

Supporting Information

Supporting Information

Expedient Iodocyclization Approach Toward Polysubstituted 3*H*-Benzo[*e*]indoles

Guilherme M. Martins,[†] Gilson Zeni,[†] Davi F. Back,[†] Teodoro S. Kaufman[‡] and Claudio C. Silveira^{*†}

[†]Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil [‡]Instituto de Química Rosario (CONICET-UNR), Suipacha 531, S2002LRK, Rosario, SF, Argentina

Table of Contents

General experimental details	S2
Synthesis and characterization	S2
Synthesis of precursors	S2
Synthesis of the 2(2-aryl-/2-alkyl-ethynyl)benzaldehydes	S4
Synthesis of the 1,2,3,4-tetrasubstituted pyrroles	S 6
Synthesis of the 3 <i>H</i> -benzo[<i>e</i>]indoles	S11
Example of functionalization of a iodocyclized product	S16
¹ H and ¹³ C NMR Spectra	S17
References	S41

General experimental details

Solvents were purified and dried according to usual techniques prior to use.^[1] All other reagents were obtained commercially. Purification of the compounds was performed by column chromatography using silica gel 60 H (40–63 µm particle size, 230–400 mesh. Elution was carried out with hexane or EtOAc:hexane mixtures. All new compounds gave single spots on TLC plates run in different solvent systems (hexane or EtOAc:hexane). Chromatographic spots were detected by exposure to 254 nm UV light, as well as by treatment with iodine or with an acid solution of vanillin.

The melting points are reported uncorrected. IR spectra were recorded as thin films held between NaCl cells or as solid dispersions in KBr disks. The wavelength scale was calibrated with a 0.05 mm thick polystyrene film, employing the absorption band at 1601 cm⁻¹. The ¹H NMR spectra were acquired in CDCl₃ ($\delta_{\rm H} = 7.27$ ppm; $\delta_{\rm C} = 77.0$ ppm), at 200 or 400 MHz. Chemical shifts are reported in parts per million in the δ scale and *J*-values are given in Hertz. Signals are reported as follows: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), ddd (doublet of doublet of doublets), and m (multiplet). The low resolution mass spectra were obtained from a GC-MS instrument. Fragments are described with regards to their *m/z* ratios, in terms of relative intensity (%) of their signals.

Synthesis and characterization

Synthesis of precursors

2-Bromo-4,5-dimethoxybenzaldehyde.^[2] A stirred solution of 3,4-dimethoxy benzaldehyde (3.98 g, 24mmol) in MeOH (40mL) was treated dropwise with Br₂ (1.32mL, 26 mmol) during 30 min., and the system was left to react at room temperature for a further period of 1 hour. Then, the solvent was removed under reduced pressure, the solid was filtered and the solid residue was successively washed with cold water and petroleum ether, affording the title compound (5.7 g, 98 %), as a yellowish solid. ¹H NMR (400 MHz, CDCl₃) δ 10.18 (s, 1H), 7.41 (s, 1H), 7.05 (s, 1H), 3.96 (s, 3H), 3.91 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.6, 154.4, 148.8, 126.5, 120.3, 115.4, 110.4, 56.4, 56.1.

(*E*)-4-Chlorocinnamic acid.^[3,4] A solution of 4-chlorobenzaldehyde (5.6 g, 40mmol) and malonic acid (9.15 g, 88 mmol) in pyridine (18 mL) was treated with piperidine (0.7 mL) and stirred under reflux for 5 h. After completion of the reaction, the system was cooled in an ice-bath and treated with a cold HCl solution (2 N, 350 mL). The precipitate was filtered and dried under vacuum, affording the title compound (7.20 g, 99%), as a white solid, mp. 248–252°C (Lit.^[4] 249–251°C).

2.3-Dibromo-3-(4-chlorophenyl)propionic acid.^[5] A stirred solution of *trans*cinnamic acid (4.55g, 25 mmol) in AcOH (30 mL) was cooled to 0°C and treated dropwise with Br₂ (1.52 mL, 30 mmol) during 30 min. Stirring continued for additional 3 h at room temperature, when water (250 mL) was admitted into the reaction. Stirring continued for a few minutes and then the solids were filtered through a Büchner funnel, successively washing with water and cold petroleum ether. The title product (8.24 g, 97%) was obtained as a beige solid, mp. 193–195°C (Lit.^[5] 194–195°C).

(Z)-1-Chloro-4-(2-bromovinyl)benzene.^[6] A solution of 2,3-dibromo-3-(4-chloro phenyl) propionic acid (3.39 g, 10 mmol) in DMF (20 mL) was treated with Et₃N (1.46 mL, 10.5 mmol) under microwave irradiation (1 min., 500 W). The system was cooled to room temperature and the products were extracted with EtOAc (3×100 mL). The organic phase was washed with water and brine, and dried over anhydrous MgSO₄. The solvent was removed under reduced pressure and the residue purified by chromatography on silica gel, eluting with hexane, furnishing the title product (2.05 g, 95%), as a colorless oil, slightly contaminated with the *cis* isomer. MS (*m*/*z*, rel. int., %) 220 ([M+4]⁺, 19), 218 ([M+2]⁺, 74), 137 (M⁺, 100), 102 (77), 75 (51).

1-Chloro-4-ethynylbenzene.^[4] 18-Crown-6 (300 mg) was added to a stirred solution of (*Z*)-1-chloro-4-(2-bromovinyl)benzene (2.15 g, 10 mmol) in cyclopentane (30 mL). The solution was cooled to 0°C and treated portion wise with ^{*t*}BuOK (1.34 g, 12 mmol), stirring at this temperature for additional 30 minutes. Then, the system was further stirred for 30 min. at room temperature and 1 h at 40°C. After completion of the reaction, the system was

brought to room temperature and the reaction passed through a chromatographic column, eluting with petroleum ether. The product (1.26 g, 93%) was obtained as a white solid, mp. 45–45.5°C (Lit.^[4] 45–46°C). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 8.6, 2H), 7.29 (d, *J* = 8.6, 2H), 3.10 (s, 3H).

Synthesis of the 2(2-aryl-/2-alkyl- ethynyl)benzaldehydes

Pd(PPh₃)₂Cl₂ (2 mol%), CuI (1 mol%) and the appropriate acetylene (12 mmol) were successively added to a stirred mixture of Et₃N (30 mL) and the corresponding 2bromobenzaldehyde (10 mmol), under argon. The resulting mixture was heated at 50 °C for 2–5 h. After the reaction was completed, it was extracted with EtOAc (3 × 100 mL). The combined extracts were successively washed with water and brine, dried over MgSO₄ and filtered. The solvent was evaporated under reduced pressure and the residue was purified via column chromatography on silica gel, eluting with EtOAc:hexane (2:98).

2-(Phenylethynyl)benzaldehyde (**3a**).^[7] Yellow oil.¹H NMR (400 MHz, CDCl₃) δ 10.64 (s, 1H), 7.93 (dd, J = 0.82, 7.79 1H), 7.62 (dd, J = 0.7 and 7.7, 1H), 7.57–753 (m, 3H), 7.42 (t, J = 7.4, 1H), 7.38–7.35 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.5, 135.8, 133.6, 133.1, 131.6, 128.9, 128.5, 128.4, 127.2, 126.7, 122.2, 96.2, 84.8.MS (m/z, rel. int., %) 206 (M^+ , 100), 178 (42), 176 (41), 152 (32), 111 (2), 101 (4), 88 (22), 77 (9).

2-(*p*-**Tolylethynyl)benzaldehyde(3b).**^[8] Yellow solid. Mp. 46–47°C (Lit.^[8b] 48°C). ¹H NMR (200 MHz, CDCl₃) δ 10.65 (s, 1H), 7.94 (d, *J* = 7.8, 1H), 7.65–7.53 (m, 2H), 7.47–7.40 (m, 3H), 7.25–7.17 (m, 2H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.6, 139.3, 135.9, 133.6, 133.1, 131.6, 129.2, 128.3, 127.2, 127.1, 119.3, 96.6, 84.3, 21.5. MS (*m*/*z*, rel. int., %) 220 (M⁺, 100), 191 (52), 165 (18), 94 (13), 88 (3), 77 (2).

2-(*m***-Tolylethynyl)benzaldehyde (3c).**^[9] Yellow oil. ¹H NMR (200 MHz, CDCl₃) δ 10.60 (s, 1H), 7.92 (d, J = 7.8, 1H), 7.60 (d, J = 7.7, 1H), 7.54 (td, J = 1.3 and 7.3, 1H), 7.41 (t, J = 7.3, 1H), 7.37 – 7.34 (m, 2H), 7.26 – 7.22 (m, 1H), 7.18–7.16 (m, 1H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.6, 138.2, 135.8, 133.7, 133.1, 132.2, 129.9, 128.7, 128.4,

128.3, 127.2, 126.9, 122.1, 96.5, 84.5, 21.1.

2-((4-Chlorophenyl)ethynyl)benzaldehyde (**3d**).^[8a,10] Beige solid. Mp. 91–93°C (Lit.^[10] 83–89°C). ¹H NMR (200 MHz, CDCl₃) δ 10.61 (s, 1H), 7.94 (d, J = 7.6, 1H), 7.64–7.56 (m, 2H), 7.50–7.44 (m, 3H), 7.36 (d, J = 8.4 2H). ¹³C NMR (50 MHz, CDCl₃) δ 191.4, 135.8, 135.1, 133.7, 133.2, 132.8, 129.0, 128.8, 127.4, 126.3, 120.8, 95.0, 85.8. MS (m/z, rel. int., %) 242 ([M+2]⁺, 31), 240 (94), 205 (100), 177 (53), 176 (81), 88(34).

2-((2-Chlorophenyl)ethynyl)benzaldehyde (**3e**).^[11] Yellowish solid, mp. 64–65°C (Lit.^[11] 65–67°C). ¹H NMR (400 MHz, CDCl₃) δ 10.72 (s, 1H), 7.98–7.85 (m, 1H), 7.69–7.67 (m, 1H), 7.61–7.57 (m, 2H), 7.49–7.44 (m, 2H), 7.33–7.25 (m, 2H).¹³C NMR (50 MHz, CDCl₃) δ 191.8, 136.2, 136.0, 133.7, 133.3, 130.0, 129.4, 128.9, 127.1, 126.6, 126.4, 122.4, 92.9, 89.9. MS (*m*/*z*, rel. int., %) 242 ([M+2]⁺, 4), 240 (12), 205 (100), 88 (78).

5-Fluoro-2-(phenylethynyl)benzaldehyde (**3f**).^[12] Pale yellow solid. Mp. 53–54°C (Lit.^[12b] 51–52°C). ¹H NMR (200 MHz, CDCl₃) δ 10.59 (d, J = 3.2, 1H), 7.67–7.53 (m, 4H), 7.40–7.34 (m, 3H), 7.33–7.25 (m, 1H). ¹³C NMR (50 MHz, CDCl₃) δ 190.4, 162.3 (d, J = 252.7), 137.7 (d, J = 6.8), 135.2 (d, J = 7.6), 131.6, 129.1, 128.5, 122.9 (d, J = 3.3), 122.0, 121.3 (d, J = 22.7), 113.6 (d, J = 23.0), 95.9, 83.7.

5-Methoxy-2-(phenylethynyl)benzaldehyde (**3g**).^[13] Yellow solid. Mp. 80–83°C (Lit.^[13] 79–81°C). ¹H NMR (200 MHz, CDCl₃) δ 10.60 (s, 1H); 7.56–7.52 (m, 3H), 7.42 (d, *J* = 2.7, 1H), 7.37–7.35 (m, 3H), 7.13 (dd, *J* = 2.8 and 8.5, 1H), 3.86 (s, 3H). ¹³C NMR (50 MHz, CDCl₃) δ 191.5, 159.7, 137.2, 134.5, 131.4, 128.7, 128.4, 122.6, 121.6, 119.5, 109.8, 94.8, 84.8, 55.5.

4,5-Dimethoxy-2-(phenylethynyl)benzaldehyde (3h).^[12,14] Deep yellow solid. Mp. 139–143°C (Lit.^[14] 138–140°C). ¹H NMR (200 MHz, CDCl₃) δ 10.50 (s, 1H), 7.58–7.53 (m, 2H), 7.43–7.37 (m, 3H), 7.26 (s, 1H), 7.06 (s, 1H), 4.00 (s, 3H), 3.96 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 190.4, 153.7, 149.8, 131.5, 130.2, 128.8, 128.5, 122.5, 121.5, 114.3, 108.3, 94.9, 84.8, 56.3, 56.1. MS (*m*/*z*, rel. int., %) 266 (M⁺, 87), 251 (56), 195 (79), 165 (61), 152 S5

(100), 126 (28), 102 (37), 77 (23), 63 (33).

2-(hex-1-yn-1-yl)benzaldehyde (**3i**).^[12] Yellow oil. ¹H NMR (200 MHz, CDCl₃) δ 10.54 (s, 1H), 7.88 (d, J = 7.5, 1H), 7.52–7.49 (m, 2H), 7.44–7.33 (m, 1H), 2.49 (t, J = 6.8, 2H), 1.72–1.40 (m, 4H), 0.96 (t, J = 7.0, 3H). ¹³C NMR (50 MHz, CDCl₃) δ 192.2, 135.9, 133.6, 133.2, 127.9, 127.7, 126.8, 98.1, 30.5, 22.0, 19.2, 13.5. MS (m/z, rel. int., %) 186 (M⁺, 6), 157 (22), 144 (97), 128 (35), 115 (100), 102, (11), 89 (22), 77 (9), 63 (18).

Synthesis of the 1,2,3,4-tetrasubstituted pyrroles^[15]

Benzylamine (10 mmol) and ethyl acetoacetate (10 mmol), were successively added to a mixture of NiCl₂.6H₂O (10 mol%) in MeNO₂ (10 mL), magnetically stirred at room temperature. After ~10 minutes, formation of a precipitate was observed and the corresponding aldehyde (10 mmol) was added. The open system was heated at 80°C for 6–12 h. After the reaction was completed, the system was cooled to room temperature and the products were extracted with EtOAc (3×100 mL), the organic phase was washed with water and brine, and dried over anhydrous MgSO₄ and filtered. The solvent was evaporated under reduced pressure and the residue was purified via column chromatography on silica gel, eluting with EtOAc:hexane (5:95).

Ethyl 1-benzyl-2-methyl-4-(2-(phenylethynyl)phenyl)-1*H*-pyrrole-3-carboxylate (2a). Yelow oil. Yield: 47%. ¹H NMR (400 MHz, CDCl₃) δ 7.54 (dd, *J* = 1.2 and 7.3, 1H), 7.35–7.30 (m, 3H), 7.26 (dd, *J* = 1.2 and 7.2, 1H), 7.23–7.19 (m, 4H), 7.18–7.13 (m, 3H), 6.96 – 6.94 (m, 2H), 6.57 (s, 1H), 4.95 (s, 2H), 4.05 (q, *J* = 7.1, 2H), 2.45 (s, 3H), 0.97 (t, *J* = 7.1, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 138.7, 136.8, 135.5, 131.6, 131.3, 129.7, 128.6, 128.0, 127.6, 127.5, 127.4, 126.1, 126.0, 124.1, 123.5, 123.2, 120.7, 112.3, 91.2, 89.8, 59.1, 50.2, 13.6, 11,0. IR (film, υ) 3401, 3060, 3029, 2978, 2900, 2215, 1693 cm⁻¹. MS (*m*/*z*, rel. int., %) 419 (M⁺, 21), 346 (18), 254 (10), 228 (3), 226 (6), 91 (100), 77 (2), 65 (14). HRMS (ESI, *m*/*z*) calcd. for C₂₅H₂₉NO₂ ([M+H]⁺): 420.1964; Found: 420.1933.

Ethyl 1-benzyl-2-methyl-4-(2-(p-tolylethynyl)phenyl)-1H-pyrrole-3-carboxylate

(2b). White solid. Mp. 119–120°C. Yield: 41%. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 7.3, 1H), 7.32–7.31 (m, 1H), 7.28–7.21 (m, 7H), 7.05 (d, J = 7.9, 2H), 7.03–7.01 (m, 2H), 6.64 (s, 1H), 5.06 (s, 2H), 4.06 (q, J = 7.1, 2H), 2.48 (s, 3H), 2.32 (s, 3H), 0.98 (t, J = 7.1, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 138.7, 137.8, 136.9, 135.7, 131.7, 131.4, 129.8, 128.9, 128.8, 127.6, 127.4, 126.3, 126.1, 124.3, 123.5, 120.8, 120.6, 112.4, 91.5, 89.1, 59.3, 50.4, 21.4, 13.8, 11.2. IR (KBr, υ) 3403, 3085–3028, 2978, 2868, 2213, 1694 cm⁻¹. MS (m/z, rel. int., %) 433 (M⁺, 35), 258 (42), 268 (19), 225 (12), 105 (5), 91 (100), 65 (13). Anal. Calc. for C₃₀H₂₇NO₂C, 83.11; H, 6.28; N, 3.23. Found C, 83.41; H, 6.40; N, 3.24.

Ethyl 1-benzyl-2-methyl-4-(2-(*m*-tolylethynyl)phenyl)-1*H*-pyrrole-3-carboxylate (2c). Pale yellow solid. Mp. 136–138°C. Yield: 40%. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (dd, J = 1.3 and 7.5, 1H), 7.31–7.31 (dd, J = 1.3 and 7.4, 1H), 7.27–7.18 (m, 3H), 7.16–7.13 (m, 4H), 7.13–7.09 (m, 1H), 7.04–7.02 (m, 1H), 6.98–6.96 (m, 2H), 6.59 (s, 1H), 4.98 (s, 2H), 4.05 (q, J = 7.1, 2H), 2.46 (s, 3H), 2.23 (s, 3H), 0.97 (t, J = 7.1, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 138.8, 137.5, 136.8, 135.5, 132.0, 131.5, 129.7, 128.6, 128.5, 128.4, 127.9, 127.4, 126.1, 126.0, 124.2, 123.4, 120.8, 112.4, 91.5, 89.4, 59.1, 50.2, 21.0, 13.6, 11.0. IR (KBr, υ) 3425, 3055, 3032, 2978, 2924, 2206 cm⁻¹. MS (*m*/*z*, rel. int., %) 433 (M⁺, 48), 360 (50), 356 (45), 268 (20), 91 (100), 65 (11). HRMS (ESI, *m*/*z*) calcd. for C₃₀H₂₇NO₂ ([M+H]⁺): 434.2120; Found: 434.2118.

Ethyl 1-benzyl-4-(2-((4-chlorophenyl)ethynyl)phenyl)-2-methyl-1*H*-pyrrole-3carboxylate (2d). Yellow oil. Yield: 40%. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 7.5, 1H), 7.31 (d, 7.5, 1H), 7.27–7.21 (m, 4H), 7.19–7.15 (m, 5H), 6.97–6.95 (m, 2H), 6.57 (s, 1H), 4.95 (s, 2H), 4.04 (q, J = 7.1, 2H), 2.45 (s, 3H), 0.96 (t, J = 7.1, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 138.8, 136.7, 135.4, 133.5, 132.4, 131.4, 129.6, 128.5, 128.2, 127.6, 127.4, 126.1, 125.9, 124.0, 122.8, 122.0, 120.6, 112.3, 90.8, 90.0, 59.0, 50.1, 13.5, 10.9. IR(film, υ) 3425, 3062, 3031, 2978, 2893, 2214, 1689 cm⁻¹. HRMS (ESI, *m/z*) calcd. for C₂₉H₂₄ClNO₂ ([M+Na]⁺): 476.1393; Found: 476.1382. Ethyl 1-benzyl-4-(2-((2-chlorophenyl)ethynyl)phenyl)-2-methyl-1*H*-pyrrole-3carboxylate (2e). Yellow oil. Yield: 38%. ¹H NMR (400 MHz, CDCl₃) δ 7.60–7.58 (m, 1H), 7.37–7.29 (m, 4H), 7.28–7.22 (m, 2H), 7.21–7.18 (m, 2H), 7.17–7.10 (m, 2H), 7.04–7.01 (m, 2H), 6.68 (s, 1H), 5.05 (s, 2H), 4.05 (q, J = 7.1, 2H), 2.47 (s, 3H), 0.99 (t, J = 7.1, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 139.0, 136.9, 135.8, 135.6, 133.3, 132.0, 130.1, 129.0, 128.7, 128.6, 127.8, 127.5, 126.3, 126.2, 126.1, 124.1, 123.7, 123.1, 121.0, 112.4, 95.0, 88.0, 59.1, 50.4, 13.7, 11.2. IR (film, υ) 3371, 3063, 3024, 2978, 2924, 2214, 1689 cm⁻¹. HRMS (ESI, *m/z*) calcd. for C₂₉H₂₄ClNO₂([M+Na]⁺): 476.1393; Found: 476.1388.

Ethyl 1-benzyl-4-(5-fluoro-2-(phenylethynyl)phenyl)-2-methyl-1*H*-pyrrole-3carboxylate (2f). Yellow oil. Yield: 35%. ¹H NMR (400 MHz, CDCl₃) δ 7.51–7.47 (m, 1H), 7.34–7.31 (m, 2H), 7.25–7.22 (m, 3H), 7.21–7.18 (m, 3H), 7.06–7.03 (m, 1H), 7.01–6.99 (m, 2H), 6.93 (td, J= 2.7 and 8.4, 1H), 6.65 (s, 1H), 5.04 (s, 2H), 4.08 (q, J = 7.1, 2H), 2.48 (s, 3H), 1.02 (t, J = 7.1, 3H). IR (film, υ) 3396, 3064, 3032, 2977, 2850, 2217, 1701 cm⁻¹. MS (m/z, rel. int., %) 437 (M⁺, 39), 364 (29), 360 (28), 91 (100), 65 (11). ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 161.8 (d, J = 248.5), 141.1 (d, J = 8.9), 136.6, 135.9, 133.2 (d, J = 8.6), 131.3, 128.8, 128.1, 127.7, 127.6, 126.2, 123.5, 123.2 (d, J = 1.9), 121.0, 119.5 (d, J = 3.0), 116.9 (d, J = 22.0), 113.1 (d, J = 21.8), 112.2, 90.9, 88.8, 59.3, 50.4, 13.7, 11.1. Anal. Calcd. for C₂₉H₂₄FNO₂ C, 79.61; H, 5.53; N, 3.20. Found C, 79.19; H, 5.59; N, 3.11.

Ethyl 1-benzyl-4-(5-methoxy-2-(phenylethynyl)phenyl)-2-methyl-1*H*-pyrrole-3carboxylate (2g). Yellow oil. Yield: 32%.¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.5, 1H), 7.33–7.30 (m, 2H), 7.22–7.15 (m, 6H), 7.00–6.97 (m, 2H), 6.88 (d, *J* = 2.6, 1H), 6.77 (dd, *J* = 2.7 and 8.5, 1H), 6.61 (s, 1H), 4.99 (s, 2H), 4.07 (q, *J* = 7.1, 2H), 3.76 (s, 3H), 2.46 (s, 3H), 1.00 (t, *J* = 7.1, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 158.9, 140.4, 136.8, 135.5, 132.9, 131.2, 128.6, 127.9, 127.4, 127.2, 126.2, 124.1, 124.0, 120.8, 115.8, 115.4, 112.4, 111.9, 90.0, 89.9, 59.1, 55.1, 50.3, 13.7, 11.0. IR (film, υ) 3379, 3062, 3032, 2978, 2931, 2214, 1697 cm⁻¹. MS (*m*/*z*, rel. int., %) 449 (M⁺, 59), 376 (54), 284 (11), 91 (100), 77 (2). Anal. Calcd. for C₃₀H₂₇NO₃ C, 80.15; H, 6.05; N, 3.12. Found C, 79.39; H, 6.37; N, 3.20. Ethyl 1-benzyl-4-(4,5-dimethoxy-2-(phenylethynyl)phenyl)-2-methyl-1*H*-pyrrole-3-carboxylate (2h). Yellow oil. Yield: 42%. ¹H NMR (400 MHz, CDCl₃) δ 7.34–7.32 (m, 2H), 7.25–7.22 (m, 6H), 7.05–7.03 (m, 3H), 6.86 (s, 1H), 6.67 (s, 1H), 5.07 (s, 2H), 4.09 (q, J = 7.1, 2H), 3.91 (s, 3H), 3.88 (s, 3H), 2.49 (s, 3H), 1.05 (t, J = 7.1, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 148.7, 147.3, 136.9, 135.6, 132.4, 131.3, 128.8, 128.1, 127.6, 127.5, 126.3, 124.1, 123.9, 120.9, 115.2, 114.5, 113.5, 112.5, 90.0, 89.9, 59.2, 56.0, 55.8, 50.5, 13.9, 11.2. IR (film, υ) 3462, 3062, 3029, 2993, 2835, 2203, 1686 cm⁻¹. MS (*m*/*z*, rel. int., %) 479 (M⁺, 51), 407 (19), 406 (56), 402 (19), 249 (9), 189 (3), 91 (100), 77 (2). Anal. Calcd. for C₃₁H₂₉NO₄ C, 77.64; H, 6.10; N, 2.92. Found C, 77.61; H, 6.03; N, 2.65.

Ethyl 1-benzyl-4-(2-(hex-1-in-1-yl)phenyl)-2-methyl-1*H*-pyrrole-3-carboxylate (2i). Yellow oil. Yield: 40%. ¹H NMR (200 MHz, CDCl₃) δ 7.42–7.37 (m, 1H), 7.31–7.22 (m, 4H), 7.20–7.10 (m, 2H), 7.06–7.02 (m, 2H), 6.58 (s, 1H), 5.02 (s, 2H), 4.05 (q, *J* = 7.1, 2H), 2.44 (s, 3H), 2.26 (t, *J* = 6.7, 2H), 1.50–1.21 (m, 4H), 0.99 (t, *J* = 7.1, 3H), 0.83 (t, *J* = 6.9, 3H). ¹³C NMR (50 MHz, CDCl₃) δ 165.6, 138.4, 136.9, 135.3, 131.6, 129.5, 128.6, 127.5, 126.6, 126.2, 125.8, 124.3, 124.0, 120.5, 112.3, 92.1, 80.4, 59.0, 50.2, 30.5, 21.6, 19.0, 13.6, 13.5, 10.9. IR (film, υ) 3395, 3062, 3029, 2228, 1702 cm⁻¹. MS (*m*/*z*, rel. int., %) 399 (M⁺, 23), 326 (18), 284 (12), 235 (4), 91 (100), 65 (10), 55 (1). HRMS (ESI, *m*/*z*) calcd. for C₂₇H₂₉NO₂ ([M+Na]⁺): 422.2096; Found: 476.2101.

Ethyl 1-benzyl-4-(2-((4-fluorophenyl)ethynyl)phenyl)-2-methyl-1H-pyrrole-3carboxylate (2j). Yellow oil; Yield: 31%. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, 7.4, 1H), 7.33-7.17 (m, 8H), 7.01-6.99 (m, 2H), 6.92 (t, 8.5, 2H), 6,61 (s, 1H), 5.03 (s, 2H), 4.05 (q, 7.2, 2H), 2.48 (s, 3H), 0,98 (t, 7.2, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 162.2 (d, 248.9), 138.8, 136.9, 135.6, 133.3 (d, 8.1), 131.5, 129.8, 128.7, 127.7, 127.6, 126.3, 126.1, 124.3, 123.2, 120.7, 119.83 (d, 3.3), 115.32 (d, 22.0), 112.5, 90.2, 89.5, 59.2, 50.41, 13.7, 11.1. MS (*m*/*z*, rel. int., %): 437 (M⁺, 15), 364 (17), 360 (4), 272 (8), 91 (100), 65 (20). HRMS (ESI, *m*/*z*) calcd. for C₂₉H₂₄FNO₂ ([M+Na]⁺): 460.1689; Found: 460.1723. Ethyl 2-methyl-1-phenethyl-4-(2-(phenylethynyl)phenyl)-1*H*-pyrrole-3carboxylate (2k). Yellow oil. Yield: 45%. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 7.2, 1H), 7.41–7.38 (m, 2H), 7.27–7.25 (m, 3H), 7.24–7.22 (m, 2H), 7.21–7.18 (m, 1H), 7.17– 7.14 (m, 3H), 6.98 (dd, J = 2.4 and 7.2, 2H), 6.45 (s, 1H), 4.04 (q, J = 7.1, 2H), 3.99 (t, J =6.8, 2H), 2.93 (t, J = 6.8, 2H), 2.35 (s, 3H), 0.96 (t, J = 7.1, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 138.9, 137.6, 135.3, 131.7, 131.5, 129.5, 128.7, 128.5, 128.1, 127.7, 127.6, 126.7, 126.0, 124.1, 123.7, 123.4, 119.7, 111.7, 91.1, 89.9, 59.1, 48.1, 37.5, 13.7, 10.8. IR(film, υ) 3410, 3055, 3024, 2978, 2931, 2214, 1698 cm⁻¹. MS (m/z, rel. int., %) 433 (M⁺, 100), 360 (44), 328 (41), 268 (39), 253 (63), 180 (10), 105 (81), 91 (44), 77 (43). HRMS (ESI, m/z) calcd. for C₃₀H₂₇NO₂ ([M+H]⁺): 434.2120; Found: 434.2118.

1-Benzyl-2-methyl-4-(2-(phenylethynyl)phenyl)-1*H*-**pyrrole (2l).** An alcoholic solution of NaOH (4 % P/V, 40 mL) was added to a stirred solution of compound **2a** (4.195 g, 10.0 mmol) in EtOH (40 mL) and the mixture was heated under reflux for 5 h. The system was cooled in an ice bath and the solution was adjusted to pH 5 with glacial acetic acid. The thus formed precipitate was collected by filtration, affording 1-benzyl-2-methyl-4-(2-(phenylethynyl)phenyl)-1*H*-pyrrole carboxylic acid (3.408 g, 87%), as a beige solid, mp. 204–204.5°C. MS (*m*/*z*, rel. int., %) 391 (M⁺, 2), 242 (20), 189(8), 111(14), 97(29), 83(31), 57(85), 43(100). IR (KBr, υ) 3432, 3132, 3095, 3027, 2963, 2851, 2215, 1655 cm⁻¹. HRMS (ESI, *m*/*z*) calcd. for C₂₇H₂₁NO₂ ([M+Na]⁺): 414.1470; Found: 414.1467.

To a stirred solution of the above acid (391 mg, 1.0 mmol) in quinoline (2 mL) was added metallic Cu (0.7 mmol) and the system was heated under reflux for 4 hours. Then, it was cooled with an ice bath and the pH of the solution was adjusted to 4 with 2N HCl. The products were extracted with EtOAc (3 × 10 mL), the organic phase was washed with water, brine and saturated NaHCO₃ solution, dried over MgSO₄ and filtered. The solvent was evaporated under reduced pressure and the residue was purified via column chromatography on silica gel, eluting with EtOAc:hexane (5:95), affording compound **2k** (236 mg, 68%), as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.25–8.22 (m, 1H), 7.82–7.79 (m, 1H), 7.51 (ddd, *J* = 1.3, 6.9 and 8.2, 1H), 7.51 (ddd, *J* = 1.3, 6.9 and 8.2, 1H), 7.10–7.06 (m, 3H), 6.99 (s, 1H), 6.37 – 6.34 (m, 2H), 4.95 (s, 2H), 2.35 (s, 3H). HRMS (ESI, *m/z*) calcd. for C₂₆H₂₁N ([M+H]⁺): 348.1752; Found: 348.1752.

Synthesis of the 3*H*-benzo[*e*]indoles

Solid K₂CO₃ (0.5 mmol) was added to a solution of the pyrrole (0.25 mmol) in CH₂Cl₂ (2 mL) and the system was stirred at room temperature for 10 minutes. Then, it was treated dropwise with a solution of iodine (0.3 mmol) in CH₂Cl₂ (2 mL). After the reaction was completed, the product was extracted with CH₂Cl₂ (3 × 50 mL). The combined organic extracts were successively washed with 15% aqueous Na₂S₂O₃ (50 mL), water and brine, dried over MgSO₄ and filtered. The solvent was evaporated under reduced pressure and the residue was purified via column chromatography on silica gel eluting with EtOAc:hexane (10:90).

Ethyl 3-benzyl-5-iodo-2-methyl-4-phenyl-3*H*-benzo[*e*]indole-1-carboxylate (1a). White solid. Mp. 152–153°C. Yield: 93%. ¹H NMR (400 MHz, CDCl₃) δ 8.79–8.76 (m, 1H), 8.44–8.41 (m, 1H), 7.57 (ddd, J = 1.4, 6.8 and 8.2, 1H), 7.51 (ddd, J = 1.4, 6.8 and 8.3, 1H), 7.39–7.33 (m, 1H), 7.24–7.19 (m, 2H), 7.14–7.09 (m, 3H), 6.94 (dd, J = 1.3 and 8.2, 2H), 6.34 (dd, J = 1.9 and 7.5, 2H), 4.73 (s, 2H), 4.53 (q, J = 7.1, 2H), 2.46 (s, 3H), 1.47 (t, J = 7.1, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5,143.8, 141.4, 137.3, 134.3, 133.3, 131.6, 130.7, 130.1, 128.4, 128.2, 128.1, 127.3, 127.0, 126.1, 125.7, 125.3, 124.9, 122.0, 109.1, 104.3,60.7, 48.2, 14.4, 12.0. IR (KBr, υ) 3363, 3055, 3026, 2978, 2908, 1697 cm⁻¹. MS (m/z, rel. int., %) 545 (M⁺, 2), 418 (65), 373 (6), 281 (19), 253 (26), 105 (5), 91 (100), 77 (2), 45 (6). Anal. Calcd. for C₂₉H₂₄INO₂ C, 63.86; H, 4.44; N, 2.57. Found C, 64.18; H, 4.61; N, 2.35.

Ethyl 3-benzyl-5-iodo-2-methyl-4-(*p*-tolyl)-3*H*-benzo[*e*]indole-1-carboxylate (1b). White solid. Mp. 147–148°C. Yield: 96%. ¹H NMR (400 MHz, CDCl₃) δ 8.77 (dd, J = 0.9 and 8.2, 1H), 8.42 (dd, J = 0.9 and 8.3, 1H), 7.56 (ddd, J = 1.4, 6.8 and 8.3, 1H), 7.51, (ddd, J = 1.4, 6.8 and 8.2, 1H), 7.14–7.09 (m, 3H), 7.01 (d, J = 7.7, 2H), 6.82 (d, J = 7.9, 2H), 6.36–6.34 (m, 2H), 4.75 (s, 2H), 4.52 (q, J = 7.1, 2H), 2.45 (s, 3H), 2.38 (s, 3H), 1.46 (t, J = 7.1, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 141.3, 140.7, 138.0, 137.4, 134.2, 133.4, 131.8, 130.6, 129.8, 128.7, 128.2, 127.2, 126.9, 126.0, 125.6, 125.2, 124.8, 121.8, 108.9, 104.6, 60.6, 48.1, 21.4, 14.3, 12.0. IR (KBr, υ) 3369, 3061, 3028, 2970, 2920, 1703 cm⁻¹. MS (*m*/*z*, rel. int., %) 559 (M⁺, 100), 487 (2), 432 (1), 386 (12), 268 (15), 91 (57), 65 (7). Anal. Calcd. for C₃₀H₂₆INO₂ C, 64.41; H, 4.68; N, 2.50. Found C, 64.37; H, 4.76; N, 2.39.

Ethyl 3-benzyl-5-iodo-2-methyl-4-(*m*-tolyl)-3*H*-benzo[*e*]indole-1-carboxylate (1c). Yellow solid. Mp. 136–138°C. Yield: 94%. ¹H NMR (400 MHz, CDCl₃) δ 8.77 (dd, *J* = 0.9 and 8.3, 1H), 8.42 (dd, *J* = 0.9 and 8.3, 1H), 7.57 (ddd, *J* = 1.4, 6.9 and 8.3, 1H), 7.51 (ddd, *J* = 1.3, 6.9 and 8.1, 1H), 7.20–7.13 (m, 5H), 6.84 (d, *J* = 6.5, 1H), 6.63 (s, 1H), 6.36 (dd, *J* = 2.8 and 6.4, 2H), 4.77 (d, *J* = 17.9, 1H), 4.68 (d, *J* = 17.9, 1H), 4.53 (q, *J* = 7.1, 2H), 2.45 (s, 3H), 2.04 (s, 3H), 1.47 (t, *J* = 7.1, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 143.5, 141.3, 137.9, 137.5, 134.2, 133.4, 131.6, 130.8, 130.6, 128.8, 128.3, 127.8, 127.2, 127.1, 126.8, 126.0, 125.6, 125.3, 124.7, 121.8, 108.9, 104.1, 60.7, 48.1, 21.1, 14.3, 12.0. IR (KBr, υ) 3378, 3060, 3030, 2925, 2870, 1707 cm⁻¹. MS (*m*/*z*, rel.int., %) 559 (M⁺, 33), 386 (5), 341 (8), 137 (10), 91 (44), 81 (52), 69 (100), 43 (63). HRMS (ESI, *m*/*z*) calcd. for C₃₀H₂₆INO₂ ([M+Na]⁺): 582.0906; Found: 582.0904.

Ethyl 3-benzyl-4-(4-chlorophenyl)-5-iodo-2-methyl-3*H*-benzo[*e*]indole-1carboxylate (1d). White solid. Mp. 147–148°C. Yield: 90%. ¹H NMR (400 MHz, CDCl₃) δ 8.78–8.75 (m, 1H), 8.41–8.38 (m, 1H), 7.57 (ddd, *J* = 1.4, 6.8 and 8.3, 1H), 7.51 (ddd, *J* = 1.4, 6.8 and 8.2, 1H), 7.17–7.11 (m, 5H), 6.87–6.84 (m, 2H), 6.38–6.36 (m, 2H), 4.79 (s, 2H), 4.53 (q, *J* = 7.1, 2H), 2.47 (s, 3H), 1.47 (t, *J* = 7.1, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 142.1, 141.4, 137.0, 134.3, 132.0, 131.6, 131.4, 130.6, 128.5, 128.2, 127.4, 127.2, 126.4, 125.9, 125.4, 124.8, 122.2, 109.2, 104.4, 60.8, 48.3, 14.4, 12.0. IR (KBr, υ) 3365, 3108, 3087, 2982, 2873, 1693 cm⁻¹. MS (*m*/*z*, rel. int., %) 581 ([M+2]⁺, 17), 579 (44), 453 (10), 253 (8), 149 (21), 91 (100), 69 (22). HRMS (ESI, *m*/*z*) calcd. for C₂₉H₂₃ClINO₂ ([M+H]⁺): 580.0540; Found: 580.0544.

Ethyl 3-benzyl-4-(2-chlorophenyl)-5-iodo-2-methyl-3*H*-benzo[*e*]indole-1carboxylate (1e). White solid. Mp. 175–175.5°C. Yield: 89%. ¹H NMR (400 MHz, CDCl₃) δ 8.80 (dd, *J* = 0.8 and 8.3, 1H), 8.41 (dd, *J* = 0.8 and 8.4, 1H), 7.58 (ddd, *J* = 1.3, 6.8 and 8.3, 1H), 7.51 (ddd, *J*= 1.3, 6.8 and 8.2, 1H), 7.40 (dd, *J*= 0.9 and 8.0, 1H), 7.29 (td, *J* = 1.6 and 7.7,1H), 7.16–7.07 (m, 3H), 6.92 (td, *J* = 1.1 and 7.4, 1H), 6.77 (dd, *J* = 1.5 and 7.6, 1H), 6.38 (d, *J* = 6.7, 2H), 4.95 (d, *J* = 18.0, 1H), 4.76 (d, *J* = 18.0, 1H), 4.54 (q, *J* = 7.1, 2H), S12 2.49 (s, 3H), 1.47 (t, J = 7.1, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 142.1, 141.3, 136.8, 134.7, 134.2, 132.3, 131.1, 130.6, 130.4, 129.8, 129.2, 128.3, 127.4, 127.1, 126.5, 126.4, 125.7, 125.3, 124.8, 122.2, 109.1, 104.3, 60.7, 47.9, 14.4, 12.0. IR (KBr, υ) 3379, 3124, 3024, 2978, 2869, 1697 cm⁻¹. MS (*m*/*z*, rel.int., %) 581 ([M+2] ⁺, 17), 579 (M⁺, 44), 453 (10), 253 (8), 149 (21), 91 (100), 69 (22). HRMS (ESI, *m*/*z*) calcd. for C₂₉H₂₃ClINO₂ ([M+H]⁺): 580.0540; Found: 580.0530.

Ethyl 3-benzyl-8-fluoro-5-iodo-2-methyl-4-phenyl-3*H*-benzo[*e*]indole-1carboxylate (1f). Yellow solid. Mp. 161–162°C. Yield: 93%. ¹H NMR (400 MHz, CDCl₃) δ 8.62 (dd, *J* =2.5 and 11.9, 1H), 8.43 (dd, *J* =5.9 and 9.3, 1H), 7.37–7.33 (m, 1H), 7.25–7.23– (m, 1H), 7.22–7.18 (m, 2H), 7.14–7.09 (m, 3H), 6.93–6.91 (m, 2H), 6.34–6.32 (m, 2H), 4.73 (s, 2H), 4.54 (q, *J* = 7.1, 2H), 2.46 (s, 3H), 1.48 (t, *J* = 7.1, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 160.9 (d, *J* = 245.2), 143.5, 142.0, 137.1, 136.8 (d, *J* = 8.9), 132.6, 131.8, 130.0, 128.3, 128.2, 128.1, 127.9 (d, *J* = 10.0), 127.5, 127.0, 124.8, 121.4 (d, *J* = 4.4), 114.9 (d, *J* = 24.2), 109.5 (d, *J* = 23.8), 108.9, 103.7, 60.8, 48.1, 14.2, 12.1. IR (KBr, υ) 3386, 3105, 3027, 2988, 2869, 1702 cm⁻¹. MS (*m*/*z*, rel. int., %) 563 (M⁺, 100), 436 (1), 363 (8), 345 (17), 272 (13), 91 (82). Anal. Calcd. for C₂₉H₂₃FINO₂ C, 61.82; H, 4.11; N, 2.49. Found C, 61.67; H, 4.02; N, 2.41.

3-Benzyl-5-iodo-8-methoxy-2-methyl-4-phenyl-3*H***-benzo**[*e*]**indole-1-carboxylate** (**1g**). Yellow solid. Mp. 171–171.5°C. Yield: 89%. ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, *J* = 2.5, 1H), 8.32 (d, *J* = 9.2, 1H), 7.35–7.32 (m, 1H), 7.21–7.17 (m, 2H), 7.16–7.08 (m, 4H), 6.95–6.93 (m, 2H), 6.36–6.34 (m, 2H), 4.72 (s, 2H), 4.5 (q, *J* = 7.1, 2H), 3.99 (s, 3H), 2.44 (s, 3H), 1.45 (t, *J* = 7.1, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 158.1, 143.9, 141.1, 137.4, 135.8, 131.9, 130.8, 130.4, 128.3, 128.1, 128.0, 126.9, 125.7, 124.9, 121.4, 116.9, 109.0, 105.4, 104.0, 60.6, 55.5, 48.1, 14.4, 12.2. IR (KBr, υ) 3437, 3138, 3023, 2997, 2898, 2832, 1690 cm⁻¹. MS (*m*/*z*, rel. int., %) 575 (M⁺, 100), 530 (4), 448 (2), 357 (52), 241 (16), 91 (66), 57 (15). Anal. Calcd. for C₃₀H₂₆INO₃ C, 62.62; H, 4.55; N, 2.43. Found C, 62.67; H, 4.58; N, 2.30. Ethyl 3-benzyl-5-iodo-7,8-dimethoxy-2-methyl-4-phenyl-3*H*-benzo[*e*]indole-1carboxylate (1h). Yellow solid. Mp. 181–182°C. Yield: 73%. ¹H NMR (400 MHz, CDCl₃) δ 8.55 (s, 1H), 7.82 (s, 1H), 7.35 (t, *J* = 7.6, 1H), 7.20 (t, *J* = 7.2, 2H), 7.14–7.10 (m, 3H), 6.94 (d, *J* = 7.5, 2H), 6.34 (d, *J* = 7.6, 2H), 4.72 (s, 2H), 4.50 (q, *J* = 7.1, 2H), 4.10 (s, 3H), 4.05 (s, 3H), 2.46 (s, 3H), 1.45 (t, *J* = 7.1, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 149.1, 148.8, 144.0, 141.7, 137.4, 131.1, 131.0, 130.3, 128.3, 128.1, 128.0, 126.9, 126.2, 124.9, 122.1, 121.8, 114.3, 108.2, 105.9, 103.0, 60.6, 56.1, 55.8, 48.1, 14.4, 12.4. IR (KBr, υ) 3350, 3150, 3027, 2992, 2902, 2827, 1985, 1738, 1699 cm⁻¹. MS (*m*/*z*, rel. int., %) 605 (M⁺, 13), 432 (1), 387 (7), 261 (3), 149 (12), 91 (11), 69 (100), 55 (21), 43 (25). Anal. Calcd. for C₃₁H₂₈INO₄ C, 61.50; H, 4.66; N, 2.31. Found C, 61.34; H, 4.52; N, 2.27.

Ethyl 3-benzyl-4-butyl-5-iodo-2-methyl-3*H*-benzo[*e*]indole-1-carboxylate (1i). White solid. Mp. 148–148.5°C. Yield: 61%. ¹H NMR (400 MHz, CDCl₃) δ 8.57–8.53 (m, 1H), 8.42–8.38 (m, 1H), 7.49–7.43 (m, 2H), 7.31–7.23 (m, 3H), 6.85 (d, J = 6.8, 2H), 5.56 (s, 2H), 4.51 (q, J = 7.1, 2H), 3.15 (t, J = 7.9, 2H), 2.55 (s, 3H), 1.77–1.57 (m, 2H), 1.47–1.40 (m, 5H), 0.95 (t, J = 7.2, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 140.6, 137.4, 134.0, 131.8, 131.2, 131.1, 129.1, 127.5, 126.5, 125.4, 125.3, 124.9, 122.1, 109.2, 105.1, 60.7, 49.0, 38.7, 32.9, 22.6, 14.3, 13.8, 12.0. IR (KBr, υ) 3439, 3046, 3024, 2979, 2870, 1981, 1820, 1690 cm⁻¹. MS (*m*/*z*, rel. int., %) 525 (M⁺, 41), 480 (2), 398 (2), 352 (17), 283 (12), 137 (10), 91 (72), 81 (59), 69 (100), 57 (27), 43 (28). Anal. Calcd. for C₂₇H₂₈INO₂ C, 61.72; H, 5.37; N, 2.67. Found C, 61.74; H, 5.32; N, 2.72.

Ethyl 3-benzyl-4-(4-fluorophenyl)-5-iodo-2-methyl-3*H*-benzo[*e*]indole-1-carboxylate (1j). White solid. Mp. 154–155°C. Yield: 65%. ¹H NMR (400 MHz, CDCl₃) δ 8.77 (dd, J = 0.8 and 8.2, 1H), 8.40 (dd, J = 0.9 and 8.4, 1H), 7.49 – 7.59 (m, 2H), 7.14 – 7.10 (m, 3H), 6.88 – 6.87 (m, 4H), 6.37 – 6.35 (m, 2H), 4.77 (s, 2H), 4.53 (q, J = 7.1, 2H), 2.47 (s, 3H), 1.46 (t, J = 7.1, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 162.5 (d, J = 247.9), 141.3, 139.6 (d, J = 3.5), 137.0, 134.3, 132.1, 131.8 (d, J = 8.1), 130.6, 128.4, 127.3, 127.1, 126.2, 125.8, 125.3, 124.7, 122.0, 115.0 (d, J = 21.4), 114.9, 109.1, 104.9, 60.7, 48.1, 14.3, 12.0. MS (*m*/*z*, rel. int., %): 563 (M⁺, 8), 262 (19), 183 (21), 108 (18), 91 (32), 69 (100), 41 (70). HRMS (ESI, *m*/*z*) calcd. for C₂₉H₂₃FINO₂ ([M+Na]⁺): 586.0655; Found: 586.0663. Ethyl 5-iodo-2-methyl-3-phenylethynyl-4-phenyl-3*H*-benzo[*e*]indole-1-carboxylate (1k). White solid. Mp. 120–121°C. Yield: 85%. ¹H NMR (400 MHz, CDCl₃) δ 8.70–8.67 (m, 1H), 8.45–8.43 (m, 1H), 7.56–7.48 (m, 5H), 7.40–7.38 (m, 2H), 7.18–7.16 (m, 3H), 6.71–6.99 (m, 2H), 4.51 (q, J = 7.1, 2H), 3.69 (t, J = 8.1, 2H), 2.56 (t, J = 8.1, 2H), 2.47 (s, 3H), 1.46 (t, J = 7.1, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 144.6, 140.8, 137.4, 134.3, 133.0, 131.0, 130.6, 130.5, 128.7, 128.6, 128.4, 128.4, 127.1, 126.7, 126.1, 125.7, 125.2, 122.1, 109.0, 104.4, 60.7, 45.9, 37.0, 14.4, 12.1. IR (KBr, υ) 3367, 3053, 3017, 2973, 2923, 1955, 1803, 1697 cm⁻¹. MS (*m*/*z*, rel. int., %) 559 (M⁺, 30), 558 (100), 421 (86), 311 (23), 268 (31), 201 (3), 105 (41), 101 (2), 77 (23), 69 (55), 45 (15), 43 (41). Anal. Calcd. for C₃₀H₂₆INO₂ C, 64.41; H, 4.68; N, 2.50. Found C, 64.52; H, 4.59; N, 2.38.

3-Benzyl-5-iodo-2-methyl-4-phenyl-3*H***-benzo[***e***]indole (11). White solid. Mp. 171– 172°C. Yield: 90%. ¹H NMR (400 MHz, CDCl₃) \delta 8.36–8.34 (m, 1H), 8.21–8.19 (m, 1H), 7.57–7.53 (m, 1H), 7.47 (ddd,** *J* **= 1.2, 6.9 and 8.2, 1H), 7.36 – 7.32 (m, 1H), 7.20 (t,** *J* **= 7.6, 2H), 7.10–7.06 (m, 3H), 6.98–6.95 (m, 3H), 6.32–6.30 (m, 2H), 4.66 (s, 2H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) \delta 143.7, 138.6, 137.0, 133.9, 133.8, 131.6, 130.1, 129.7, 128.2, 128.0, 127.9, 127.4, 126.7, 126.0, 125.1, 125.0, 124.9, 123.0, 100.6, 100.5, 47.7, 13.0. IR (KBr, \upsilon) 3445, 3076, 3026, 2936, 2865, 1972, 1835 cm⁻¹. MS (***m***/***z***, rel. int., %) 473 (M⁺, 100), 346 (4), 268 (19), 254 (52), 91 (59), 65 (6). Anal. Calcd. for C₂₆H₂₀IN C, 65.97; H, 4.26; N, 2.96. Found C, 66.20; H, 4.31; N, 2.91.**

Ethyl 3-benzyl-2-methyl-4-phenyl-3*H*-benzo[*e*]indole-1-carboxylate (1'a). Yellow solid. Mp. 132–133°C. Yield: 41%. ¹H NMR (400 MHz, CDCl₃) δ 8.91–8.89 (m, 1H), 7.82–7.79 (m, 1H), 7.54 (ddd, J= 1.4, 6.8 and 8.4, 1H), 7.43 (ddd, J = 1.2, 6.8 and 8.0, 1H), 7.35, (s, 1H), 7.31–7.27 (m, 1H), 7.19–7.15 (m, 2H), 7.12–7.06 (m, 5H), 6.39–6.37 (m, 2H), 4.97 (s, 2H), 4.53 (q, J = 7.1, 2H),2.52 (s, 3H), 1.47 (t, J = 7.1, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 141.1, 139.8, 137.2, 131.2, 129.6, 129.4, 128.3, 128.2, 127.7, 127.6, 127.3, 127.0, 126.9, 126.5, 125.4, 125.1, 125.0, 124.1, 121.4, 109.1, 60.4, 48.2, 14.4, 12.0. IR (KBr, υ) 3378, 3058, 3025, 2980, 2850, 1958, 1799, 1690 cm⁻¹. MS (*m*/*z*, rel. int., %) 563 (M⁺, 100),

436 (1), 363 (8), 345 (17), 272 (13), 91 (82). Anal. Calcd. for C₂₉H₂₅NO₂ C, 83.03; H, 6.01; N, 3.34. Found C, 82.98; H, 5.78; N, 3.27.

Example of functionalization of an iodocyclized product

Ethvl 11-benzyl-12-methyl-5,6-diphenyl-11*H*-benzo[*e*]naphtho[2,1-g]indole-13carboxvlate (6a).^[16] Diphenylacetylene (89mg,0.5mmol), Pd(OAc)₂ (5 mg, 5mol%), NaOAc (41 mg, 0.5 mmol) and LiCl (10 mg, 0.25 mmol) were successively added to a stirred solution of **1a** (139 mg, 0.25 mmol) in DMF (1 mL). The system was heated at 100°C for 24 h. After the reaction was completed, the system was cooled to room temperature and the products were extracted with EtOAc (3×10 mL), the organic phase was washed with water and brine. The extract was dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified via column chromatography on silica gel, eluting with hexane. The product (145 mg, 98%) was obtained as a yellow solid. Mp. 236-236.5°C. ¹H NMR (400 MHz, CDCl₃) δ 8.73 – 8.71 (m, 1H), 8.35–8.33 (m, 1H), 7.69–7.64 (m, 3H), 7.47–7.38 (m, 3H), 7.35–7.31 (m, 2H), 7.22–7.17 (m, 2H), 7.07–7.06 (m, 4H), 7.01–6.90 (m, 5H), 6.27 (d, J = 7.2, 2H, 5.71 (d, J = 15.6, 1H), 5.36 (d, J = 15.6, 1H), 4.54–4.51 (m, 2H), 2.67 (s, 3H), 1.48 (t, J = 7.1, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 143.6, 143.1, 139.5, 137.4, 136.4, 136.0, 132.5, 131.8, 131.5, 130.8, 130.5, 129.6, 128.8, 128.3, 128.1, 128.0, 127.5, 127.3, 126.9, 126.8, 126.6, 126.3, 126.1, 126.0, 125.9, 125.5, 125.0, 124.7, 123.1, 121.8, 121.5, 111.9, 60.5, 51.6, 14.4, 13.1. MS (*m/z*, rel. int., %) 595 (M⁺, 17), 458 (10), 419 (23), 254 (14), 149 (13), 105 (100), 91 (84), 77 (45). HRMS (ESI, m/z) calcd. for C₄₃H₃₃NO₂([M+H]⁺): 596.2590; Found: 596.2583.

 1 H NMR (top) and 13 C NMR (bottom) spectra of Compound 1a.

 1 H NMR (top) and 13 C NMR (bottom) spectra of Compound 1b.

 1 H NMR (top) and 13 C NMR (bottom) spectra of Compound **1c**.

 1 H NMR (top) and 13 C NMR (bottom) spectra of Compound 1d.

 1 H NMR (top) and 13 C NMR (bottom) spectra of Compound **1e**.

 1 H NMR (top) and 13 C NMR (bottom) spectra of Compound 1f.

¹H NMR (top) and ¹³C NMR (bottom) spectra of Compound 1g.

 1 H NMR (top) and 13 C NMR (bottom) spectra of Compound **1h**.

 1 H NMR (top) and 13 C NMR (bottom) spectra of Compound 1i.

 ^1H NMR (top) and ^{13}C NMR (bottom) spectra of Compound 1j.

 1 H NMR (top) and 13 C NMR (bottom) spectra of Compound 1k.

 1 H NMR (top) and 13 C NMR (bottom) spectra of Compound 11.

 1 H NMR (top) and 13 C NMR (bottom) spectra of Compound 1'a.

¹H NMR (top) and ¹³C NMR (bottom) spectra of Compound 2a.

 1 H NMR (top) and 13 C NMR (bottom) spectra of Compound **2b**.

¹H NMR (top) and ¹³C NMR (bottom) spectra of Compound 2c.

 1 H NMR (top) and 13 C NMR (bottom) spectra of Compound **2d**.

¹H NMR (top) and ¹³C NMR (bottom) spectra of Compound 2e.

 1 H NMR (top) and 13 C NMR (bottom) spectra of Compound **2f**.

 1 H NMR (top) and 13 C NMR (bottom) spectra of Compound **2g**.

 1 H NMR (top) and 13 C NMR (bottom) spectra of Compound **2h**.

 1 H NMR (top) and 13 C NMR (bottom) spectra of Compound **2i**.

 1 H NMR (top) and 13 C NMR (bottom) spectra of Compound **2**j.

¹H NMR (top) and ¹³C NMR (bottom) spectra of Compound 2k.

¹H NMR (top) and ¹³C NMR (bottom) spectra of Compound **6a**.

References

- [1] Perrin, D. D.; Armarego, W. L. *Purification of Laboratory Chemicals*, 3rd Ed. Pergamon Press, New York, 1980.
- [2] Chandrasekhar, S.; Reddy, N. R.; Rao, Y. S. Tetrahedron 2006, 62, 12098.
- [3] Szymanski, W.; Wu, B.; Weiner, B.; Wildeman, S.; Feringa, B. L.; Janssen, D. B. J.
 Org. Chem. 2009, 74, 9152.
- [4] Suresh., D. K.; Sandhu, J. S. Synth. Commun. 2010, 40, 1915.
- [5] Loar, M. K.; Stille, J. K. J. Am. Chem. Soc. 1981, 103, 4174.
- [6] Kuang, C.; Yang, Q.; Senboku, H.; Tokuda, M. *Tetrahedron* **2005**, *51*, 4043.
- [7] Park, J. H.; Bhilare, S. V.; Youn, S. W. Org. Lett. 2011, 13, 2228.
- [8] a) Zhu, S.; Huang, H.; Zhang, Z.; Ma, T.; Jiang, H. J. Org. Chem. 2014, 79, 6113; b)
 Tokimizu, Y.; Ohta, Y.; Chiba, H.; Oishi, S.; Fujii, N.; Ohno, H. Tetrahedron 2011, 67, 5168.
- [9] Yao, B.; Li, Y.; Liang, Z.; Zhang, Y. Org. Lett. 2011, 13, 640.
- [10] Zhu, S.; Zhang, Z.; Huang, X.; Jiang, H.; Guo, Z. Chem. Eur. J. 2013, 19, 4695.
- [11] Tanaka, K.;Hagiwara, Y.;Hirano, M. Eur. J. Org. Chem. 2006, 3582.
- [12] a) Cheb, Y.; Huang, C.; Liu, X.; Perl, E.; Chen, Z.; Namgung, J.; Subramaniam, G.; Zhang, G.; Hersh, W. H. *J. Org. Chem.* 2014, *79*, 3452; b) Yanada, R.; Hashimo, K.; Tokizane, R.; Miwa, Y.; Minami, H.; Yanada, K.; Ishikura, M.; Takemoto, Y. *J. Org. Chem.* 2008, *73*, 5135.
- [13] Allen, C. P.;Benkovics, T.;Turek, A. K.;Yoon, T. P. J. Am. Chem. Soc. 2009, 131, 12560.
- [14] Sakamoto, T.; Kondo, Y.;Miura, N.; Hayashi, K.; Yamanaka, H. *Heterocycles* 1986, 24, 2311.
- [15] a) Biava, M.; Porretta, G. C.; Deidda, D.; Pompei, R.; Tafic, A.; Manettic, F. *Bioorg. Med. Chem.* 2004, *12*, 1453; b) Protopopova, M.; Bogatcheva, E.; Nikonenko, B.; Hundert, S.; Einck, L.; Nacy, C. A. *Bioorg. Med. Chem.* 2007, *3*, 301; c) Teixeira, C.; Barbault, F.; Rebehmed, J.; Liu, K.; Xie, L.; Lu, H.; Jiang, S.; Fan, B.; Maurel, F. *Bioorg. Med. Chem.* 2008, *16*, 3039.
- [16] Larock, R. C.; Doty, M. J.; Tian, Q.; Zenner, J. M. J. Org. Chem. 1997, 62, 7536.