were fixed with paraformaldehyde (4% in PBS, pH 

7.4), washed with PBS and permeabilized with Triton X-100 (0,2% in PBS) and labeled with rTdT 

incubation solution (60 min, 37°C, in the dark). After washings, samples were analyzed in order to detect 

green fluorescence of apoptotic cells by fluorescence microscope. 

Immunocytochemistry 
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After the corresponding treatments, coverslips with adherent cells  were stained with MitoTracker 

Red, prepared in DMSO and then added to the cell culture medium at a final concentration of 1 μmol/l. 

After 30 min of incubation at 37 ºC in darkness, cells were washed with PBS (pH 7.4, 8 g/l NaCl, 0.2 g/l 

KCl, 0.24 g/l KH2PO4, and 1.44 g/l Na2HPO4) and fixed with methanol at -20 ºC for 30 min. After fixation, 

cells were rinsed three times with PBS and then, non-specific sites were blocked for 1 h with PBS 5% 

BSA. Cells were incubated with appropriate primary antibodies overnight at 4 ºC. The primary antibodies 

were recognized by fluorophore-conjugated secondary antibodies. Finally, the stained cells were 

analyzed with a confocal scanning laser microscopy (Leica TCS SP2 AOBS microscope), using a 63x 

objective. The specificity of the labeling techniques was proven by the absence of fluorescence when the 

primary or the secondary antibodies were omitted. At least ten fields per slide were examined. 

Representative photographs are shown.  

Measurement of mitochondrial membrane potential (∆Ψm)  

        Mitochondrial membrane potential was determined using TMRM. After the corresponding 

treatments, C2C12 cells were loaded with this dye (20 nM, 30 min, 37°C in darkness) in medium without 

serum and the fluorescence was measured using a fluorescence microscope. A total of 500 cells per 

treatment were studied for the determination of the percentage (%) of TMRM fluorescence intensity. 

Quantification of results was performed using ImageJ. Background fluorescent intensity was subtracted. 

 

RNA isolation, reverse transcription, and real-time quantitative PCR 

        Cells were treated during different periods of time with the vehicle (C), H2O2 (0.5 mM) or 

preincubated with 10-8 M E2 during 1h and then exposed to H2O2 (0.5 mM) for the times specified. Total 

RNA was extracted after the corresponding treatments, using the High Pure RNA Isolation kit (Roche 

Diagnostics, Mannheim, Germany). RNA (2 µg) was reverse transcribed with the High Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems Inc., CA, USA) according   

to the manufacturer´s instructions. Quantitative real-time PCR was done using KAPA SYBR® FAST 

qPCR Kit Master Mix (2X) Universal (KR0389 - v8.12), MicroAmp® Fast 96-Well Reaction Plate, and  ABI 

Prism7500Fast® Sequence Detection System with 96-wells (Applied   

Biosystems Inc., CA, USA) under the standard conditions recommended by   

the manufacturer. Primer sets to amplify murine cDNAs used in the analysis were as follows: 

glycelaldehyde 3-phosphatedehydrogenase (GAPDH) set: forward 5´CGTCCCGTAGACAAAATGGT3´, 
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reverse 5´TTGATGGCAACAATCTCCAC3´ and p66Shc set: forward 

5´ACTACCCTGTGTTCCTTCTTTC 3´, reverse 5´TCGGTGGATTCCTGAGATACTGT3´. The specificity of 

PCR products was confirmed by melting curve analysis. Levels of the transcripts were normalized to 

GAPDH, used as housekeeping gene. Relative quantification of gene expression was determined by the 

comparative CT method (Livak and Schmittgen, 2001).  

Statistical analysis 

Results are shown as means + S.D. of not less than three independent experiments. Statistical 

differences among groups were performed using ANOVA and a multiple comparison post hoc test (Tukey 

1953). The statistical significance of data was determined as p< 0.05. 

Results  

E2 inhibits phosphorylation of PKCδ and JNK in skeletal myoblast cells 

As mentioned above, PKCδ is considered to be an apoptotic mediator (Blas et al., 2001; Reyland 

2007). Thus, we explored whether E2 regulates PKCδ signaling in C2C12 cells. Tyrosine phosphorylation 

is a relatively specific regulatory mechanism for PKCδ, but not for the others PKC isoforms. To our 

interest, it has been shown that tyrosine phosphorylation of PKCδ occurs in cells under oxidative stress, 

affecting its activity (Konishi et al., 1997).  

As an initial approach, we explored the activation of PKCδ in C2C12 cells evaluating its 

phosphorylation in the residue tyrosine 311. C2C12 cells were treated with H2O2 (0.5 mM for different 

periods of time). We observed that H2O2 induced the activation of this kinase at 1h of treatment, but 

began to decay at 4h of treatment, showing that this effect was not maintained over time (Fig. 1A). In 

order to evaluate if the hormone E2 was able to modulate PKCδ activation, C2C12 cells were incubated 

with physiological concentrations of E2 (10-8M, 1h) prior addition of the apoptotic inductor H2O2. As shown 

in Fig. 1B, under these conditions, E2 diminished PKCδ phosphorylation at tyrosine 311. However in 

presence of fulvestrant (1 μM, 1h), an ER antagonist, E2 was unable to diminish the H2O2-induced 

phosphorylation of this kinase. 

Another stress-pathway that could act in conjunction with PKCδ is the JNK cascade. Then, we 

investigated whether JNK is also activated in response to this apoptotic inductor in C2C12 cells. We 

evidenced that H2O2 activated this kinase after 1h of incubation but it behaved differently from PKCδ, 
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since its activation was maintained over time (Fig. 2A). To explore the effect of E2 on JNK activation, 

C2C12 cells were incubated with E2 (10-8 M, 1h) prior addition of H2O2. It was observed that E2 could 

reverse its phosphorylation. When cells were treated with the ER antagonist before the addition of E2, the 

H2O2-induced phosphorylation of JNK was maintained (Fig. 2B). 

PKCδ and JNK are involved in skeletal myoblast cell apoptosis 

Since the role of PKCδ and JNK in the apoptotic process depends on the cell type, nature of the 

death stimulus, duration of its activation and the activity of other signaling pathways, we next investigated 

whether inhibition of PKC and JNK affects the ability of C2C12 cells to undergo apoptosis. Cells were 

treated with H2O2 (0.5 mM, 1h) in the presence and absence of the PKC specific inhibitor chelerythrine (2 

µM, 1h) or the JNK inhibitor SP600125 (10 µM, 1h). Cells exhibited a large increase in DNA 

fragmentation (74.01% ± 12.09 of TUNEL positive cells above the control) in response to H2O2. Pre-

treatment of cells with chelerythrine diminished DNA fragmentation caused by H2O2 (from 88.05% to 

46.3%). Similar effects were obtained when cells were treated with SP600125 (from 88.05% to 46.9%) 

(Fig. 3A-B). Moreover, since it is known that diacylglycerol (DAG) activates PKC (Nishizuka, 1992) and 

that DAG induced activation of PKC can be mimicked by phorbol esters (PMA) (Newton, 1997), cells 

were treated with PMA (1 µM, 1h). This treatment increased the percentage of TUNEL positive cells 

(69.01% above the control) to the same extent as H2O2 (Fig. 3A-B). These results show that both kinases 

are involved in the apoptosis triggered by H2O2 in skeletal myoblast cells. Additionally, treatment of cells 

with E2 before the induction of apoptosis showed similar results (53.04%) as those obtained in presence 

of both inhibitors. The presence of fulvestrant prior addition of E2 and H2O2 increased the percentage of 

TUNEL positive cells (85.04 %) as H2O2 did,  

PKCδ can act upstream JNK in the apoptotic pathway in skeletal myoblast cells 

In the present study it was shown that both PKCδ and JNK were activated in response to H2O2 

exerting a pro-apoptotic role. To further elucidate the mechanism of action of these kinases, we 

investigated whether PKCδ and JNK might function connectedly in skeletal muscle cells. To that end, 

PKC was downregulated by treating C2C12 cells with a high concentration of PMA (10 µM) for a 

prolonged time (48h) (Takuwa et al., 1988; Rodriguez-Pena et al., 1984). After downregulation of PKCδ, 

cells were exposed to H2O2 and the phosphorylation of JNK was assessed. As observed in Fig. 4, PMA 

reduced the H2O2-induced phosphorylation of JNK. In contrast, when muscle cells were treated with the 
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JNK inhibitor and then probed for the H2O2-induced phosphorylation of PKCδ, no changes were 

observed. These results strongly suggest that PKCδ acts upstream JNK in the apoptotic pathway 

triggered by H2O2. 

E2 decreases p66Shc mRNA expression and inhibits its phosphorylation in skeletal myoblast 

cells 

 p66Shc expression and its phosphorylation at serine 36 is linked to cell death in response to 

oxidative stress (Migliaccio et al, 1999; Pellegrini and Baldari, 2009). Initially, to gauge the effect of H2O2 

(0.5 mM) over p66Shc mRNA level in skeletal muscle, cells were incubated with the apoptotic inducer for 

the periods of time specified in Fig. 5A. We found that expression levels of p66Shc mRNA were 

upregulated after H2O2 treatments. In addition, when p66Shc protein phosphorylation was evaluated in 

response to H2O2, it was found that after 1h of treatment with H2O2 (0.5 mM), p66Shc was phosphorylated 

in serine 36 residue. This effect was maintained up to 3 h of incubation (Fig. 5B). Since we found that 

JNK was activated in response to H2O2, we further studied if this kinase can act upstream p66Shc. 

Consequently, cells were exposed to the JNK inhibitor SP600125 (10 µM, 1h), prior to incubation with 

H2O2 and probed for the phosphorylation of p66Shc. The data obtained support the notion that JNK is 

involved in the phosphorylation of p66Shc. However, when PKCδ was inhibited, the phosphorylation of 

this protein was not affected (Fig. 5C).  

Then, we investigated whether E2 could abrogate the expression and phosphorylation of p66Shc in 

response to H2O2. p66Shc mRNA levels induced by H2O2 (0.5 mM) were diminished by preincubation with 

the hormone (10-8 M, 1h) (Fig. 5A) at 1h of treatment, effect that was maintained. When immunoblot 

assays were performed, it was observed that E2 could abolish p66Shc phosphorylation on serine 36 

residue. These results taken together suggest that both p66Shc expression and phosphorylation by H2O2 

through JNK activation are important to conduce cells to death, and that E2 protected muscle cells from 

apoptosis by preventing these effects.  

 

E2 affects the mitochondrial translocation of p66Shc triggered by JNK  

As shown, p66Shc increased its expression and became phosphorylated through JNK in response to 

H2O2 in C2C12 cells. In order to further investigate putative targets of the adaptor protein in the stress 

response, we analyzed its intracellular localization once it is phoshorylated. 
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      To address this issue, cells were treated with the apoptotic inducer and then cytosolic and 

mitochondrial fractions were obtained. Immunoblots of fractions showed that the amount of p66Shc 

localized in mitochondria is higher than its content in the cytosolic fraction (Fig. 6). Moreover, since JNK 

was activated in response to H2O2 inducing serine 36-phosphorylation of p66Shc, it was further studied 

whether this kinase is involved in its translocation to mitochondria. The cells were treated with the JNK 

inhibitor SP600125 (10 µM, 1h) prior to incubation with H2O2 followed by subcellular fractionation of 

lysates. Fractions were probed for p66Shc by immunoblot assays. Under this condition, p66Shc was 

unable to translocate to mitochondria, demonstrating that JNK activation is a crucial step in this 

translocation. Furthermore, when we studied whether E2 could prevent its translocation, it was observed 

that addition of physiological concentrations of the hormone (10-8 M, 1h) prior to addition of H2O2 (0.5 mM, 

1h) decrease p66Shc migration. Moreover, immunocytochemistry studies were performed using an anti-

p-p66Shc antibody (green fluorescence) and Mitotracker (red fluorescence). In the control condition, 

p66Shc is not phosphorylated (no fluorescence was detected) while H2O2 treatment induced its 

phosphorylation (high green fluorescence) and translocation to mitochondria, evidenced by the yellow 

fluorescence in mitochondria from the merged image. In presence of the hormone, a slight green 

fluorescence appeared diffuse in all the cytosol, showing inhibition of p-p66Shc translocation to 

mitochondria. When cells were treated with fulvestrant prior addition of E2 and H2O2, the inhibitory effect 

of E2 was not observed. These data support again the notion that the estrogen protects skeletal myoblast 

cells from apoptosis inhibiting JNK, which in turn cannot phosphorylate p66Shc maintaining it mostly in 

the cytosol.  

 

E2 prevents loss of mitochondrial membrane potential affecting translocation of p66Shc  

In previous studies, we found that E2 could develop an antiapoptotic effect via the modulation of the 

mPTP, resulting in the prevention of its sustained H2O2-induced opening (La Colla et al., 2013). 

Considering that E2 inhibits the mitochondrial translocation of p66Shc mediated by JNK, a possible 

relationship between the protection of ∆ψm by the hormone and this adaptor protein was investigated. To 

that end, cells were treated with SP600125 (10 µM, 1h), E2 (10-8M, 1h) or E2 (10-8M, 1h) and fulvestrant 

(1 μM, 1h), prior to incubation with H2O2 (0.5 mM, 1h). After these treatments, live cells were incubated 

with TMRM (20 nM, 30 min, 37°C) and membrane potential was estimated analysing the levels of 

fluorescence by microscopy. We observed that the apoptotic inducer lead to a decrease in the 
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percentage of fluorescent intensity (Fig. 7A-B), indicative of ∆ψm loss, which is associated to mPTP 

opening in C2C12 cells (La Colla et al., 2013). The pretreatment with the JNK inhibitor, SP600125, 

restored the ∆ψm, since it was observed an increase in the percentage of fluorescent intensity (from 

36.54 + 9.6 (H2O2) to 151.39 + 3.1). This result suggests that JNK is involved in the sustained opening of 

the mPTP. Moreover, given that the mitochondrial translocation of p66Shc requires JNK activation and 

that p66Shc phosphorylation has been linked to persistent mPTP opening (Almeida et al., 2010), these 

results strongly suggest that p66Shc modulates mPTP opening following JNK activation by H2O2 in 

skeletal muscle cells. When cells were pretreated with 10-8 M E2 and then induced to apoptosis, the level 

of fluorescence intensity was maintained as in control condition (104.09 + 20.1) demonstrating that E2 

could prevent mPTP opening and the subsequent ∆ψm loss by the inhibition of p66Shc translocation to 

mitochondria, showing the protective action of the steroid (Fig 7A-B). Additionally, the incubation with 

fulvestrant and E2 prior to induction of apoptosis, conduce to a decrease in the percentage of fluorescent 

intensity similar to that observed in H2O2 condition, involving the ERs in this effect. 

 

Discussion   

 Rapid signaling cascades triggered by E2 regulate various cellular processes such as 

differentiation, proliferation, and even apoptosis (Review in Boland et al., 2008). In previous studies, we 

presented a molecular link between E2 and apoptosis in skeletal muscle cells. Indeed, we showed an 

antiapoptotic role of the steroid (Vasconsuelo et al., 2008; La Colla et al., 2013) involving ERs, 

PI3K/Akt/Bad, HSP27 and MAPKs (Vasconsuelo et al. 2008, 2010; Ronda et al., 2010), exerting an 

important effect over mitochondria (La Colla et al., 2013).  In this work, we deepen the molecular 

pathways modulated by E2 that conduct to mitochondrial protection and that, in conjunction, lead to an 

antiapoptotic effect. 

 The family of intracellular signaling molecules that are regulated during apoptosis is increasing 

and includes a variety of protein kinases (Bokoch, 1998). Several studies have demonstrated that PKCδ 

has multiple targets in response to apoptotic stimuli, acting either as pro-apoptotic or anti-apoptotic 

depending on the cell type and stimuli (Brodie and Blumberg, 2003; Jackson and Foster, 2004). Even in 

the same cell type, relying on the physiological state, PKCδ may accomplish multiple diverse functions. 

This flexibility in PKCδ signaling may be due to the complex regulation mechanisms of the kinase 
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(Steinberg, 2004; Corbalan-Garcia and Gomez-Fernandez, 2006). In addition to the traditional model of 

PKCδ activation that requires lipid cofactors and anchoring proteins that localize the active conformation 

of the kinase to membranes, a distinct mode for PKCδ activation that involves tyrosine phosphorylation 

has been identified (reviewed in Kikkawa et al., 2002). This particular phosphorylation on tyrosine 

residues is an early response to many apoptotic stimuli and it is generally accepted that it conduces to its 

activation (Konishi et al., 1997). Here, we found that H2O2 induced PKCδ activation, probed by its 

phosphorylation in residue tyrosine 311, exerting a pro-apoptotic role in muscle cells which was 

prevented by E2. The involvement of ERs in this role was also demonstrated, in agreement with our 

previus work which showed that the protective effects of this hormone in skeletal myoblasts are through 

ERs (Vasconsuelo et al., 2008; La Colla et al., 2013). In addition, we corroborated these results using the 

PKC activator PMA. PKC isozymes, including PKCδ, can be up-regulated as a result of cell treatment 

with pharmacological concentrations of PMA (Assert et al., 1996). Since we found that PMA treatment 

lead to similar results as H2O2, it can be additionally demonstrated the apoptotic role of this PKC in 

C2C12 cells under H2O2 stimuli. Although here is clearly demonstrated the participation of PKCδ in H2O2-

induced apoptosis, it cannot be excluded the involvement of other PKC isotypes responsive to PMA. 

Even though the apoptotic role of JNK has been established, it has also been reported that the early 

transient activation of JNK is associated with proliferation, while sustained activation of JNK correlates 

with the induction of apoptosis by a variety of agents (Chen et al., 1998). Accordingly, here we 

demonstrated that JNK was activated by H2O2 in C2C12 skeletal myoblast cells and afterwards its 

activation was sustained during the time studied. Even though both kinases, PKCδ and JNK, were 

activated by the apoptotic stimuli at the same time, they differ in the duration of their activation. 

Additionally, we found that JNK and PKCδ act in conjunction mediating the apoptotic signal. It is known 

that long-term exposure of cells to high concentrations of phorbol esters such as PMA cause 

downregulation of PKCδ (Ahnadi et al., 2000). However, the mechanism whereby PMA induces 

downregulation of PKC is still unclear. Since the downregulation of PKCδ with PMA inhibited JNK 

activation, we showed that JNK acts downstream to this PKC in H2O2-treated C2C12 cells. It has been 

reported that E2 prevented breast cancer cell death induced by UV radiation by inhibiting JNK activity 

(Razandi et al., 2000). Accordingly, we found that JNK activation was prevented by E2. Apoptosis assays 

further support this link between JNK and PKCδ, since comparable results were obtained with the 

apoptotic inducer plus each of the kinase inhibitors, SP600125 and chelerythrine. The current data 
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strongly suggest a connection between JNK and PKCδ in the apoptotic process in skeletal muscle cells. 

We found that the inhibition of H2O2 induced-JNK activation, by the downregulation of PKC, was more 

evident on the p46 isoform than p54 isoform. This different behavior between PKCδ and each of the JNK 

isoforms could be due to different localization of these kinases or interaction with different intermediates 

in the apoptotic process, the p46 isoform being a more suitable target for PKCδ activation. Therefore, in 

this work we provide more details of the complex molecular mechanism responsible of the protective role 

exerted by E2 on myoblasts against apoptosis. 

 p66Shc is a key protein involved in oxidative stress signaling whose expression changes between 

different cell types and even is not present in some cells (Migliaccio et al., 1997; Pelicci et al., 1992). Of 

our interest, it was previously demonstrated that expression and phosphorylation of this adaptor protein at 

serine 36 is important for the death response upon oxidative damage during aging (Migliaccio et al., 1999; 

Chen et al., 2014). In view of these observations, it was studied whether p66Shc participates in the 

apoptotic response in skeletal muscle cells and if JNK and/or PKCδ, shown in this work to be activated in 

response to H2O2, are involved in phosphorylation of p66Shc. It was first demonstrated that p66Shc 

mRNA level was augmented in response to the apoptotic inducer and that E2 could revert this effect. 

Accordingly, p66Shc was phosphorylated in serine 36 upon H2O2 treatment. This activation was not 

observed when cells were pretreated with the hormone. Afterwards, the JNK inhibitor SP600125 

prevented the H2O2-induced p66Shc phosphorylation, suggesting that this adaptor protein is a substrate 

of JNK. Moreover, the results suggest that p66Shc phosphorylation is independent of PKC, since it was 

not affected when this kinase was downregulated with PMA. Then, one may envision that p54 JNK is the 

isoform mainly involved in the phosphorylation of this adaptor protein, since it was affected to a lesser 

extent by PKC downregulation.  

Another issue for understanding the molecular mechanism of p66Shc action is its intracellular 

localization after being phosphorylated. However p66Shc has a mitochondrial targeting signal which 

allows translocation to this organelle (Ventura et al., 2004), the mechanism underlying this event is not 

fully elucidated. The results obtained in the present work further support the notion that p66Shc changes 

its localization upon its phosphorylation from the cytosol to the mitochondrial compartment, and that E2 

through ER prevents its translocation. This is in concordance with the fact that the hormone inhibits JNK 

activation, and subsequently p66Shc phosphorylation/translocation is suppressed. In previous studies, we 

found that E2 protected C2C12 cells from apoptosis by inhibiting the sustained opening of mPTP (La 



A
cc

ep
te

d 
A

rt
ic

le

This article is protected by copyright. All rights reserved 

 

Colla et al., 2013), an event which was directly related to the loss of mitochondrial membrane potential 

(Armstrong 2006). Furthermore, we demonstrated that this opening precede the ∆ψm loss (La Colla et al., 

2013). We then hypothesize that E2 can regulate p66Shc to avoid the loss of mitochondrial membrane 

potential, and in turn preserves mitochondrial function. Indeed, it was found that E2 through ERs restored 

the loss of mitochondrial membrane potential, showing that in presence of the steroid, p66Shc is not 

phosphorylated nor it can translocate to mitochondria, and as a consequence the mitochondrial 

membrane potential is maintained indicating that p66Shc is not able to alter mitochondrial permeability 

when acting from the outside of the organelle. 

Altogether these data with our previous findings support the relevant role of E2 in the inhibition of 

multiple cellular pathways in skeletal myoblast cells that acting in concert lead to apoptosis (Fig. 8), 

confirming that mitochondria are influenced by E2 signalling. As it was found that E2 cannot protect 

mitochondrial functions during apoptosis when ERs were inhibited in C2C12 cells, in concordance with 

previous studies (Vasconsuelo et al., 2008; La Colla et al., 2013), then we demonstrate that ERs 

participate in the molecular pathways studied herein. 

 As was mentioned, it is known that adult skeletal muscle fibers have scarce capacity to repair and 

regenerate themselves in response to an injury such as oxidative stress. Satellite cells are responsible of 

the repair of this injured muscle. Since the C2C12 cell line is a proper experimental model to study 

satellite cells (Yoshida et al. 1998), this work could contribute with molecular details to further understand 

the response of myoblasts to oxidative injury and the effects of estradiol in the regulation of apoptosis in 

skeletal muscle.  
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Figure Legends 

Fig. 1. Inhibition of H2O2 induced-PKCδ activation by 17β-estradiol in C2C12 muscle cells. C2C12 

cells were incubated under different experimental conditions: A) Control (C) or 0.5 mM H2O2 during the 

times indicated (H2O2); B) vehicle (C); 10-8 M 17β-estradiol for 1 h (E2); 0.5 mM H2O2 for 1 h (H2O2), or 10-

8 M 17β-estradiol for 1 h followed by 0.5 mM H2O2 during 1 h (H2O2 + E2) or 1µM fulvestrant (F) for 1 h 

followed by 10-8 M 17β-estradiol for 1 h and  0.5 mM H2O2 during 1 h (E2 + H2O2 + F). Cell lysates were 

prepared and subjected to Western blot analysis using anti-p-PKCδ Y311 and anti-PKCδ antibodies. β-

tubulin levels were measured as protein loading controls. The blots are representative of three 

independent experiments with comparable results. They were quantified by scanning volumetric 

densitometry and normalized with PKCδ level. Averages ± S.D. are given. * p < 0.05, with respect to the 

control (C); # p < 0.05, with respect to H2O2;  ** p < 0.05, with respect to E2 + H2O2 

 

Fig. 2. 17β-estradiol abrogates H2O2 induced-JNK activation in C2C12 muscle cells.  C2C12 cells 

were incubated with: A) 0.5 mM H2O2 for the times indicated (H2O2), and B) vehicle (C), 10-8 M 17β-

estradiol for 1 h (E2), 0.5 mM H2O2 for 1 h (H2O2), or 10-8 M 17β-estradiol for 1 h followed by treatment 

with 0.5 mM H2O2 during 1 h (H2O2 + E2) or 1µM fulvestrant (F) for 1 h followed by 10-8 M 17β-estradiol 

for 1 h and  0.5 mM H2O2 during 1 h (E2 + H2O2 + F). Cell lysates were prepared and subjected to 

Western blot analysis using an anti-p-JNK and anti-JNK antibodies. β-tubulin levels were measured as 

protein loading controls. Blots representative of three independent experiments with comparable results. 

They were quantified by scanning volumetric densitometry and normalized with JNK level. Averages ± 

S.D are given. * p < 0.05, with respect to the control (C);  # p < 0.05, with respect to H2O2. ** p < 0.05, with 

respect to E2 + H2O2. 

 

Fig. 3. H2O2 induces apoptosis through PKC and JNK in C2C12 cells. A) and B) C2C12 cells were 

left untreated (C) or incubated with 10-8 M 17β-estradiol for 1 h (E2),  10-8 M 17β-estradiol for 1 h (E2) 

followed by treatment with H2O2 (0.5 mM, 1h) (H2O2 + E2), 1µM fulvestrant (F) for 1 h followed by 10-8 M 

17β-estradiol for 1 h and  0.5 mM H2O2 during 1 h (E2 + H2O2 + F), the apoptotic inducer H2O2 (0.5 mM, 

1h) in the presence and absence of 2 µM chelerythrine during 1 h (Chel), 10 µM SP600125 during 1 h 

(SP), or with 1 µM Phorbol 12-myristate 13-acetate for 1 h (PMA). Then, apoptosis was determined by 

TUNEL assays as described under Materials and Methods and expressed as the percentage of TUNEL 
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positive cells in the coverslips.  Each value represents the mean of three independent determinations ± 

S.D.; * p <0.05, with respect to the control; # p< 0.05, with respect to H2O2, ** p < 0.05, with respect to E2 

+ H2O2. B) Representative images of each assayed condition are shown. Magnification 20x. 

 

Fig.4. Downregulation of PKC inhibits H2O2 induced JNK activation. Cells without treatment (C) or  

treated with 0.5 mM H2O2 for 1 h (H2O2), or preincubated with PMA (10 µM, 48 h) and then treated with 

0.5 mM H2O2 for 1 h (H2O2) or 10 µM SP600125 (SP) for 1 h followed by incubation with 0.5 mM H2O2 

during 1 h (H2O2 + SP). Cell lysates were obtained following the different treatments and subjected to 

Western blot analysis using antibodies specific for p-PKC δ Y311 and p-JNK and their corresponding 

unphosphorylated total proteins. β-tubulin levels were measured as protein loading controls. The blots are 

representative of three independent experiments with comparable results. Densitometric quantification is 

shown, normalizing with PKC δ and JNK, respectively. In particular, in the condition PMA + H2O2, β-

tubulin level was used to normalize. Averages ± S.D are given. * p < 0.05 with respect to the control (C). # 

p< 0.05 with respect to  H2O2. 

 

Fig. 5. 17β-estradiol diminishes p66Shc mRNA levels and inhibits p66Shc activation through JNK. 

A) Cells were treated with 0.5 mM H2O2 for the indicated times (H2O2) or preincubated with 10-8 M 17β-

estradiol for 1h, followed by incubation with 0.5 mM H2O2 during the indicated times (E2 + H2O2). Under 

the designated conditions, quantification by real-time PCR of p66Shc mRNA levels was carried out. 

Transcript levels were normalized to the expression level of GAPDH. Syber green runs were performed 

on duplicate samples of cDNAs from 2 independent reverse transcription reactions. The CT method was 

applied as a comparative method of quantification. Averages ± S.D are given. * p < 0.05 with respect to 

the control (C); # p < 0.05 with respect to the corresponding H2O2 treatment without E2. B) Cell were 

incubated under different experimental conditions: 0.5 mM H2O2 for the indicated times (H2O2) or C) 

vehicle (C), 10-8 M 17β-estradiol for 1 h (E2), 0.5 mM H2O2  for 1 h (H2O2), 10 µM SP600125 (SP) for 1 h 

followed by incubation with 0.5 mM H2O2 during 1 h (H2O2 + SP) or 10-8 M 17β-estradiol for 1h prior 

addition of 0,5 mM H2O2 during 1h (H2O2 + E2). Under the designated conditions, cells were preincubated 

with PMA (10 µM, 48 h). Lysates were used to probe for serine 36-phosphorylation of p66Shc by Western 

blot assays. The blots are representative of three independent experiments with comparable results. 
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Densitometric quantification of blots is shown. Averages ± S.D are given. * p < 0.05, with respect to the 

control (C); # p < 0.05,  with respect to H2O2. 

 

Fig. 6. E2 affects the mitochondrial translocation of p66Shc triggered by JNK. A) C2C12 cell lysates 

were obtained following the different treatments and then subjected to subcellular fractionation. Enriched 

mitochondrial and cytosolic fractions were used to perform Western blots assays and probed for p66Shc 

serine 36. Experiments were repeated at least three times with essentially identical results. VDAC was 

used as mitochondrial marker. B) Cells were treated with vehicle (C), H2O2 for 1 h (H2O2), 10-8 M 17β-

estradiol for 1 h (E2) followed by treatment with H2O2 (0.5 mM, 1h) (H2O2 + E2) or 1µM fulvestrant (F) for 

1 h followed by 10-8 M 17β-estradiol for 1 h and  0.5 mM H2O2 during 1 h (E2 + H2O2 + F). Then, cells 

were incubated with Mitotracker (red fluorescence) and anti-p-p66Shc followed by a fluorophore-

conjugated secondary antibody (green fluorescence). Representative images by confocal microscopy are 

shown. Magnification 60x. 

 

Fig. 7. E2 prevents loss of mitochondrial membrane potential. A) C2C12 cells were grown on glass 

coverslips. After the different treatments indicated in the graph, coverslips were incubated with the red 

fluorescent probe TMRM at a final concentration of 20 nM in serum-free DMEM medium for 30 min at 

37 °C in darkness. Afterwards, samples were examined under a fluorescence microscope. Experiments 

were repeated at least three times with essentially identical results. Images were captured with a digital 

camera and their quantification was performed using ImageJ software (NIH). Averages + S.D. are given. * 

p < 0.05 with respect to the control. # p < 0.05,  with respect to H2O2, ** p < 0.05, with respect to E2 + 

H2O2. B) Representative images are shown. Magnification 40x. 

 

Fig. 8. Schematic diagram showing the participation of PKCδ, JNK and p66Shc in the protective 

action of 17β-estradiol in skeletal muscle myoblasts. E2 prevents PKCδ, JNK and p66Shc 

phosphorylation involving ERs. These events are  implicated  in  the  antiapoptotic  action  of  

the  hormone that in turn  abrogate the collapse of mitochondrial membrane potential induced by 

hydrogen peroxide stimulus. 
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