# Advanced Synthesis \& Catalysis 

Supporting Information

# Supporting Information 

# Expedient Iodocyclization Approach Toward Polysubstituted $3 H$-Benzo $[e]$ indoles 

Guilherme M. Martins, ${ }^{\dagger}$ Gilson Zeni, ${ }^{\dagger}$ Davi F. Back, ${ }^{\dagger}$ Teodoro S. Kaufman ${ }^{\ddagger}$ and Claudio C. Silveira* ${ }^{\dagger}$<br>${ }^{\dagger}$ Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil<br>${ }^{\ddagger}$ Instituto de Química Rosario (CONICET-UNR), Suipacha 531, S2002LRK, Rosario, SF, Argentina

## Table of Contents

General experimental details S2
Synthesis and characterization S2
Synthesis of precursors S2
Synthesis of the 2(2-aryl-/2-alkyl-ethynyl)benzaldehydes S4
Synthesis of the 1,2,3,4-tetrasubstituted pyrroles S6
Synthesis of the $3 H$-benzo $e$ ]indoles S11
Example of functionalization of a iodocyclized product S16
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra $\quad$ S17
References S41

## General experimental details

Solvents were purified and dried according to usual techniques prior to use. ${ }^{[1]}$ All other reagents were obtained commercially. Purification of the compounds was performed by column chromatography using silica gel $60 \mathrm{H}(40-63 \mu \mathrm{~m}$ particle size, 230-400 mesh. Elution was carried out with hexane or EtOAc:hexane mixtures. All new compounds gave single spots on TLC plates run in different solvent systems (hexane or EtOAc:hexane). Chromatographic spots were detected by exposure to 254 nm UV light, as well as by treatment with iodine or with an acid solution of vanillin.

The melting points are reported uncorrected. IR spectra were recorded as thin films held between NaCl cells or as solid dispersions in KBr disks. The wavelength scale was calibrated with a 0.05 mm thick polystyrene film, employing the absorption band at 1601 $\mathrm{cm}^{-1}$. The ${ }^{1} \mathrm{H}$ NMR spectra were acquired in $\mathrm{CDCl}_{3}\left(\delta_{\mathrm{H}}=7.27 \mathrm{ppm} ; \delta_{\mathrm{C}}=77.0 \mathrm{ppm}\right)$, at 200 or 400 MHz . Chemical shifts are reported in parts per million in the $\delta$ scale and $J$-values are given in Hertz. Signals are reported as follows: $s$ (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), ddd (doublet of doublet of doublets), and $m$ (multiplet). The low resolution mass spectra were obtained from a GC-MS instrument. Fragments are described with regards to their $m / z$ ratios, in terms of relative intensity (\%) of their signals.

## Synthesis and characterization

## Synthesis of precursors

2-Bromo-4,5-dimethoxybenzaldehyde. ${ }^{[2]}$ A stirred solution of 3,4-dimethoxy benzaldehyde ( $3.98 \mathrm{~g}, 24 \mathrm{mmol}$ ) in $\mathrm{MeOH}(40 \mathrm{~mL})$ was treated dropwise with $\mathrm{Br}_{2}(1.32 \mathrm{~mL}$, 26 mmol ) during 30 min ., and the system was left to react at room temperature for a further period of 1 hour. Then, the solvent was removed under reduced pressure, the solid was filtered and the solid residue was successively washed with cold water and petroleum ether, affording the title compound ( $5.7 \mathrm{~g}, 98 \%$ ), as a yellowish solid. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 10.18(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 190.6,154.4,148.8,126.5,120.3,115.4,110.4,56.4,56.1$.
( $\boldsymbol{E}$ )-4-Chlorocinnamic acid. ${ }^{[3,4]}$ A solution of 4-chlorobenzaldehyde ( $5.6 \mathrm{~g}, 40 \mathrm{mmol}$ ) and malonic acid $(9.15 \mathrm{~g}, 88 \mathrm{mmol})$ in pyridine $(18 \mathrm{~mL})$ was treated with piperidine $(0.7 \mathrm{~mL})$ and stirred under reflux for 5 h . After completion of the reaction, the system was cooled in an ice-bath and treated with a cold HCl solution ( $2 \mathrm{~N}, 350 \mathrm{~mL}$ ). The precipitate was filtered and dried under vacuum, affording the title compound ( $7.20 \mathrm{~g}, 99 \%$ ), as a white solid, mp. 248$252^{\circ} \mathrm{C}$ (Lit. ${ }^{[4]} 249-251^{\circ} \mathrm{C}$ ).
2.3-Dibromo-3-(4-chlorophenyl)propionic acid. ${ }^{[5]}$ A stirred solution of transcinnamic acid $(4.55 \mathrm{~g}, 25 \mathrm{mmol})$ in $\mathrm{AcOH}(30 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ and treated dropwise with $\mathrm{Br}_{2}(1.52 \mathrm{~mL}, 30 \mathrm{mmol})$ during 30 min . Stirring continued for additional 3 h at room temperature, when water ( 250 mL ) was admitted into the reaction. Stirring continued for a few minutes and then the solids were filtered through a Büchner funnel, successively washing with water and cold petroleum ether. The title product ( $8.24 \mathrm{~g}, 97 \%$ ) was obtained as a beige solid, mp. 193-195 ${ }^{\circ} \mathrm{C}$ (Lit. ${ }^{[5]} 194-195^{\circ} \mathrm{C}$ ).
(Z)-1-Chloro-4-(2-bromovinyl)benzene. ${ }^{[6]}$ A solution of 2,3-dibromo-3-(4-chloro phenyl) propionic acid ( $3.39 \mathrm{~g}, 10 \mathrm{mmol}$ ) in DMF ( 20 mL ) was treated with $\mathrm{Et}_{3} \mathrm{~N}(1.46$ $\mathrm{mL}, 10.5 \mathrm{mmol}$ ) under microwave irradiation ( $1 \mathrm{~min} ., 500 \mathrm{~W}$ ). The system was cooled to room temperature and the products were extracted with EtOAc $(3 \times 100 \mathrm{~mL})$. The organic phase was washed with water and brine, and dried over anhydrous $\mathrm{MgSO}_{4}$. The solvent was removed under reduced pressure and the residue purified by chromatography on silica gel, eluting with hexane, furnishing the title product ( $2.05 \mathrm{~g}, 95 \%$ ), as a colorless oil, slightly contaminated with the cis isomer. MS ( $\mathrm{m} / \mathrm{z}$, rel. int., \%) $220\left([\mathrm{M}+4]^{+}, 19\right), 218$ ([M+2] $\left.{ }^{+}, 74\right), 137\left(\mathrm{M}^{+}, 100\right), 102(77), 75(51)$.

1-Chloro-4-ethynylbenzene. ${ }^{[4]}$ 18-Crown-6 (300 mg) was added to a stirred solution of ( $Z$ )-1-chloro-4-(2-bromovinyl)benzene $(2.15 \mathrm{~g}, 10 \mathrm{mmol})$ in cyclopentane $(30 \mathrm{~mL})$. The solution was cooled to $0^{\circ} \mathrm{C}$ and treated portion wise with ${ }^{t} \mathrm{BuOK}(1.34 \mathrm{~g}, 12 \mathrm{mmol})$, stirring at this temperature for additional 30 minutes. Then, the system was further stirred for 30 min . at room temperature and 1 h at $40^{\circ} \mathrm{C}$. After completion of the reaction, the system was
brought to room temperature and the reaction passed through a chromatographic column, eluting with petroleum ether. The product $(1.26 \mathrm{~g}, 93 \%)$ was obtained as a white solid, mp . $45-45.5^{\circ} \mathrm{C}\left(\mathrm{Lit}^{[4]}{ }^{\left[45-46^{\circ} \mathrm{C}\right) .}{ }^{1} \mathrm{H}\right.$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, J=8.6,2 \mathrm{H}), 7.29(\mathrm{~d}, J=$ $8.6,2 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H})$.

## Synthesis of the 2(2-aryl-/2-alkyl- ethynyl)benzaldehydes

$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(2 \mathrm{~mol} \%), \mathrm{CuI}(1 \mathrm{~mol} \%)$ and the appropriate acetylene ( 12 mmol ) were successively added to a stirred mixture of $\mathrm{Et}_{3} \mathrm{~N}(30 \mathrm{~mL})$ and the corresponding 2bromobenzaldehyde ( 10 mmol ), under argon. The resulting mixture was heated at $50{ }^{\circ} \mathrm{C}$ for $2-5 \mathrm{~h}$. After the reaction was completed, it was extracted with EtOAc ( $3 \times 100 \mathrm{~mL}$ ). The combined extracts were successively washed with water and brine, dried over $\mathrm{MgSO}_{4}$ and filtered. The solvent was evaporated under reduced pressure and the residue was purified via column chromatography on silica gel, eluting with EtOAc:hexane (2:98).

2-(Phenylethynyl)benzaldehyde (3a). ${ }^{[7]}$ Yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $10.64(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=0.82,7.791 \mathrm{H}), 7.62(\mathrm{dd}, J=0.7$ and $7.7,1 \mathrm{H}), 7.57-753(\mathrm{~m}, 3 \mathrm{H})$, $7.42(\mathrm{t}, J=7.4,1 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 191.5,135.8,133.6$, 133.1, 131.6, 128.9, 128.5, 128.4, 127.2, 126.7, 122.2, 96.2, 84.8.MS ( $\mathrm{m} / \mathrm{z}$, rel. int., \%) 206 $\left(\mathrm{M}^{+}, 100\right), 178(42), 176(41), 152(32), 111$ (2), 101 (4), 88 (22), 77 (9).

2-(p-Tolylethynyl)benzaldehyde(3b). ${ }^{[8]}$ Yellow solid. Mp. 46-47 ${ }^{\circ} \mathrm{C}$ (Lit. ${ }^{[8 b]} 48^{\circ} \mathrm{C}$ ). ${ }^{1} \mathrm{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 10.65(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=7.8,1 \mathrm{H}), 7.65-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.47-$ $7.40(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 191.6,139.3$, 135.9, 133.6, 133.1, 131.6, 129.2, 128.3, 127.2, 127.1, 119.3, 96.6, 84.3, 21.5. MS ( $\mathrm{m} / \mathrm{z}$, rel. int., \%) $220\left(\mathrm{M}^{+}, 100\right), 191$ (52), 165 (18), 94 (13), 88 (3), 77 (2).

2-(m-Tolylethynyl)benzaldehyde (3c). ${ }^{[9]}$ Yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $10.60(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.8,1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.7,1 \mathrm{H}), 7.54(\mathrm{td}, J=1.3$ and $7.3,1 \mathrm{H}), 7.41$ $(\mathrm{t}, J=7.3,1 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.16(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 191.6,138.2,135.8,133.7,133.1,132.2,129.9,128.7,128.4$,
$128.3,127.2,126.9,122.1,96.5,84.5,21.1$.

2-((4-Chlorophenyl)ethynyl)benzaldehyde (3d). ${ }^{[8 a, 10]}$ Beige solid. Mp. $91-93^{\circ} \mathrm{C}$ (Lit. ${ }^{[10]} 83-89^{\circ} \mathrm{C}$ ). ${ }^{1} \mathrm{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 10.61(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=7.6,1 \mathrm{H}), 7.64-$ $7.56(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{~d}, J=8.42 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.4$, $135.8,135.1,133.7,133.2,132.8,129.0,128.8,127.4,126.3,120.8,95.0,85.8$. MS ( $\mathrm{m} / \mathrm{z}$, rel. int., \%) $242\left([\mathrm{M}+2]^{+}, 31\right), 240(94), 205(100), 177(53), 176$ (81), 88(34).

2-((2-Chlorophenyl)ethynyl)benzaldehyde (3e). ${ }^{[11]}$ Yellowish solid, mp. 64-65 ${ }^{\circ} \mathrm{C}$ (Lit. ${ }^{[11]} 65-67^{\circ} \mathrm{C}$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 10.72(\mathrm{~s}, 1 \mathrm{H}), 7.98-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.69-$ $7.67(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 191.8,136.2,136.0,133.7,133.3,130.0,129.4,128.9,127.1,126.6,126.4,122.4$, 92.9, 89.9. MS ( $\mathrm{m} / \mathrm{z}$, rel. int., \%) 242 ( $[\mathrm{M}+2]^{+}, 4$ ), 240 (12), 205 (100), 88 (78).

5-Fluoro-2-(phenylethynyl)benzaldehyde (3f). ${ }^{[12]}$ Pale yellow solid. Mp. $53-54{ }^{\circ} \mathrm{C}$ (Lit. $\left.{ }^{[12 \mathrm{~b}]} 51-52^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 10.59(\mathrm{~d}, J=3.2,1 \mathrm{H}), 7.67-7.53(\mathrm{~m}, 4 \mathrm{H})$, $7.40-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.4,162.3(\mathrm{~d}, J=$ 252.7 ), 137.7 (d, $J=6.8$ ), 135.2 (d, $J=7.6$ ), 131.6, 129.1, 128.5, 122.9 (d, $J=3.3$ ), 122.0, $121.3(\mathrm{~d}, J=22.7), 113.6(\mathrm{~d}, \mathrm{~J}=23.0), 95.9,83.7$.

5-Methoxy-2-(phenylethynyl)benzaldehyde (3g). ${ }^{[13]}$ Yellow solid. Mp. 80-83 ${ }^{\circ} \mathrm{C}$ (Lit. ${ }^{[13]} 79-81^{\circ} \mathrm{C}$ ). ${ }^{1} \mathrm{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 10.60(\mathrm{~s}, 1 \mathrm{H}) ; 7.56-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}$ $=2.7,1 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{dd}, J=2.8$ and $8.5,1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (50 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 191.5,159.7,137.2,134.5,131.4,128.7,128.4,122.6,121.6,119.5,109.8$, 94.8, 84.8, 55.5.

4,5-Dimethoxy-2-(phenylethynyl)benzaldehyde (3h). ${ }^{[12,14]}$ Deep yellow solid. Mp. $139-143^{\circ} \mathrm{C}\left(\mathrm{Lit}^{[14]} 138-140^{\circ} \mathrm{C}\right.$ ). ${ }^{1} \mathrm{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 10.50(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.53(\mathrm{~m}$, $2 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.4,153.7,149.8,131.5,130.2,128.8,128.5,122.5,121.5,114.3,108.3$, 94.9, 84.8, 56.3, 56.1. MS ( $\mathrm{m} / \mathrm{z}$, rel. int., \%) 266 ( $\mathrm{M}^{+}, 87$ ), 251 (56), 195 (79), 165 (61), 152
(100), 126 (28), 102 (37), 77 (23), 63 (33).

2-(hex-1-yn-1-yl)benzaldehyde (3i). ${ }^{[12]}$ Yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $10.54(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=7.5,1 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.33(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{t}, J=6.8$, $2 \mathrm{H}), 1.72-1.40(\mathrm{~m}, 4 \mathrm{H}), 0.96(\mathrm{t}, J=7.0,3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.2,135.9$, 133.6, 133.2, 127.9, 127.7, 126.8, 98.1, 30.5, 22.0, 19.2, 13.5. MS ( $\mathrm{m} / \mathrm{z}$, rel. int., \%) $186\left(\mathrm{M}^{+}\right.$, 6), 157 (22), 144 (97), 128 (35), 115 (100), 102, (11), 89 (22), 77 (9), 63 (18).

## Synthesis of the 1,2,3,4-tetrasubstituted pyrroles ${ }^{[15]}$

Benzylamine ( 10 mmol ) and ethyl acetoacetate ( 10 mmol ), were successively added to a mixture of $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%)$ in $\mathrm{MeNO}_{2}(10 \mathrm{~mL})$, magnetically stirred at room temperature. After $\sim 10$ minutes, formation of a precipitate was observed and the corresponding aldehyde ( 10 mmol ) was added. The open system was heated at $80^{\circ} \mathrm{C}$ for $6-12 \mathrm{~h}$. After the reaction was completed, the system was cooled to room temperature and the products were extracted with EtOAc ( $3 \times 100 \mathrm{~mL}$ ), the organic phase was washed with water and brine, and dried over anhydrous $\mathrm{MgSO}_{4}$ and filtered. The solvent was evaporated under reduced pressure and the residue was purified via column chromatography on silica gel, eluting with EtOAc:hexane (5:95).

## Ethyl 1-benzyl-2-methyl-4-(2-(phenylethynyl)phenyl)-1H-pyrrole-3-carboxylate

 (2a). Yelow oil. Yield: $47 \% .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.54$ (dd, $J=1.2$ and $7.3,1 \mathrm{H}$ ), 7.35-7.30 (m, 3H), $7.26(\mathrm{dd}, J=1.2$ and $7.2,1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 3 \mathrm{H})$, $6.96-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 4.05(\mathrm{q}, J=7.1,2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=$ 7.1, 3H). ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 165.6,138.7,136.8,135.5,131.6,131.3,129.7$, $128.6,128.0,127.6,127.5,127.4,126.1,126.0,124.1,123.5,123.2,120.7,112.3,91.2,89.8$, $59.1,50.2,13.6,11,0$. IR (film, v) $3401,3060,3029,2978,2900,2215,1693 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{m} / \mathrm{z}$, rel. int., \%) 419 ( $\mathrm{M}^{+}, 21$ ), 346 (18), 254 (10), 228 (3), 226 (6), 91 (100), 77 (2), 65 (14). HRMS (ESI, $m / z$ ) calcd. for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 420.1964$; Found: 420.1933.
## Ethyl 1-benzyl-2-methyl-4-(2-(p-tolylethynyl)phenyl)-1H-pyrrole-3-carboxylate

(2b). White solid. Mp. $119-120^{\circ} \mathrm{C}$. Yield: $41 \% .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.52$ (d, $J=$ $7.3,1 \mathrm{H}), 7.32-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 7 \mathrm{H}), 7.05(\mathrm{~d}, J=7.9,2 \mathrm{H}), 7.03-7.01(\mathrm{~m}, 2 \mathrm{H})$, $6.64(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{q}, J=7.1,2 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=7.1$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 165.8,138.7,137.8,136.9,135.7,131.7,131.4,129.8$, $128.9,128.8,127.6,127.4,126.3,126.1,124.3,123.5,120.8,120.6,112.4,91.5,89.1,59.3$, $50.4,21.4,13.8,11.2$. IR (KBr, v) 3403, 3085-3028, 2978, 2868, 2213, $1694 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{m} / \mathrm{z}$, rel. int., \%) $433\left(\mathrm{M}^{+}, 35\right), 258$ (42), 268 (19), 225 (12), 105 (5), 91 (100), 65 (13). Anal. Calc. for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{C}, 83.11 ; \mathrm{H}, 6.28 ; \mathrm{N}, 3.23$. Found C, 83.41; H, 6.40; N, 3.24.

## Ethyl 1-benzyl-2-methyl-4-(2-(m-tolylethynyl)phenyl)-1H-pyrrole-3-carboxylate

 (2c). Pale yellow solid. Mp. $136-138^{\circ} \mathrm{C}$. Yield: $40 \% .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.52$ (dd, $J=1.3$ and $7.5,1 \mathrm{H}), 7.31-7.31(\mathrm{dd}, J=1.3$ and $7.4,1 \mathrm{H}), 7.27-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.13$ $(\mathrm{m}, 4 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.04-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}$, $2 \mathrm{H}), 4.05(\mathrm{q}, J=7.1,2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=7.1,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.5,138.8,137.5,136.8,135.5,132.0,131.5,129.7,128.6,128.5,128.4$, $127.9,127.4,126.1,126.0,124.2,123.4,120.8,112.4,91.5,89.4,59.1,50.2,21.0,13.6$, 11.0. IR (KBr, v) 3425, 3055, 3032, 2978, 2924, $2206 \mathrm{~cm}^{-1}$. MS ( $\mathrm{m} / \mathrm{z}$, rel. int., \%) $433\left(\mathrm{M}^{+}\right.$, 48), 360 (50), 356 (45), 268 (20), 91 (100), 65 (11). HRMS (ESI, $m / z$ ) calcd. for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{NO}_{2}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 434.2120$; Found: 434.2118.
## Ethyl 1-benzyl-4-(2-((4-chlorophenyl)ethynyl)phenyl)-2-methyl-1H-pyrrole-3-

 carboxylate (2d). Yellow oil. Yield: $40 \%$. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.51$ (d, $J=7.5$, $1 \mathrm{H}), 7.31(\mathrm{~d}, 7.5,1 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 5 \mathrm{H}), 6.97-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{~s}$, $1 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 4.04(\mathrm{q}, J=7.1,2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.1,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.4,138.8,136.7,135.4,133.5,132.4,131.4,129.6,128.5,128.2,127.6$, $127.4,126.1,125.9,124.0,122.8,122.0,120.6,112.3,90.8,90.0,59.0,50.1,13.5,10.9$. IR(film, v) $3425,3062,3031,2978,2893,2214,1689 \mathrm{~cm}^{-1}$. HRMS (ESI, $m / z$ ) calcd. for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{ClNO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 476.1393$; Found: 476.1382.Ethyl 1-benzyl-4-(2-((2-chlorophenyl)ethynyl)phenyl)-2-methyl-1H-pyrrole-3carboxylate (2e). Yellow oil. Yield: $38 \%$. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.60-7.58(\mathrm{~m}, 1 \mathrm{H})$, 7.37-7.29 (m, 4H), 7.28-7.22 (m, 2H), 7.21-7.18 (m, 2H), 7.17-7.10 (m, 2H), 7.04-7.01 (m, $2 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 4.05(\mathrm{q}, J=7.1,2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=7.1,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 165.6,139.0,136.9,135.8,135.6,133.3,132.0,130.1,129.0$, 128.7, 128.6, 127.8, 127.5, 126.3, 126.2, 126.1, 124.1, 123.7, 123.1, 121.0, 112.4, 95.0, 88.0, 59.1, 50.4, 13.7, 11.2. IR (film, v) $3371,3063,3024,2978,2924,2214,1689 \mathrm{~cm}^{-1}$. HRMS (ESI, $m / z$ ) calcd. for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{ClNO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): ~ 476.1393$; Found: 476.1388.

## Ethyl 1-benzyl-4-(5-fluoro-2-(phenylethynyl)phenyl)-2-methyl-1H-pyrrole-3-

 carboxylate (2f). Yellow oil. Yield: 35\%. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.51-7.47(\mathrm{~m}, 1 \mathrm{H})$, 7.34-7.31 (m, 2H), 7.25-7.22 (m, 3H), 7.21-7.18 (m, 3H), 7.06-7.03 (m, 1H), 7.01-6.99 (m, $2 \mathrm{H}), 6.93(\mathrm{td}, J=2.7$ and $8.4,1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{q}, J=7.1,2 \mathrm{H}), 2.48(\mathrm{~s}$, $3 \mathrm{H}), 1.02(\mathrm{t}, J=7.1,3 \mathrm{H})$. IR (film, v) $3396,3064,3032,2977,2850,2217,1701 \mathrm{~cm}^{-1} . \mathrm{MS}$ ( $\mathrm{m} / \mathrm{z}$, rel. int., \%) $437\left(\mathrm{M}^{+}, 39\right), 364$ (29), 360 (28), 91 (100), 65 (11). ${ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.4,161.8(\mathrm{~d}, J=248.5), 141.1(\mathrm{~d}, J=8.9), 136.6,135.9,133.2(\mathrm{~d}, J=8.6)$, $131.3,128.8,128.1,127.7,127.6,126.2,123.5,123.2(\mathrm{~d}, J=1.9), 121.0,119.5(\mathrm{~d}, J=3.0)$, $116.9(\mathrm{~d}, J=22.0), 113.1(\mathrm{~d}, J=21.8), 112.2,90.9,88.8,59.3,50.4,13.7,11.1$. Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{FNO}_{2} \mathrm{C}, 79.61 ; \mathrm{H}, 5.53 ; \mathrm{N}, 3.20$. Found C, 79.19; H, 5.59; N, 3.11.
## Ethyl 1-benzyl-4-(5-methoxy-2-(phenylethynyl)phenyl)-2-methyl-1H-pyrrole-3-

 carboxylate (2g). Yellow oil. Yield: $32 \% .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.45$ (d, $J=8.5$, $1 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 6 \mathrm{H}), 7.00-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=2.6,1 \mathrm{H}), 6.77$ $(\mathrm{dd}, J=2.7$ and $8.5,1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 4.07(\mathrm{q}, J=7.1,2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.46$ $(\mathrm{s}, 3 \mathrm{H}), 1.00(\mathrm{t}, J=7.1,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 165.5,158.9,140.4,136.8$, $135.5,132.9,131.2,128.6,127.9,127.4,127.2,126.2,124.1,124.0,120.8,115.8,115.4$, $112.4,111.9,90.0,89.9,59.1,55.1,50.3,13.7,11.0$. IR (film, v) $3379,3062,3032,2978$, 2931, 2214, $1697 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{m} / \mathrm{z}\right.$, rel. int., \%) $449\left(\mathrm{M}^{+}, 59\right), 376$ (54), 284 (11), 91 (100), 77 (2). Anal. Calcd. for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{C}, 80.15$; H, 6.05; N, 3.12. Found C, 79.39; H, 6.37; N, 3.20 .Ethyl 1-benzyl-4-(4,5-dimethoxy-2-(phenylethynyl)phenyl)-2-methyl-1H-pyrrole-3-carboxylate (2h). Yellow oil. Yield: $42 \%$. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.34-7.32$ (m, $2 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 6 \mathrm{H}), 7.05-7.03(\mathrm{~m}, 3 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 4.09(\mathrm{q}$, $J=7.1,2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{t}, J=7.1,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 165.7,148.7,147.3,136.9,135.6,132.4,131.3,128.8,128.1,127.6,127.5$, $126.3,124.1,123.9,120.9,115.2,114.5,113.5,112.5,90.0,89.9,59.2,56.0,55.8,50.5$, 13.9, 11.2. IR (film, v) $3462,3062,3029,2993,2835,2203,1686 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{m} / \mathrm{z}$, rel. int., \%) 479 ( $\mathrm{M}^{+}, 51$ ), 407 (19), 406 (56), 402 (19), 249 (9), 189 (3), 91 (100), 77 (2). Anal. Calcd. for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{C}, 77.64 ; \mathrm{H}, 6.10 ; \mathrm{N}, 2.92$. Found C, 77.61; H, 6.03; N, 2.65.

## Ethyl 1-benzyl-4-(2-(hex-1-in-1-yl)phenyl)-2-methyl-1H-pyrrole-3-carboxylate

 (2i). Yellow oil. Yield: $40 \%$. ${ }^{1} \mathrm{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.42-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.22$ $(\mathrm{m}, 4 \mathrm{H}), 7.20-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.06-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 4.05(\mathrm{q}, J=7.1$, $2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{t}, J=6.7,2 \mathrm{H}), 1.50-1.21(\mathrm{~m}, 4 \mathrm{H}), 0.99(\mathrm{t}, J=7.1,3 \mathrm{H}), 0.83(\mathrm{t}, J=$ $6.9,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 165.6,138.4,136.9,135.3,131.6,129.5,128.6$, $127.5,126.6,126.2,125.8,124.3,124.0,120.5,112.3,92.1,80.4,59.0,50.2,30.5,21.6$, 19.0, 13.6, 13.5, 10.9. IR (film, v) $3395,3062,3029,2228,1702 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{m} / \mathrm{z}$, rel. int., \%) $399\left(\mathrm{M}^{+}, 23\right), 326(18), 284$ (12), 235 (4), 91 (100), 65 (10), 55 (1). HRMS (ESI, $m / z$ ) calcd. for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 422.2096; Found: 476.2101.
## Ethyl 1-benzyl-4-(2-((4-fluorophenyl)ethynyl)phenyl)-2-methyl-1H-pyrrole-3-

 carboxylate (2j). Yellow oil; Yield: $31 \%$. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.51(\mathrm{~d}, 7.4,1 \mathrm{H}$ ), 7.33-7.17 (m, 8H), 7.01-6.99 (m, 2H), 6.92 (t, 8.5, 2H), 6,61 (s, 1H), $5.03(\mathrm{~s}, 2 \mathrm{H}), 4.05(\mathrm{q}$, $7.2,2 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 0,98(\mathrm{t}, 7.2,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 165.7,162.2(\mathrm{~d}$, 248.9 ), 138.8, 136.9, 135.6, 133.3 (d, 8.1), 131.5, 129.8, 128.7, 127.7, 127.6, 126.3, 126.1, $124.3,123.2,120.7,119.83$ (d, 3.3), 115.32 (d, 22.0), 112.5, 90.2, 89.5, 59.2, 50.41, 13.7, 11.1. MS ( $\mathrm{m} / \mathrm{z}$, rel. int., \%): 437 ( $\mathrm{M}^{+}, 15$ ), 364 (17), 360 (4), 272 (8), 91 (100), 65 (20). HRMS (ESI, $m / z$ ) calcd. for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{FNO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 460.1689; Found: 460.1723.Ethyl 2-methyl-1-phenethyl-4-(2-(phenylethynyl)phenyl)-1H-pyrrole-3carboxylate (2k). Yellow oil. Yield: $45 \%$. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.53$ (d, $J=7.2$, $1 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.17-$ $7.14(\mathrm{~m}, 3 \mathrm{H}), 6.98(\mathrm{dd}, J=2.4$ and $7.2,2 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{q}, J=7.1,2 \mathrm{H}), 3.99(\mathrm{t}, J=$ $6.8,2 \mathrm{H}), 2.93(\mathrm{t}, J=6.8,2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.1,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.7,138.9,137.6,135.3,131.7,131.5,129.5,128.7,128.5,128.1,127.7,127.6$, 126.7, 126.0, 124.1, 123.7, 123.4, 119.7, 111.7, 91.1, 89.9, 59.1, 48.1, 37.5, 13.7, 10.8. IR(film, v) 3410, 3055, 3024, 2978, 2931, 2214, $1698 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{m} / \mathrm{z}\right.$, rel. int., \%) $433\left(\mathrm{M}^{+}\right.$, 100), 360 (44), 328 (41), 268 (39), 253 (63), 180 (10), 105 (81), 91 (44), 77 (43). HRMS (ESI, $m / z$ ) calcd. for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 434.2120; Found: 434.2118.

1-Benzyl-2-methyl-4-(2-(phenylethynyl)phenyl)-1H-pyrrole (21). An alcoholic solution of $\mathrm{NaOH}(4 \% \mathrm{P} / \mathrm{V}, 40 \mathrm{~mL})$ was added to a stirred solution of compound $2 \mathrm{a}(4.195 \mathrm{~g}$, $10.0 \mathrm{mmol})$ in $\mathrm{EtOH}(40 \mathrm{~mL})$ and the mixture was heated under reflux for 5 h . The system was cooled in an ice bath and the solution was adjusted to pH 5 with glacial acetic acid. The thus formed precipitate was collected by filtration, affording 1-benzyl-2-methyl-4-(2-(phenylethynyl)phenyl)-1H-pyrrole carboxylic acid ( $3.408 \mathrm{~g}, 87 \%$ ), as a beige solid, mp . 204-204.5 ${ }^{\circ}$ C. MS ( $\mathrm{m} / \mathrm{z}$, rel. int., \%) 391 ( $\mathrm{M}^{+}, 2$ ), 242 (20), 189(8), 111(14), 97(29), 83(31), 57(85), 43(100). IR (KBr, v) 3432, 3132, 3095, 3027, 2963, 2851, 2215, $1655 \mathrm{~cm}^{-1}$. HRMS (ESI, $m / z$ ) calcd. for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 414.1470; Found: 414.1467.

To a stirred solution of the above acid ( $391 \mathrm{mg}, 1.0 \mathrm{mmol}$ ) in quinoline ( 2 mL ) was added metallic $\mathrm{Cu}(0.7 \mathrm{mmol})$ and the system was heated under reflux for 4 hours. Then, it was cooled with an ice bath and the pH of the solution was adjusted to 4 with 2 N HCl . The products were extracted with EtOAc $(3 \times 10 \mathrm{~mL})$, the organic phase was washed with water, brine and saturated $\mathrm{NaHCO}_{3}$ solution, dried over $\mathrm{MgSO}_{4}$ and filtered. The solvent was evaporated under reduced pressure and the residue was purified via column chromatography on silica gel, eluting with EtOAc:hexane (5:95), affording compound $\mathbf{2 k}$ ( $236 \mathrm{mg}, 68 \%$ ), as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25-8.22(\mathrm{~m}, 1 \mathrm{H}), 7.82-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.51$ (ddd, $J=1.3,6.9$ and $8.2,1 \mathrm{H}), 7.51(\mathrm{ddd}, J=1.3,6.9$ and $8.2,1 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.14$ (m, 4H), 7.10-7.06 (m, 3H), $6.99(\mathrm{~s}, 1 \mathrm{H}), 6,37-6,34(\mathrm{~m}, 2 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$. HRMS (ESI, $m / z$ ) calcd. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$348.1752; Found: 348.1752.

## Synthesis of the $\mathbf{3 H}$-benzo[e]indoles

Solid $\mathrm{K}_{2} \mathrm{CO}_{3}(0.5 \mathrm{mmol})$ was added to a solution of the pyrrole ( 0.25 mmol ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \mathrm{~mL})$ and the system was stirred at room temperature for 10 minutes. Then, it was treated dropwise with a solution of iodine $(0.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. After the reaction was completed, the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic extracts were successively washed with $15 \%$ aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(50 \mathrm{~mL})$, water and brine, dried over $\mathrm{MgSO}_{4}$ and filtered. The solvent was evaporated under reduced pressure and the residue was purified via column chromatography on silica gel eluting with EtOAc:hexane (10:90).

Ethyl 3-benzyl-5-iodo-2-methyl-4-phenyl-3H-benzo[e]indole-1-carboxylate (1a). White solid. Mp. $152-153^{\circ} \mathrm{C}$. Yield: $93 \% .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.79-8.76(\mathrm{~m}, 1 \mathrm{H})$, $8.44-8.41(\mathrm{~m}, 1 \mathrm{H}), 7.57(\mathrm{ddd}, J=1.4,6.8$ and $8.2,1 \mathrm{H}), 7.51(\mathrm{ddd}, J=1.4,6.8$ and $8.3,1 \mathrm{H})$, $7.39-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{dd}, J=1.3$ and $8.2,2 \mathrm{H})$, $6.34(\mathrm{dd}, J=1.9$ and $7.5,2 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 4.53(\mathrm{q}, J=7.1,2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{t}, J=$ 7.1, 3H). ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 167.5,143.8,141.4,137.3,134.3,133.3,131.6$, $130.7,130.1,128.4,128.2,128.1,127.3,127.0,126.1,125.7,125.3,124.9,122.0,109.1$, 104.3,60.7, 48.2, 14.4, 12.0. IR (KBr, v) 3363, 3055, 3026, 2978, 2908, $1697 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{m} / \mathrm{z}$, rel. int., \%) 545 ( $\mathrm{M}^{+}, 2$ ), 418 (65), 373 (6), 281 (19), 253 (26), 105 (5), 91 (100), 77 (2), 45 (6). Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{INO}_{2} \mathrm{C}, 63.86 ; \mathrm{H}, 4.44 ; \mathrm{N}, 2.57$. Found C, 64.18; H, 4.61; N, 2.35 .

Ethyl 3-benzyl-5-iodo-2-methyl-4-(p-tolyl)-3H-benzo[e]indole-1-carboxylate (1b). White solid. Mp. $147-148^{\circ} \mathrm{C}$. Yield: $96 \%$. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.77$ (dd, $J=0.9$ and $8.2,1 \mathrm{H}$ ), $8.42(\mathrm{dd}, J=0.9$ and $8.3,1 \mathrm{H}), 7.56(\mathrm{ddd}, J=1.4,6.8$ and $8.3,1 \mathrm{H}), 7.51$, (ddd, $J=1.4,6.8$ and $8.2,1 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{~d}, J=7.7,2 \mathrm{H}), 6.82(\mathrm{~d}, J=7.9,2 \mathrm{H})$, 6.36-6.34 (m, 2H), $4.75(\mathrm{~s}, 2 \mathrm{H}), 4.52(\mathrm{q}, J=7.1,2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{t}, J=$ 7.1, 3H). ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 167.4,141.3,140.7,138.0,137.4,134.2,133.4$, $131.8,130.6,129.8,128.7,128.2,127.2,126.9,126.0,125.6,125.2,124.8,121.8,108.9$, 104.6, 60.6, 48.1, 21.4, 14.3, 12.0. IR (KBr, v) $3369,3061,3028,2970,2920,1703 \mathrm{~cm}^{-1}$. MS ( $\mathrm{m} / \mathrm{z}$, rel. int., \%) $559\left(\mathrm{M}^{+}, 100\right.$ ), 487 (2), 432 (1), 386 (12), 268 (15), 91 (57), 65 (7).

Anal. Calcd. for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{INO}_{2} \mathrm{C}, 64.41$; H, 4.68; N, 2.50. Found C, 64.37; H, 4.76; N, 2.39.

Ethyl 3-benzyl-5-iodo-2-methyl-4-( $\boldsymbol{m}$-tolyl)-3H-benzo[e]indole-1-carboxylate (1c). Yellow solid. Mp. $136-138^{\circ} \mathrm{C}$. Yield: $94 \%$. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.77$ (dd, $J=0.9$ and $8.3,1 \mathrm{H}), 8.42(\mathrm{dd}, J=0.9$ and $8.3,1 \mathrm{H}), 7.57(\mathrm{ddd}, J=1.4,6.9$ and $8.3,1 \mathrm{H}), 7.51(\mathrm{ddd}, J$ $=1.3,6.9$ and $8.1,1 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 5 \mathrm{H}), 6.84(\mathrm{~d}, J=6.5,1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.36(\mathrm{dd}, J=$ 2.8 and $6.4,2 \mathrm{H}), 4.77(\mathrm{~d}, J=17.9,1 \mathrm{H}), 4.68(\mathrm{~d}, J=17.9,1 \mathrm{H}), 4.53(\mathrm{q}, J=7.1,2 \mathrm{H}), 2.45(\mathrm{~s}$, $3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{t}, J=7.1,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 167.4,143.5,141.3$, $137.9,137.5,134.2,133.4,131.6,130.8,130.6,128.8,128.3,127.8,127.2,127.1,126.8$, $126.0,125.6,125.3,124.7,121.8,108.9,104.1,60.7,48.1,21.1,14.3,12.0$. IR ( $\mathrm{KBr}, \mathrm{v}$ ) 3378, 3060, 3030, 2925, 2870, $1707 \mathrm{~cm}^{-1} . \operatorname{MS}\left(\mathrm{m} / \mathrm{z}\right.$, rel.int., \%) $559\left(\mathrm{M}^{+}, 33\right), 386(5), 341$ (8), 137 (10), 91 (44), 81 (52), 69 (100), 43 (63). HRMS (ESI, $m / z$ ) calcd. for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{INO}_{2}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 582.0906$; Found: 582.0904.

## Ethyl 3-benzyl-4-(4-chlorophenyl)-5-iodo-2-methyl-3H-benzo[e]indole-1-

 carboxylate (1d). White solid. Mp. $147-148^{\circ} \mathrm{C}$. Yield: $90 \%$. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $8.78-8.75(\mathrm{~m}, 1 \mathrm{H}), 8.41-8.38(\mathrm{~m}, 1 \mathrm{H}), 7.57(\mathrm{ddd}, J=1.4,6.8$ and $8.3,1 \mathrm{H}), 7.51(\mathrm{ddd}, J=$ $1.4,6.8$ and $8.2,1 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 5 \mathrm{H}), 6.87-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.38-6.36(\mathrm{~m}, 2 \mathrm{H}), 4.79(\mathrm{~s}$, $2 \mathrm{H}), 4.53(\mathrm{q}, J=7.1,2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{t}, J=7.1,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $167.3,142.1,141.4,137.0,134.3,132.0,131.6,131.4,130.6,128.5,128.2,127.4,127.2$, $126.4,125.9,125.4,124.8,122.2,109.2,104.4,60.8,48.3,14.4,12.0$. IR (KBr, v) 3365 , 3108, 3087, 2982, 2873, $1693 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{m} / \mathrm{z}\right.$, rel. int., \%) $581\left([\mathrm{M}+2]^{+}, 17\right), 579(44), 453$ (10), 253 (8), 149 (21), 91 (100), 69 (22). HRMS (ESI, $m / z$ ) calcd. for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{ClINO}_{2}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 580.0540$; Found: 580.0544.
## Ethyl 3-benzyl-4-(2-chlorophenyl)-5-iodo-2-methyl-3H-benzo[e]indole-1-

 carboxylate (1e). White solid. Mp. $175-175.5^{\circ} \mathrm{C}$. Yield: $89 \%$. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $8.80(\mathrm{dd}, J=0.8$ and $8.3,1 \mathrm{H}), 8.41(\mathrm{dd}, J=0.8$ and $8.4,1 \mathrm{H}), 7.58(\mathrm{ddd}, J=1.3,6.8$ and 8.3 , $1 \mathrm{H}), 7.51$ (ddd, $J=1.3,6.8$ and $8.2,1 \mathrm{H}$ ), $7.40(\mathrm{dd}, J=0.9$ and $8.0,1 \mathrm{H}), 7.29(\mathrm{td}, J=1.6$ and $7.7,1 \mathrm{H}), 7.16-7.07(\mathrm{~m}, 3 \mathrm{H}), 6.92(\mathrm{td}, J=1.1$ and $7.4,1 \mathrm{H}), 6.77(\mathrm{dd}, J=1.5$ and $7.6,1 \mathrm{H})$, $6.38(\mathrm{~d}, J=6.7,2 \mathrm{H}), 4.95(\mathrm{~d}, J=18.0,1 \mathrm{H}), 4.76(\mathrm{~d}, J=18.0,1 \mathrm{H}), 4.54(\mathrm{q}, J=7.1,2 \mathrm{H})$,$2.49(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{t}, J=7.1,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 167.4,142.1,141.3,136.8$, $134.7,134.2,132.3,131.1,130.6,130.4,129.8,129.2,128.3,127.4,127.1,126.5,126.4$, $125.7,125.3,124.8,122.2,109.1,104.3,60.7,47.9,14.4,12.0 . \mathrm{IR}(\mathrm{KBr}, \mathrm{v}) 3379,3124$, 3024, 2978, 2869, $1697 \mathrm{~cm}^{-1}$. MS ( $\mathrm{m} / \mathrm{z}$, rel.int., \%) $581\left([\mathrm{M}+2]^{+}, 17\right), 579\left(\mathrm{M}^{+}, 44\right), 453$ (10), 253 (8), 149 (21), 91 (100), 69 (22). HRMS (ESI, $m / z$ ) calcd. for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{ClINO}_{2}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 580.0540$; Found: 580.0530.

## Ethyl 3-benzyl-8-fluoro-5-iodo-2-methyl-4-phenyl-3H-benzo[e]indole-1-

 carboxylate (1f). Yellow solid. Mp. $161-162^{\circ} \mathrm{C}$. Yield: $93 \%$. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $8.62(\mathrm{dd}, J=2.5$ and $11.9,1 \mathrm{H}), 8.43(\mathrm{dd}, J=5.9$ and $9.3,1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.23-$ $(\mathrm{m}, 1 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 3 \mathrm{H}), 6.93-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.34-6.32(\mathrm{~m}, 2 \mathrm{H}), 4.73$ $(\mathrm{s}, 2 \mathrm{H}), 4.54(\mathrm{q}, J=7.1,2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{t}, J=7.1,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 166.9,160.9(\mathrm{~d}, J=245.2), 143.5,142.0,137.1,136.8(\mathrm{~d}, J=8.9), 132.6,131.8,130.0$, $128.3,128.2,128.1,127.9(\mathrm{~d}, J=10.0), 127.5,127.0,124.8,121.4(\mathrm{~d}, J=4.4), 114.9(\mathrm{~d}, J=$ 24.2), 109.5 (d, $J=23.8$ ), 108.9, 103.7, 60.8, 48.1, 14.2, 12.1. IR (KBr, v) 3386, 3105, 3027, 2988, 2869, $1702 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{m} / \mathrm{z}\right.$, rel. int., \%) $563\left(\mathrm{M}^{+}, 100\right), 436$ (1), 363 (8), 345 (17), 272 (13), 91 (82). Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{FINO}_{2} \mathrm{C}, 61.82$; H, 4.11; N, 2.49. Found C, 61.67; H, 4.02; N, 2.41.
## 3-Benzyl-5-iodo-8-methoxy-2-methyl-4-phenyl-3H-benzo[e]indole-1-carboxylate

 (1g). Yellow solid. Mp. $171-171.5^{\circ} \mathrm{C}$. Yield: $89 \%$. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.37$ (d, J $=2.5,1 \mathrm{H}), 8.32(\mathrm{~d}, J=9.2,1 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 4 \mathrm{H})$, 6.95-6.93 (m, 2H), 6.36-6.34 (m, 2H), 4.72 ( $\mathrm{s}, 2 \mathrm{H}), 4.5$ (q, $J=7.1,2 \mathrm{H}$ ), 3.99 ( $\mathrm{s}, 3 \mathrm{H}$ ), 2.44 $(\mathrm{s}, 3 \mathrm{H}), 1.45(\mathrm{t}, J=7.1,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 167.5,158.1,143.9,141.1$, $137.4,135.8,131.9,130.8,130.4,128.3,128.1,128.0$, 126.9, 125.7, 124.9, 121.4, 116.9, 109.0, 105.4, 104.0, 60.6, 55.5, 48.1, 14.4, 12.2. IR (KBr, v) 3437, 3138, 3023, 2997, 2898, 2832, $1690 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{m} / \mathrm{z}\right.$, rel. int., \%) 575 ( $\mathrm{M}^{+}, 100$ ), 530 (4), 448 (2), 357 (52), 241 (16), 91 (66), 57 (15). Anal. Calcd. for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{INO}_{3} \mathrm{C}, 62.62$; H, 4.55; N, 2.43. Found C, 62.67; H, 4.58; N, 2.30 .Ethyl 3-benzyl-5-iodo-7,8-dimethoxy-2-methyl-4-phenyl-3H-benzo[e]indole-1carboxylate (1h). Yellow solid. Mp. $181-182^{\circ} \mathrm{C}$. Yield: $73 \%$. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $8.55(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.6,1 \mathrm{H}), 7.20(\mathrm{t}, J=7.2,2 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.94$ $(\mathrm{d}, J=7.5,2 \mathrm{H}), 6.34(\mathrm{~d}, J=7.6,2 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 4.50(\mathrm{q}, J=7.1,2 \mathrm{H}), 4.10(\mathrm{~s}, 3 \mathrm{H}), 4.05$ $(\mathrm{s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{t}, J=7.1,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 167.5,149.1$, $148.8,144.0,141.7,137.4,131.1,131.0,130.3,128.3,128.1,128.0,126.9,126.2,124.9$, $122.1,121.8,114.3,108.2,105.9,103.0,60.6,56.1,55.8,48.1,14.4,12.4$. IR (KBr, v) 3350 , 3150, 3027, 2992, 2902, 2827, 1985, 1738, $1699 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{m} / \mathrm{z}\right.$, rel. int., \%) $605\left(\mathrm{M}^{+}, 13\right)$, 432 (1), 387 (7), 261 (3), 149 (12), 91 (11), 69 (100), 55 (21), 43 (25). Anal. Calcd. for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{INO}_{4} \mathrm{C}, 61.50 ; \mathrm{H}, 4.66 ; \mathrm{N}, 2.31$. Found C, 61.34; H, 4.52; N, 2.27.

## Ethyl 3-benzyl-4-butyl-5-iodo-2-methyl-3H-benzo[e]indole-1-carboxylate (1i).

 White solid. Mp. $148-148.5^{\circ} \mathrm{C}$. Yield: $61 \%$. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.57-8.53$ ( m , $1 \mathrm{H}), 8.42-8.38(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 3 \mathrm{H}), 6.85(\mathrm{~d}, J=6.8,2 \mathrm{H}), 5.56$ $(\mathrm{s}, 2 \mathrm{H}), 4.51(\mathrm{q}, J=7.1,2 \mathrm{H}), 3.15(\mathrm{t}, J=7.9,2 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.47-$ $1.40(\mathrm{~m}, 5 \mathrm{H}), 0.95(\mathrm{t}, J=7.2,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 167.6,140.6,137.4$, $134.0,131.8,131.2,131.1,129.1,127.5,126.5,125.4,125.3,124.9,122.1,109.2,105.1$, 60.7, 49.0, 38.7, 32.9, 22.6, 14.3, 13.8, 12.0. IR (KBr, v) 3439, 3046, 3024, 2979, 2870, 1981, 1820, $1690 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{m} / \mathrm{z}\right.$, rel. int., \%) $525\left(\mathrm{M}^{+}, 41\right), 480$ (2), 398 (2), 352 (17), 283 (12), 137 (10), 91 (72), 81 (59), 69 (100), 57 (27), 43 (28). Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{INO}_{2} \mathrm{C}$, 61.72; H, 5.37; N, 2.67. Found C, 61.74; H, 5.32; N, 2.72.
## Ethyl 3-benzyl-4-(4-fluorophenyl)-5-iodo-2-methyl-3H-benzo[e]indole-1-carboxy-

 late (1j). White solid. Mp. $154-155^{\circ} \mathrm{C}$. Yield: $65 \%$. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.77$ (dd, $J=0.8$ and $8.2,1 \mathrm{H}), 8.40(\mathrm{dd}, J=0.9$ and $8.4,1 \mathrm{H}), 7.49-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.10(\mathrm{~m}$, $3 \mathrm{H}), 6.88-6.87(\mathrm{~m}, 4 \mathrm{H}), 6.37-6.35(\mathrm{~m}, 2 \mathrm{H}), 4.77(\mathrm{~s}, 2 \mathrm{H}), 4.53$ (q, $J=7.1,2 \mathrm{H}), 2.47$ (s, $3 \mathrm{H}), 1.46(\mathrm{t}, J=7.1,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 167.3,162.5(\mathrm{~d}, J=247.9), 141.3$, $139.6(\mathrm{~d}, J=3.5), 137.0,134.3,132.1,131.8(\mathrm{~d}, J=8.1), 130.6,128.4,127.3,127.1,126.2$, $125.8,125.3,124.7,122.0,115.0(\mathrm{~d}, \mathrm{~J}=21.4$ ), 114.9, 109.1, 104.9, 60.7, 48.1, 14.3, 12.0. MS ( $\mathrm{m} / \mathrm{z}$, rel. int., \%): $563\left(\mathrm{M}^{+}, 8\right), 262$ (19), 183 (21), 108 (18), 91 (32), 69 (100), 41 (70). HRMS (ESI, $m / z$ ) calcd. for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{FINO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 586.0655; Found: 586.0663.Ethyl 5-iodo-2-methyl-3-phenylethynyl-4-phenyl-3H-benzo[e]indole-1-carboxylate (1k). White solid. Mp. $120-121^{\circ} \mathrm{C}$. Yield: $85 \%$. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.70-8.67$ (m, $1 \mathrm{H}), 8.45-8.43(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 5 \mathrm{H}), 7.40-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.71-$ $6.99(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{q}, J=7.1,2 \mathrm{H}), 3.69(\mathrm{t}, J=8.1,2 \mathrm{H}), 2.56(\mathrm{t}, J=8.1,2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H})$, $1.46(\mathrm{t}, J=7.1,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 167.5,144.6,140.8,137.4,134.3,133.0$, $131.0,130.6,130.5,128.7,128.6,128.4,128.4,127.1,126.7,126.1,125.7,125.2,122.1$, 109.0, 104.4, 60.7, 45.9, 37.0, 14.4, 12.1. IR (KBr, v) 3367, 3053, 3017, 2973, 2923, 1955, 1803, $1697 \mathrm{~cm}^{-1}$. MS ( $\mathrm{m} / \mathrm{z}$, rel. int., \%) $559\left(\mathrm{M}^{+}, 30\right), 558$ (100), 421 (86), 311 (23), 268 (31), 201 (3), 105 (41), 101 (2), 77 (23), 69 (55), 45 (15), 43 (41). Anal. Calcd. for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{INO}_{2} \mathrm{C}, 64.41 ; \mathrm{H}, 4.68 ; \mathrm{N}, 2.50$. Found C, 64.52; H, 4.59; N, 2.38.

3-Benzyl-5-iodo-2-methyl-4-phenyl-3H-benzo[e]indole (11). White solid. Mp. 171$172^{\circ} \mathrm{C}$. Yield: $90 \% .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.36-8.34(\mathrm{~m}, 1 \mathrm{H}), 8.21-8.19(\mathrm{~m}, 1 \mathrm{H})$, $7.57-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{ddd}, J=1.2,6.9$ and $8.2,1 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.6$, $2 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.98-6.95(\mathrm{~m}, 3 \mathrm{H}), 6.32-6.30(\mathrm{~m}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 143.7$, 138.6, 137.0, 133.9, 133.8, 131.6, 130.1, 129.7, 128.2, $128.0,127.9,127.4,126.7,126.0,125.1,125.0,124.9,123.0,100.6,100.5,47.7,13.0$. IR (KBr, v) $3445,3076,3026,2936,2865,1972,1835 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{m} / \mathrm{z}\right.$, rel. int., \%) $473\left(\mathrm{M}^{+}\right.$, 100), 346 (4), 268 (19), 254 (52), 91 (59), 65 (6). Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{IN} \mathrm{C}, 65.97$; H, 4.26; N, 2.96. Found C, 66.20; H, 4.31; N, 2.91.

Ethyl 3-benzyl-2-methyl-4-phenyl-3H-benzo[e]indole-1-carboxylate (1'a). Yellow solid. Mp. $132-133^{\circ} \mathrm{C}$. Yield: $41 \%$. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.91-8.89(\mathrm{~m}, 1 \mathrm{H}), 7.82-$ $7.79(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{ddd}, J=1.4,6.8$ and $8.4,1 \mathrm{H}), 7.43(\mathrm{ddd}, J=1.2,6.8$ and $8.0,1 \mathrm{H}), 7.35$, $(\mathrm{s}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 5 \mathrm{H}), 6.39-6.37(\mathrm{~m}, 2 \mathrm{H}), 4.97$ $(\mathrm{s}, 2 \mathrm{H}), 4.53(\mathrm{q}, J=7.1,2 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{t}, J=7.1,3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 167.5,141.1,139.8,137.2,131.2,129.6,129.4,128.3,128.2,127.7,127.6,127.3,127.0$, $126.9,126.5,125.4,125.1,125.0,124.1,121.4,109.1,60.4,48.2,14.4,12.0$. IR (KBr, v) $3378,3058,3025,2980,2850,1958,1799,1690 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{m} / \mathrm{z}\right.$, rel. int., \%) $563\left(\mathrm{M}^{+}, 100\right)$,

436 (1), 363 (8), 345 (17), 272 (13), 91 (82). Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{C}, 83.03$; H, 6.01; N, 3.34. Found C, 82.98; H, 5.78; N, 3.27.

## Example of functionalization of an iodocyclized product

Ethyl 11-benzyl-12-methyl-5,6-diphenyl-11H-benzo[e]naphtho[2,1-g]indole-13-
carboxylate (6a). ${ }^{[16]}$ Diphenylacetylene ( $89 \mathrm{mg}, 0.5 \mathrm{mmol}$ ), $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{NaOAc}$ ( $41 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and $\mathrm{LiCl}(10 \mathrm{mg}, 0.25 \mathrm{mmol})$ were successively added to a stirred solution of $\mathbf{1 a}(139 \mathrm{mg}, 0.25 \mathrm{mmol})$ in DMF $(1 \mathrm{~mL})$. The system was heated at $100^{\circ} \mathrm{C}$ for 24 h . After the reaction was completed, the system was cooled to room temperature and the products were extracted with EtOAc $(3 \times 10 \mathrm{~mL})$, the organic phase was washed with water and brine. The extract was dried over $\mathrm{MgSO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified via column chromatography on silica gel, eluting with hexane. The product ( $145 \mathrm{mg}, 98 \%$ ) was obtained as a yellow solid. $\mathrm{Mp} .236-236.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( 400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.73-8.71(\mathrm{~m}, 1 \mathrm{H}), 8.35-8.33(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.47-7.38(\mathrm{~m}$, 3H), 7.35-7.31 (m, 2H), 7.22-7.17 (m, 2H), 7.07-7.06 (m, 4H), 7.01-6.90 (m, 5H), 6.27 (d, $J=7.2,2 \mathrm{H}), 5.71(\mathrm{~d}, J=15.6,1 \mathrm{H}), 5.36(\mathrm{~d}, J=15.6,1 \mathrm{H}), 4.54-4.51(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H})$, $1.48(\mathrm{t}, J=7.1,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 167.3,143.6,143.1,139.5,137.4,136.4$, $136.0,132.5,131.8,131.5,130.8,130.5,129.6,128.8,128.3,128.1,128.0,127.5,127.3$, $126.9,126.8,126.6,126.3,126.1,126.0,125.9,125.5,125.0,124.7,123.1,121.8,121.5$, $111.9,60.5,51.6,14.4,13.1 . \mathrm{MS}\left(\mathrm{m} / \mathrm{z}\right.$, rel. int., \%) $595\left(\mathrm{M}^{+}, 17\right), 458$ (10), 419 (23), 254 (14), 149 (13), 105 (100), 91 (84), 77 (45). HRMS (ESI, $m / z$ ) calcd. for $\mathrm{C}_{43} \mathrm{H}_{33} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 596.2590; Found: 596.2583.


${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of Compound $\mathbf{1 b}$.



${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of Compound 1d.


1e

${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of Compound $\mathbf{1 e}$.


${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of Compound $\mathbf{1 f}$.


${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of Compound $\mathbf{1 g}$.


${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of Compound $\mathbf{1 h}$.


${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of Compound $\mathbf{1 i}$.



11



[^0]${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of Compound $\mathbf{1 1}$.

${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of Compound 1'a.

${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of Compound 2a.

${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of Compound $\mathbf{2 b}$.





${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of Compound 2d.


2e



${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of Compound 2e.


| 7.5 | 7.0 | 8.5 | 6.0 | 5.5 | 5.0) | 4.5 |  | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of Compound $\mathbf{2 f}$.


${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of Compound $\mathbf{2 g}$.

2h


${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of Compound $\mathbf{2 h}$.



${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of Compound $\mathbf{2} \mathbf{j}$.

${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of Compound $\mathbf{2 k}$.


## References

[1] Perrin, D. D.; Armarego, W. L. Purification of Laboratory Chemicals, 3rd Ed. Pergamon Press, New York, 1980.
[2] Chandrasekhar, S.; Reddy, N. R.; Rao, Y. S. Tetrahedron 2006, 62, 12098.
[3] Szymanski, W.; Wu, B.; Weiner, B.; Wildeman, S.; Feringa, B. L.; Janssen, D. B. J. Org. Chem. 2009, 74, 9152.
[4] Suresh., D. K.; Sandhu, J. S. Synth. Commun. 2010, 40, 1915.
[5] Loar, M. K.; Stille, J. K. J. Am. Chem. Soc. 1981, 103, 4174.
[6] Kuang, C.; Yang, Q.; Senboku, H.; Tokuda, M. Tetrahedron 2005, 51, 4043.
[7] Park, J. H.; Bhilare, S. V.; Youn, S. W. Org. Lett. 2011, 13, 2228.
[8] a) Zhu, S.; Huang, H.; Zhang, Z.; Ma, T.; Jiang, H. J. Org. Chem. 2014, 79, 6113; b) Tokimizu, Y.; Ohta, Y.; Chiba, H.; Oishi, S.; Fujii, N.; Ohno, H.Tetrahedron 2011, 67, 5168.
[9] Yao, B.; Li, Y.; Liang, Z.; Zhang, Y. Org. Lett. 2011, 13, 640.
[10] Zhu, S.; Zhang, Z.; Huang, X.; Jiang, H.; Guo, Z.Chem. Eur. J. 2013, 19, 4695.
[11] Tanaka, K.;Hagiwara, Y.;Hirano, M. Eur. J. Org. Chem. 2006, 3582.
[12] a) Cheb, Y.; Huang, C.; Liu, X.; Perl, E.; Chen, Z.; Namgung, J.; Subramaniam, G.; Zhang, G.; Hersh, W. H. J. Org. Chem. 2014, 79, 3452; b) Yanada, R.; Hashimo, K.; Tokizane, R.; Miwa, Y.; Minami, H.; Yanada, K.; Ishikura, M.; Takemoto, Y. J. Org. Chem. 2008, 73, 5135.
[13] Allen, C. P.;Benkovics, T.;Turek, A. K.;Yoon, T. P. J. Am. Chem. Soc. 2009, 131, 12560.
[14] Sakamoto, T.; Kondo, Y.;Miura, N.; Hayashi, K.; Yamanaka, H. Heterocycles 1986, 24, 2311.
[15] a) Biava, M.; Porretta, G. C.; Deidda, D.; Pompei, R.; Tafic, A.; Manettic, F. Bioorg. Med. Chem. 2004, 12, 1453; b) Protopopova, M.; Bogatcheva, E.; Nikonenko, B.; Hundert, S.; Einck, L.; Nacy, C. A. Bioorg. Med. Chem. 2007, 3, 301; c) Teixeira, C.; Barbault, F.; Rebehmed, J.; Liu, K.; Xie, L.; Lu, H.; Jiang, S.; Fan, B.; Maurel, F. Bioorg. Med. Chem. 2008, 16, 3039.
[16] Larock, R. C.; Doty, M. J.; Tian, Q.; Zenner, J. M. J. Org. Chem. 1997, 62, 7536.


[^0]:    

