Competing mechanisms for the reaction of dichloropropynylborane with 2-*tert*-butylbutadiene. Diels-Alder reaction *versus* Alkynylboration

Margarita M. Vallejos,^{*a} and Silvina C. Pellegrinet^{*b}

Área de Química Orgánica, Departamento de Química, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avda. Libertad 5460, (3400) Corrientes, Argentina. ^bInstituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario (2000), Argentina. E-mail: vallejos.marga@gmail.com, pellegrinet@iquir-conicet.gov.ar

Supporting Information

List of contents:

- MPWB1K/6-311++G(d,p) energies in DCM for reactants and products. Page S2.
- Topological analysis of charge density properties along the reaction paths. Pages S3-S10.
- Cartesian coordinates and absolute energies (in hartrees), including ZPE of all stationary points reported in the paper and values of imaginary frequencies of all transition structures. Pages S11-S16.
- References. Page S17.

Species	E	$\Delta E^{ m a}$	G	$\Delta G^{ m a}$
1	-313.13095		-312.96274	
2	-1061.52240		-1061.50106	
3	-1374.741492	-55.31	-1374.520023	-35.28
4	-1374.741573	-55.36	-1374.520132	-35.35
5	-1374.682483	-18.28	-1374.467729	-2.46
6	-1374.678666	-15.88	-1374.466575	-1.74

Table S1. MPWB1K/6-311++G(d,p) absolute total energies (*E*, in a.u.) and free energies (*G*, in a.u.) and relative energies (ΔE , in kcal mol⁻¹) and free energies (ΔG , in kcal mol⁻¹) in DCM

^a Relative to 1 + 2.

Topological analysis of charge density properties along the reaction paths

The topological concepts of the quantum theory of atoms in molecules (QTAIM) are well documented in the standard literature ^{1, 2} thus, we only give the theoretical information needed for the discussion of our results. In accordance with the QTAIM theory, a bond between two atoms is characterized by a line of maximum electron density, the bond path, that connects the respective nuclei and intersects the zero-flux surface of the electron density gradient field ($\nabla \rho_i$) at the bond critical point (bcp). Several topological properties evaluated at the bcp are used to characterize the nature of a bonding interaction (calculated properties at the bcp in ρ_r topology are labeled with the subscript "b"): (1) the charge density, ρ_b , as a measure of accumulation of electron charge between the bonded nuclei, which reflects the bond strength; (2) the Laplacian of electron charge density, $\nabla^2 \rho_b$, gives information about the local charge concentration ($\nabla^2 \rho_b < 0$) or depletion ($\nabla^2 \rho_b > 0$); and (3) the ellipticity, defined as $\varepsilon = (\lambda_1/\lambda_2) - 1$, gives an idea about the charge distribution around the bond path and also is employed to determine the π character of a bond and its stability.³ ρ_b and $\nabla^2 \rho_b$ are employed to analyze the covalent character of an interaction.⁴ The delocalization index (*DI*) indicates the extent of exchange of electrons between two atomic basins, and it can be calculated between two atoms bonded by a bond path or without having a bond path.⁵ Another critical points often found in a molecular system are ring critical point (rcp) and cage critical point (ccp).

In the QTAIM context, an atom in a molecule might be defined as a region of space bounded by one or more zero-flux surfaces. The atomic electron population $N(\Omega)$ can be obtained by integrating the electron density over the atomic basin, which can be used to calculate the corresponding atomic net charge as $q(\Omega) = N(\Omega) - Z \Omega$, $(Z\Omega)$ being the atomic number.

Moreover, the contour plot of the Laplacian function for the atomic system exhibits a shell of charge concentration and another one of charge depletion for each quantum shell. The outer quantum shell of an atom over $\nabla^2 \rho_r < 0$ is called valence shell charge concentration (VSCC). According to some authors, it is convenient to consider the $-\nabla^2 \rho_r$ function for a more intuitive interpretation.⁶ For an isolated atom, the VSCC is located at a sphere in which the valence electronic charge is concentrated in a maximum and uniform way.

We carried out an analysis of the changes in the topological properties along the reaction coordinates associated with **TSC-m** and **TSC-D**. Fig. S1 shows the contour lines of the $-\nabla^2 \rho_t$ superimposed on the molecular graphs for selected structures along the reaction paths. The variation of several topological properties (ρ_b , $\nabla^2 \rho_b$ and ε) at the selected bcps are displayed in Fig. S2 in which the energy profiles are also included. Fig. S3 shows the changes of the *DI* of selected interactions and Fig. S4 displays the variation of the atomic net charges.

Fig. S1 Contour plots of $-\nabla^2 \rho_r$ superimposed on the molecular graphs of selected structures along the reaction coordinate associated with **TSC-m** and **TSD-m**. Continuous blue lines and dashed red lines depict regions of local charge density depletion and concentration, respectively.

Fig. S2 Relative energy (ΔE), topological properties (ρ_b : charge density, $\nabla^2 \rho_b$: Laplacian of the charge density and ϵ : ellipticity) along the IRC paths associated with (a) **TSC-m** and (b) **TSD-m**. TSs are located at $s = 0.0 \text{ amu}^{1/2}$ Bohr.

Fig. S3 Evolution of the delocalization indices (*DI*) along the IRC paths associated with a) **TSC-m** and b) **TSD-m**. TSs are located at s = 0.0 amu^{1/2} Bohr.

In the pathway associated with **TSC-m** the topological properties at the C₁-C₃ and C₁-B bcps show larger variations. The C₁-C₃ bond-forming and the C₁-B bond-breaking begin after **TSC-m**. The topological properties at the C₁-C₃ bcp show important changes from **TSC-m** to **Cm-p-1** on the IRC, the values of ρ_b increase from 0.052 au. to 0.147 au., $\nabla^2 \rho_b$ varies from 0.079 to -0.133 au., ε decreases from 0.42 to 0.08 and *DI* C₁-C₃ increase from 0.31 to 0.67. In this stage of the reaction, the C₁-C₃ interaction shows features of a shared-shell interaction, and the formation of the C₁-C₃ covalent bond occurs. In contour plot of the $-\nabla^2 \rho_t$ for **TSC-m** the C₁-C₃ bcp is localized in a region of the charge depletion while that for **Cm-p-1** it appears in a region of charge concentration (See Fig. S1). After **Cmp-1**, ρ_b and *DI* at the C₁-C₃ bcp increase progressively and $\nabla^2 \rho_b$ becomes more negative indicating that the C₁-C₃ covalent bond is reinforced.

The C₁-B bond-breaking occurs more delayed. ρ_b at the C₁-B bcp decreases from 0.160 au. at **TSC-m** to 0.140 au. at **Cm-p-1**, then this undergoes a smooth and continuous decrease and after **Cm-p-3** the values of ρ_b fall down abruptly denoting the C₁-B bond-breaking. Also, from **Cm-p-3** to the end of the reaction ε at the C₁-B bcp increases abruptly reflecting the instability of the C₁-B interaction. In contour plot of the $-\nabla^2 \rho_r$ for **Cm-p-3**, it can be visualized that the region of charge concentration around the C₁-B bcp is slimmer while in **Cm-p-4** this bcp is already located in a region of the charge depletion (See Fig. S1).

From **IN-m** to nearly before **TSC-m** the values of ρ_b , $\nabla^2 \rho_b$ and *DI* at the C₆-B bcp remain practically constant ($\rho_b \sim 0.13$ au., $\nabla^2 \rho_b \sim -0.18$ au. and *DI* ~ 0.4) then, ρ_b and *DI* increase and $\nabla^2 \rho_b$ becomes more negative up to *ca*. 0.18 au., 0.5 and -0.30 au., respectively at **Cm-p-1**. These results demonstrate that the C₆-B covalent bond is almost formed since an early stage of the reaction.

In the IRC associated with **TSC-D**, from **5** to the TS the topological properties change in a reverse manner than those from **TSC-m** to **5**. ρ_0 and *DI* at the C₁-B bcp increase from values close to zero, up to 0.157 au. and 0.45 at **TSD-m** and, consequently, the C₁-B bond is formed.

At the C₁-C₃ bcp, ρ_b and *DI* decrease progressively and $\nabla^2 \rho_b$ becomes less negative while ε remains close to zero from enyne **5** until nearly **Dm-r-3**. Also, the contour plots of $-\nabla^2 \rho_r$ show that the charge concentration around the C₁-C₃ bcp becomes narrower (See Fig. S1). Then after **Dm-r-3**, ρ_b and *DI* at the C₁-C₃ bcp decrease more sharply, $\nabla^2 \rho_b$ reaches positive values and ε begins to increase, which denote an instability of the C₁-C₃ bonding interaction. At **Dm-r-2**, ρ_b at C₁-C₃ bcp is low (0.087 au.), $\nabla^2 \rho_b$ is 0.056 au., and ε shows a relatively high value (1.20). Interesting, *DI* C₁-C₃ (0.41) has a similar value to *DI* C₂-C₃ (0.40), indicating that C₁ and C₂ are sharing equivalent amount of electrons with C₃ at **Dm-r-2**. In the following structure, **Dm-r-1**, a sudden change of the topological pattern occurs since the C₁-C₃ bcp disappears and the C₂-C₃ (0.41) is greater than *DI* C₂-C₃ (0.36). These results suggest that there is a conflict structure between **Dm-r-2** and **Dm-r-1**, in which C_3 and the C_1 - C_2 bcp are connected through a bond path, i.e. wherein C_1 and C_2 are competing to become attached to C_3 .⁷ The conflict structure is a key species for the rearrangement of the six-membered ring zwitterion towards the sevenmembered zwitterionic structure, which is involved in the pathway for the formation of the cycloadduct. In **TSD-m**, the C₆-B bcp shows features of a closed shell interaction ($\rho_b = 0.160$ au., $\nabla^2 \rho_b = -0.287$ au. and DI = 0.51) while the C₂-C₃ interaction displays features of open shell interaction (ρ_b is 0.095 au., $\nabla^2 \rho_{\rm b} = 0.026$ au. and the DI = 0.51). In agreement with these results, in the contour plot of $-\nabla^2 \rho_{\rm r}$ it can be observed that the C_6 -B/ C_2 - C_3 bcps are placed in a region of the charge concentration/charge depletion. In addition, $DI C_1$ - C_6 and $DI C_1$ - C_3 are 0.15 and 0.31, respectively indicating that these atoms are sharing their electrons in **TSD-m**. This topological pattern is typical of [4 + 3] TS. Notably, **TSBm**, which connects with **IN-m** and cycloadduct **3**, has a similar topological pattern to **TSD-m** (two new bcps, C₆-B and C₂-C₃, and a ring critical point (rcp) related to the seven-membered cyclic structure) but differs in the values of the topological properties (See Fig. S4). For **TSB-m**, $\rho_{\rm b}$ and DI at the C₆-B and C_2 - C_3 bcps are lower (0.142 au./0.47 and 0.077 au./ 0.46 at the C_6 -B and C_2 - C_3 bcps, respectively) than those for **TSD-m**. Also, $DI C_1$ - C_3 is 0.18 indicating that there are less electrons sharing between both atoms in **TSB-m** than in **TSD-m** while that $DI C_1$ -C₆ is 0.18, a little higher than in **TSD-m**. Therefore, the charge density among the atoms of the diene and the dienophile in **TSD-m** is higher due to the proximity to the conflict structure, in which the C_1 and C_2 atoms are closer to C_3 facilitating the sharing of their electrons. Consequently, TSD-m is more stabilized.

Fig. S4. Contour plot of $-\nabla^2 \rho_t$ superimposed on the molecular graph of **TSB-m**. Continuous blue lines and dashed red lines depict regions of local charge density depletion and concentration, respectively. The values given for selected bcp, from top to bottom, are ρ_b , $\nabla^2 \rho_b$, ε and *DI*. Also, *DI* of other interactions are included. All symbols are explained in the text. See Fig. 1 for key.

After **TSD-m**, ρ_b and *DI* increase abruptly, $\nabla^2 \rho_b$ becomes negative and ε reaches values close to zero at the C₂-C₃ bcp. At **Dm-p-1** ρ_b is 0.210 au., $\nabla^2 \rho_b$ is -0.390 au. and is *DI* 0.88 denoting the shared-shell nature of the C₂-C₃ interaction which can be also seen in Fig. S1. Hence, at **Dm-p-1** the C₂-C₃ covalent bond is almost completely formed, and it is involved in a seven-membered ring structure. Also, at this point the C₁-C₃ interaction becomes negligible being *DI* C₁-C₃ close to zero. Then, ρ_b and *DI* at the C₂- C₃ bcp increase slightly and $\nabla^2 \rho_b$ becomes a little more negative (0.245 au., 0.98, and -0.556 au., respectively) at **Dm-p-4**, closer to the end of the reaction coordinate.

The most important changes from **TSD-m** to cycloadduct **3** occur in the region among C₆, B and C₁. ρ_b and *DI* decrease and $\nabla^2 \rho_b$ becomes less negative at the C₆-B bcp. At **Dm-p-2**, ρ_b at the C₆-B bcp is relatively low (0.091 au.), $\nabla^2 \rho_b$ has a small negative value (-0.036 au.) and ε increases up to 1.40 reflecting an instability of the C₆-B bonding interaction and, the asymmetrical distribution of the charge density around the C₆-B bcp, as it can seen clearly visualized in the contour plot of $-\nabla^2 \rho_b$ of this structure (See Fig. S1). Suddenly, at **Dm-p-3** the C₆-B bcp disappears and the C₁-C₆ bcp appears. ρ_b at the C₁-C₆ bcp is 0.088 au., $\nabla^2 \rho_b$ is 0.016 au. and ε reaches a maximum value of 2.82. Furthermore, *DI* C₁-C₆ increases (0.61) and *DI* C₆-B decreases (0.23). Therefore, an important rearrangement of the charge density occurs between C₁ and C₆ due to the rearrangement of these atoms to form the corresponding C₁-C₆ σ -bond. These finding also suggest that the system passes through of a conflict structure, in which the B and C₁ atoms are competing to be bound to C₆.⁷ This constitutes a key point in the evolution of the [4 + 3] structure towards the [4 + 2] structure.⁸

After the conflict species, at **Dm-p-4**, ρ_b at the C₁-C₆ bcp increases, $\nabla^2 \rho_b$ becomes more negative (*ca*. 0.229 au. and -0.478), and ε decreases abruptly towards values nearly zero. In this part of the IRC the C₁-C₆ bond is reinforced showing features of a covalent bond. At **Dm-p-4**, both C₁-C₆ and C₂-C₃ covalent bonds are almost completely formed.

The variations of the atomic charges of selected atoms along the reaction coordinates associated with **TSC-m** and **TSD-m** are shown in Fig. S5.

Fig. S5 Atomic net charges for selected atoms (in *e*) along the reaction coordinates associated with **TSC-m** and **TSD-m**.

In path C, before **TSC-m** the negative charge of C₁ is ~ -0.50 *e* then, it changes up to -0.03 *e* at **Cm-p-3**. After **Cm-p-3**, $q(C_1)$ becomes less negative up to ~ -0.15 *e* and then remains constant. The electron charge of C₂ is -0.32 *e* at **TSC-m** and then decreases slightly at **Cm-p-1** (-0.33 *e*) and **Cm-p-2** (-0.36 *e*). From **Cm-p-3** onwards $q(C_2)$ increases reaching similar value $q(C_1)$. Therefore, firstly C₂ gains electron population and C₁ loses electron population after **TSC-m** but after **Cm-p-3**, both atoms exhibit similar net charges. The electron charge of B undergoes remarkable changes during the course of the reaction. At **TSC-m**, q(B) is +1.83 *e* then decreases abruptly to a minimum of +1.71 *e* at **Cm-p-3**. The B atom in this stage of the reaction is tetracoordinated. Then, q(B) increases (passing by **Cm-p-4** in which q(B) = +1.81 e) up to a maximum of +1.87 *e*. In this part of the reaction coordinate the C₁-B bond breaking occurs, and the B atom becomes tricoordinated $q(C_3)$ remains close to zero along the reaction coordinate.

From envne 5 to TSD-m, the changes in the net charges of the analyzed atoms are almost opposite to those observed from **TSC-m** to the engne. The negative charges of C_1 and C_2 are practically similar (-0.15 and -0.17 e, respectively) at **Dm-r-6**. Firstly, $q(C_1)$ and $q(C_2)$ change to -0.05 and -0.30 e, respectively at **Dm-r-5**. Then, C_1 increases and C_2 decreases their negative atomic charges becoming similar at **Dm-r-2** $(q(C_1) = -0.30 \ e$ and $q(C_2) = -0.28 \ e)$. After this point, the charges of C_1 and C_2 undergo striking variations. $q(C_1)$ becomes more negative (-0.38, -0.66, -0.78 e at **TSD-m**, **Dm-p-1** and **Dm-p-2**, respectively) down to a maximum negative value of -0.82 e at **Dm-p-3**, then it falls to ~ -0.70 e, remaining constant until the end of the reaction. The negative charge of C_2 decreases becoming positive (+0.06, +0.07 e at **Dm-p-1** and **Dm-p-2**, respectively) up to a maximum value of +0.08 e at **Dm-p-3**, then it decreases to values close to zero until the final product. The maximum values of $q(C_1)$ and $q(C_2)$ occur at the same point of the reaction coordinate in which the ρ_0 goes down to a minimum, $\nabla^2 \rho_b$ becomes positive and the ε is a maximum at the C₆-B bcp, demonstrating that an important redistribution of the charge density occurs in this stage. In addition, these results reveal that a charge transfer process between C_1 and C_2 occur along the reaction coordinate. The notable variations in the net charges of C1 and C2 are attributed to the changes of their hybridization (from "sp" in the envne to " sp^2 " hybridization in the cycloadduct).

q(B) undergoes significant variations during the course of the reaction. Close to the enyne q(B) is +1.87 e, then it decreases abruptly to +1.70 e (close to **Dm-r-5**). Then, q(B) increases to~ +1.83 e near the conflict structure (**Dm-r-1** and **Dm-r-2**). In this part of the reaction coordinate, the boron atom is tricoordinated (in the enyne product) and then the C₁-B bond formation occurs, becoming tetracoordinated.

At **TSD-m** q(B) is +1.83 *e*, then it decreases abruptly up to a minimum of + 1.74 *e* (close to **Dm-p-1**). Afterwards, q(B) increases again up to ~ +1.89 *e* at the end of the reaction. In this part of the reaction coordinate, firstly B gain electron population becomes less positive (in this stage the B atom is tetracoordinate), then the C₆-B bond begins breaking and the B atom losses electron population, which is donated to C₁ for the formation of the C₁-C₆ σ -bond. The B atom becomes tricoordinated and its charge gets more positive. From **TSD-m** afterwards, $q(C_6)$ undergoes significant changes. The negative charge of C_6 goes sharply from -0.46 *e* at **TSD-m** up to -0.18 *e* at **Dm-p-3**, and then remains close to zero. These results show that the C_6 losses electron charge, which could be donated to C_1 and/or B, and in this part of the reaction the C_6 -B bond is broken and C_6 begins to form a new bond with C_1 .

B3LYP/6-311++G(d,p) Cartesian coordinates, imaginary frequencies of transition structures, and computed absolute electronic energies (including zero-point energy -ZPE- corrections) and free energy of the stationary points involved in reaction of 2-*tert*-butylbutadiene (1) with dichloropropynylborane (2).

2-tert	t-butylbutadiene	(1)		С	-1.618629	0.815785	0.261300
				С	-1.310192	2.025997	0.347421
С	-0.767303	1.775564	-0.129730	С	-1.694641	3.316210	0.976246
С	-0.508440	0.459776	-0.127175	В	-1.870775	-0.622918	0.131457
С	-1.614550	-0.511260	-0.306174	Cl	-1.416627	-1.785248	1.431585
С	-2.842796	-0.393690	0.207422	Cl	-2.923319	-1.288255	-1.174814
С	0.906115	-0.126777	0.029067	Н	-0.877438	3.712376	1.584513
Н	-1.772981	2.143566	-0.298763	Н	-1.938197	4.066402	0.219408
Н	0.000901	2.522204	0.021069	Н	-2.567427	3.170118	1.615152
Н	-1.391583	-1.400762	-0.890380	С	0.253856	2.511894	-0.825955
Н	-3.121924	0.441001	0.842221	С	1.306256	1.695628	-0.424493
Н	-3.604991	-1.140073	0.012919	С	1.361340	0.294237	-0.642438
С	1.324921	-0.820649	-1.290052	С	0.339092	-0.303335	-1.340201
С	0.907958	-1.164821	1.175074	С	2.505070	-0.508114	0.011891
С	1.951173	0.954533	0.353012	С	2.412278	-2.011535	-0.302711
Н	2.330617	-1.238867	-1.185836	С	3.851814	0.019806	-0.536469
Н	1.338068	-0.106861	-2.118437	С	2.471913	-0.331283	1.548369
Н	0.655687	-1.641034	-1.559139	Н	0.340596	3.571324	-0.614122
Н	1.907467	-1.594243	1.292092	Н	-0.300555	2.288672	-1.729278
Н	0.211556	-1.984713	0.983763	Н	2.042584	2.137391	0.238499
Н	0.625236	-0.698922	2.123635	Н	0.294276	-1.374116	-1.481282
Н	2.932168	0.488137	0.478493	Н	-0.328676	0.274254	-1.961947
Н	1.711459	1.483091	1.279652	Н	1.495892	-2.455062	0.094792
Н	2.035849	1.691421	-0.449946	Н	3.256849	-2.531728	0.156568
				Н	2.449567	-2.203345	-1.378651
Ener	gy + ZPE = -313	3.137193 au.		Н	4.680550	-0.532501	-0.083715
Free	Energy= -313.1	70851 au.		Н	3.998153	1.079466	-0.313675
				Н	3.909802	-0.108756	-1.621018
				Н	1.528693	-0.694338	1.963889
dichl	oropropynylbora	me (2)		Н	2.592789	0.713111	1.845315
_			_	Н	3.286537	-0.900872	2.005393
В -(0.544176 0.00	0135 -0.00000	2				
C (0.946511 0.00	1727 -0.00001	2	Energ	y + ZPE = -137	4.563093 au.	
CI -	1.459495 1.51	5343 0.00000	2	Free 1	Energy = -1374.	607669 au.	
C	2.160481 0.00	3965 -0.00003	5				
Cl -	1.456543 -1.51	6839 0.00000	2				

TSA-p

1 imaginary frequency : -414.3 cm⁻¹

С	-1.256982	0.992434	0.231024
С	-0.260570	1.750328	0.222687
С	0.283471	3.009510	0.793686
В	-2.346515	0.013175	0.224780
Cl	-2.504558	-1.232429	1.518637
Cl	-3.750582	0.153281	-0.899318
Н	0.503987	3.736746	0.008035

TSA-m

1 imaginary frequency : -419.7 cm-1

C 3.610565 0.001938 -0.000008

Н 3.989398 -0.517144 0.885061

H 4.009198 1.019137 -0.003285 H 3.989573 -0.523024 -0.881516

Energy + ZPE = -1061.459765 au. Free Energy= -1061.493790 au.

Η	-0.445747	3.447882	1.477577
Н	1.209433	2.824916	1.344104
С	1.181190	1.160441	-1.084454
С	1.550983	-0.134376	-0.717806
С	0.625345	-1.191370	-0.940178
С	-0.599695	-1.039094	-1.524496
С	2.829974	-0.437570	0.080037
С	3.608692	-1.568399	-0.635526
С	3.762302	0.782613	0.189081
С	2.457774	-0.898284	1.511527
Η	1.893312	1.964415	-0.962628
Η	0.512499	1.298280	-1.924148
Η	0.849491	-2.160935	-0.508322
Η	-1.280710	-1.879808	-1.584544
Η	-0.861212	-0.175844	-2.119822
Η	4.522704	-1.795283	-0.079175
Η	3.892785	-1.267182	-1.647583
Η	3.027390	-2.489936	-0.707287
Η	3.303169	1.606570	0.740861
Η	4.062797	1.152497	-0.795113
Η	4.669739	0.497549	0.727504
Η	1.904604	-0.119308	2.042536
Н	3.367283	-1.117171	2.078739
Н	1.843515	-1.801154	1.503450

Energy + ZPE = -1374.563762 au. Free Energy = -1374.608561 au.

IN-m

С	1.299498	0.469636	-0.613831
С	1.125857	1.897824	-0.642632
С	0.114739	2.536506	-1.268898
С	0.275667	-0.395383	-1.096546
С	2.604117	-0.051372	-0.023581
С	2.734440	0.400160	1.457780
С	2.741441	-1.582433	-0.091398
С	3.765547	0.575150	-0.849852
Н	1.847001	2.501162	-0.105974
Н	0.025551	3.614668	-1.203119
Н	-0.612061	2.031326	-1.889510
Н	-0.288133	0.023893	-1.927679
Н	0.604689	-1.407416	-1.306741
Н	1.934176	-0.021878	2.066838
Н	3.690198	0.038588	1.844997
Н	2.720593	1.485558	1.567133
Н	2.733312	-1.943476	-1.123032
Н	3.698861	-1.870545	0.348719
Н	1.951523	-2.088137	0.464080
Н	3.691083	0.302682	-1.905494
Н	3.796160	1.662941	-0.774978
Н	4.710143	0.184080	-0.463630
С	-2.366804	1.748538	0.558403

С	-1.807207	0.698145	0.317933
В	-1.093872	-0.629638	0.012884
С	-3.070615	2.984632	0.875361
Cl	-2.222988	-1.816000	-0.959377
Cl	-0.526170	-1.504084	1.592170
Η	-2.432457	3.670370	1.439714
Η	-3.958284	2.778426	1.480371
Н	-3.398462	3.497255	-0.033356

Energy + ZPE = -1374.580216 au. Free Energy = -1374.626536 au.

IN-p

С	-0.737929	-1.079278	-1.238727
С	0.529199	-1.088556	-0.654495
С	1.566126	-0.093884	-0.744424
С	2.846998	-0.315554	0.081973
С	1.350966	0.999584	-1.513977
С	2.487882	-0.360414	1.585435
С	3.870906	0.809929	-0.142476
С	3.496268	-1.654775	-0.340459
Н	-0.907663	-0.440575	-2.099016
Η	-1.212946	-2.054093	-1.306486
Н	0.721710	-1.916443	0.021397
Н	2.066819	1.807355	-1.579683
Н	0.453557	1.113363	-2.106403
Н	3.391832	-0.529834	2.176781
Н	2.040358	0.582974	1.908404
Н	1.785511	-1.163201	1.822355
Η	4.769564	0.604107	0.443736
Η	4.170030	0.884296	-1.191744
Н	3.485561	1.781782	0.177265
Н	4.407493	-1.822560	0.239949
Н	2.838811	-2.510944	-0.168389
Н	3.765471	-1.642114	-1.400187
В	-1.896320	-0.310431	0.001617
С	-1.487804	1.146410	0.226915
С	-1.147215	2.300007	0.386899
С	-0.773955	3.690342	0.610180
Cl	-3.554152	-0.475247	-0.870156
Cl	-1.873618	-1.375334	1.546480
Н	0.225927	3.766981	1.046097
Н	-0.780028	4.255357	-0.326094
Н	-1.476977	4.172712	1.295359

Energy + ZPE = -1374.578911 au. Free Energy = -1374.626085 au.

TS-m

1 imaginary frequency : -252.1 cm⁻¹

C 1.193557 0.532375 -0.550043

С	0.915953	1.959860	-0.432611
С	-0.000629	2.642981	-1.136408
С	0.320336	-0.308334	-1.213308
С	2.492138	0.037426	0.095568
С	2.476050	0.313589	1.621398
С	2.742900	-1.463569	-0.134154
С	3.665246	0.823798	-0.550231
Н	1.507793	2.513292	0.286855
Н	-0.145777	3.703101	-0.964573
Н	-0.605941	2.193712	-1.913614
Н	-0.392728	0.132294	-1.898762
Н	0.644062	-1.309049	-1.463257
Н	1.657503	-0.217015	2.109936
Н	3.416888	-0.036578	2.054295
Н	2.383636	1.376595	1.851559
Н	2.828554	-1.700322	-1.198031
Н	3.685534	-1.744994	0.341563
Н	1.954824	-2.081704	0.297560
Н	3.699183	0.662083	-1.630887
Н	3.598853	1.897786	-0.367122
Н	4.607350	0.468987	-0.123775
С	-2.584788	1.454891	0.548912
С	-2.014162	0.413087	0.301940
В	-1.305066	-0.889692	-0.009899
С	-3.297782	2.682613	0.870035
Cl	-2.150636	-1.994624	-1.226458
Cl	-0.631187	-1.827213	1.418559
Н	-2.663785	3.369503	1.437158
Н	-4.182557	2.464771	1.475203
Н	-3.629975	3.194918	-0.036933

Energy + ZPE = -1374.579328 au. Free Energy = -1374.625992 au.

TS-p

1 imaginary frequency : -185.9 cm⁻¹

С	-0.717369	-1.077529	-1.313733
С	0.518642	-1.093316	-0.703447
С	1.570263	-0.097032	-0.767961
С	2.823905	-0.337696	0.094257
С	1.401826	0.991547	-1.548838
С	2.421381	-0.392273	1.586527
С	3.866154	0.778754	-0.086431
С	3.475497	-1.679240	-0.318616
Н	-0.919096	-0.390743	-2.126893
Н	-1.250893	-2.020431	-1.356221
Н	0.698354	-1.930005	-0.035554
Н	2.139523	1.779845	-1.605293
Н	0.520807	1.122588	-2.162846
Н	3.305843	-0.578811	2.202015
Η	1.977348	0.554033	1.905822
Н	1.702158	-1.187541	1.796013

Н	4.741011	0.561646	0.531221
Η	4.203740	0.855842	-1.123668
Η	3.477502	1.752410	0.223738
Η	4.367564	-1.859169	0.287628
Η	2.806481	-2.531408	-0.174401
Η	3.776727	-1.660057	-1.369642
В	-1.954732	-0.268100	0.054509
С	-1.479891	1.161686	0.256062
С	-1.094248	2.302502	0.402760
С	-0.663860	3.678054	0.608787
Cl	-3.562667	-0.427080	-0.859568
Cl	-1.899166	-1.377964	1.534969
Η	0.330613	3.717758	1.061452
Η	-0.629499	4.225627	-0.337046
Н	-1.357170	4.201921	1.273100

Energy + ZPE = -1374.579419 au. Free Energy =-1374.626736 au.

TSB-m

1 imaginary frequency : -269.1 cm⁻¹

С	1.138490	0.391035	-0.563050
С	0.774826	1.715403	-0.535099
С	-0.493922	2.170081	-0.991525
С	0.151286	-0.594003	-1.048613
С	2.513487	-0.023471	-0.008597
С	-1.983630	1.790158	0.324368
С	-1.813784	0.569467	0.203431
В	-1.210561	-0.825818	-0.075693
С	-2.596122	3.027747	0.827252
Cl	-2.420972	-1.931524	-1.039968
Cl	-0.761275	-1.680946	1.560504
С	2.605963	0.355893	1.491005
С	2.783736	-1.533411	-0.142658
С	3.611482	0.735184	-0.795694
Н	1.414767	2.447218	-0.056619
Н	-0.685824	3.235974	-0.927557
Н	-0.944660	1.709869	-1.861012
Н	-0.281828	-0.271391	-1.999461
Н	0.569233	-1.588393	-1.188467
Н	-1.854856	3.647894	1.336918
Н	-3.389053	2.778684	1.534347
Н	-3.029007	3.610541	0.010566
Н	1.830859	-0.151236	2.069532
Н	3.580969	0.053451	1.883858
Н	2.500855	1.431698	1.645031
Н	2.771695	-1.858429	-1.186492
Н	3.775366	-1.755656	0.259923
Н	2.057594	-2.128824	0.414439
Η	3.567606	0.495303	-1.861625
Η	3.519609	1.817730	-0.687034
Η	4.596799	0.442144	-0.421923

Energy + ZPE = -1374.570257 au. Free Energy = -1374.613635 au.

TSB-p

1 imaginary frequency : -207.1 cm⁻¹

С	0.888434	0.996766	-1.057300
С	1.320950	-0.292429	-0.612209
С	0.416949	-1.316759	-0.706423
С	-0.972757	-1.148833	-1.147470
С	2.724668	-0.443083	0.007160
С	3.788910	-0.063791	-1.049517
С	2.994982	-1.886317	0.467383
С	2.863642	0.490226	1.231124
В	-1.896327	-0.263985	-0.064171
Cl	-2.087277	-1.206289	1.579535
С	-1.169534	1.085327	0.172140
С	-0.409271	2.050508	0.277570
С	0.132588	3.358862	0.648451
Cl	-3.613316	0.018222	-0.827471
Η	1.567825	1.836307	-0.969485
Η	0.227487	1.067672	-1.909519
Η	0.693235	-2.290220	-0.319601
Н	-1.048918	-0.589058	-2.084559
Η	-1.475191	-2.109171	-1.272739
Η	3.727000	-0.722571	-1.920105
Η	3.672305	0.966299	-1.397473
Η	4.791946	-0.156027	-0.623255
Н	2.304265	-2.199318	1.254705
Η	2.923634	-2.598867	-0.358966
Н	4.008589	-1.951380	0.870691
Η	2.115359	0.257164	1.992872
Н	3.854102	0.368944	1.678531
Н	2.760929	1.543614	0.959496
Н	1.054707	3.258992	1.225141
Н	-0.601052	3.886680	1.261621
Н	0.338113	3.965143	-0.237027

Energy + ZPE = -1374.569665 au. Free Energy = -1374.613757 au.

TSC-m

1 imaginary frequency : -167.3 cm⁻¹

Cl	-0.862069	-1.593496	1.632641
В	-1.081445	-0.823138	-0.101304
С	0.364871	-0.679608	-0.896527
С	1.234521	0.433003	-0.437627
С	2.653529	0.152508	0.048570
С	0.713488	1.708274	-0.455547
С	-0.543347	1.992157	-1.026712
С	-1.812307	0.559034	0.069346

С	-2.471379	1.559482	0.330979
С	-3.295280	2.704185	0.674727
Cl	-2.196131	-1.995542	-1.132769
С	3.368075	1.410191	0.575260
С	2.662065	-0.918110	1.164016
С	3.448977	-0.383096	-1.174599
Η	0.066786	-0.492467	-1.935562
Η	0.872924	-1.642618	-0.878337
Η	1.225001	2.521017	0.042606
Η	-0.934831	2.999106	-0.941464
Η	-0.896997	1.452942	-1.895062
Η	-3.705660	3.182389	-0.218438
Η	-4.135005	2.367645	1.290521
Η	-2.731238	3.443650	1.248957
Η	4.382616	1.144701	0.881664
Η	3.447490	2.187330	-0.189144
Η	2.860015	1.831390	1.446896
Η	3.697339	-1.122588	1.450310
Η	2.124121	-0.570907	2.048403
Η	2.210280	-1.857308	0.843756
Η	4.479530	-0.585309	-0.870415
Η	3.024173	-1.310107	-1.564078
Η	3.470802	0.352353	-1.983241

Energy + ZPE = -1374.573811 au. Free Energy = -1374.618053 au.

TSC-p

1 imaginary frequency : -171.6 cm⁻¹

С	-0.912813	-1.350530	-1.120011
В	-1.778482	-0.378581	-0.097140
С	-1.091579	1.031859	0.027047
С	-0.680784	2.168843	0.237303
С	-0.283128	3.536333	0.515945
С	0.493270	-1.426976	-0.692906
С	1.321031	-0.336106	-0.628150
С	2.717099	-0.346633	0.025292
С	0.794354	0.890452	-1.126968
Cl	-3.543701	-0.168280	-0.782179
Cl	-1.882229	-1.168003	1.642273
С	2.713297	0.571699	1.268663
С	3.762903	0.167434	-0.991372
С	3.126496	-1.762995	0.464036
Η	-1.016108	-0.879088	-2.104025
Η	-1.376756	-2.336305	-1.162594
Η	0.607342	3.577780	1.147845
Н	-0.095693	4.091066	-0.407251
Н	-1.098258	4.038522	1.046363
Н	0.837723	-2.368927	-0.282694
Н	1.369937	1.801452	-1.018797
Η	0.141368	0.889529	-1.988153
Η	3.701723	0.566495	1.736594

Н	2.480860	1.608667	1.013319
Н	1.983408	0.231171	2.007327
Н	4.758417	0.169499	-0.538619
Н	3.793937	-0.472355	-1.877701
Н	3.549229	1.188478	-1.319309
Н	4.135949	-1.734197	0.881769
Н	2.461256	-2.161179	1.234471
Н	3.138013	-2.461168	-0.377708

Energy + ZPE = -1374.570099 au. Free Energy = -1374.613933 au.

TSD-m

1 imaginary frequency : -168.6 cm⁻¹

Cl	-1.067117	-1.569516	1.660485
В	-1.187991	-0.818685	-0.087426
С	0.265229	-0.760962	-0.856226
С	1.201125	0.341829	-0.446385
С	2.616808	-0.007463	0.023220
С	0.758752	1.622079	-0.519281
С	-0.563590	1.950810	-1.029833
С	-1.758124	0.631738	0.087359
С	-2.012549	1.829460	0.255451
С	-2.598885	3.082196	0.731224
Cl	-2.404621	-1.871262	-1.117377
С	3.424997	1.232358	0.447592
С	2.564117	-0.982314	1.222475
С	3.359060	-0.689143	-1.154805
Η	0.015484	-0.633277	-1.916780
Η	0.725480	-1.745020	-0.763938
Η	1.357595	2.448367	-0.161441
Η	-0.782336	3.012876	-1.107492
Η	-0.909565	1.432166	-1.917362
Η	-3.054363	3.639536	-0.090463
Н	-3.371509	2.851899	1.467227
Н	-1.840146	3.709630	1.204806
Н	4.425913	0.922645	0.758877
Н	3.540553	1.945305	-0.372950
Н	2.961577	1.749354	1.292255
Н	3.583408	-1.239863	1.524337
Н	2.059921	-0.526803	2.078013
Н	2.042158	-1.909441	0.982101
Н	4.374071	-0.953854	-0.845129
Н	2.858911	-1.604077	-1.478483
Н	3.430700	-0.016303	-2.014028

Energy + ZPE = -1374.572152 au. Free Energy = 1374.615483 au.

С	-0.904294	0.326578	0.032483
С	-0.915408	1.659178	-0.208398
С	-2.120352	2.479280	-0.585298
В	-2.158261	-0.569572	0.016478
Cl	-3.699835	-0.165666	0.809877
Cl	-2.115702	-2.190280	-0.729583
Н	-3.038824	1.907114	-0.679845
Н	-2.282990	3.271330	0.154948
Н	-1.933608	2.983029	-1.540000
С	0.354079	2.472930	-0.155110
С	1.628503	1.681827	-0.111358
С	1.681551	0.365140	0.098209
С	0.402360	-0.405044	0.349222
С	2.990762	-0.441197	0.105770
С	3.025648	-1.383756	-1.122740
С	4.232952	0.466218	0.042691
С	3.083767	-1.291926	1.394838
Н	0.291283	3.140407	0.719940
Н	0.374653	3.158192	-1.012825
Н	2.534898	2.253738	-0.272652
Н	0.375706	-0.711189	1.404542
Н	0.423835	-1.345957	-0.206699
Η	2.199489	-2.098618	-1.118788
Н	3.956710	-1.958825	-1.127746
Η	2.975230	-0.811215	-2.053104
Н	5.136876	-0.148336	0.072993
Η	4.269567	1.158115	0.888722
Η	4.264163	1.051759	-0.879901
Н	2.279286	-2.027931	1.460230
Н	3.040284	-0.660032	2.287088
Н	4.031473	-1.838000	1.413864

Energy + ZPE = -1374.650951 au. Free Energy= -1374.696053 au.

4

С	1.086861	-0.106527	-0.157113
С	0.378621	1.016806	-0.437104
С	0.943718	2.396268	-0.650757
В	2.606500	-0.170914	0.050399
Cl	3.503751	-1.655907	-0.378290
Cl	3.607959	1.097604	0.797157
Н	0.447496	2.862427	-1.508210
Н	0.725877	3.030900	0.216393
Н	2.015426	2.416075	-0.825008
С	-1.121620	0.980851	-0.633479
С	-1.835868	-0.234677	-0.084805
С	-1.125340	-1.340393	0.146740
С	0.356191	-1.447531	-0.074180
С	-3.346423	-0.115010	0.158587
С	-3.983544	-1.465932	0.530234
С	-3.608164	0.873680	1.321374

С	-4.044046	0.411136	-1.118274
Н	-1.313047	1.071229	-1.713980
Н	-1.537098	1.902168	-0.209843
Н	-1.605539	-2.240027	0.514783
Н	0.553056	-2.021807	-0.991646
Н	0.788448	-2.058060	0.726053
Н	-5.060017	-1.336497	0.672762
Н	-3.574326	-1.867428	1.461131
Н	-3.837081	-2.210466	-0.257100
Н	-3.221229	1.873465	1.109940
Н	-3.143402	0.518447	2.245246
Н	-4.684007	0.969664	1.497103
Н	-3.691609	1.406215	-1.400220
Н	-5.123355	0.479166	-0.953456
Н	-3.873485	-0.261791	-1.964012

Energy + ZPE = -1374.652288 au. Free Energy= -1374.696881 au.

5

С	1.086861	-0.106527	-0.157113
С	0.378621	1.016806	-0.437104
С	0.943718	2.396268	-0.650757
В	2.606500	-0.170914	0.050399
Cl	3.503751	-1.655907	-0.378290
Cl	3.607959	1.097604	0.797157
Н	0.447496	2.862427	-1.508210
Н	0.725877	3.030900	0.216393
Н	2.015426	2.416075	-0.825008
С	-1.121620	0.980851	-0.633479
С	-1.835868	-0.234677	-0.084805
С	-1.125340	-1.340393	0.146740
С	0.356191	-1.447531	-0.074180
С	-3.346423	-0.115010	0.158587
С	-3.983544	-1.465932	0.530234
С	-3.608164	0.873680	1.321374
С	-4.044046	0.411136	-1.118274
Н	-1.313047	1.071229	-1.713980
Н	-1.537098	1.902168	-0.209843
Н	-1.605539	-2.240027	0.514783
Н	0.553056	-2.021807	-0.991646
Н	0.788448	-2.058060	0.726053
Н	-5.060017	-1.336497	0.672762
Н	-3.574326	-1.867428	1.461131
Н	-3.837081	-2.210466	-0.257100
Н	-3.221229	1.873465	1.109940
Н	-3.143402	0.518447	2.245246
Н	-4.684007	0.969664	1.497103
Н	-3.691609	1.406215	-1.400220
Н	-5.123355	0.479166	-0.953456
Η	-3.873485	-0.261791	-1.964012

Energy + ZPE =-1374.652288 au. Free Energy= -1374.696881 au.

6

С	-0.724258	-1.259080	-1.137003
С	0.653185	-1.221675	-0.524749
В	-1.933696	-0.998746	-0.180774
С	1.480976	-0.169979	-0.524838
Cl	-3.526054	-0.585540	-0.850266
Cl	-1.840964	-1.219240	1.572878
С	2.874407	-0.189454	0.120373
С	1.046277	1.141747	-1.193384
С	-0.044198	1.822942	-0.489556
С	-0.945298	2.373641	0.093908
С	-2.031004	3.041597	0.804930
Н	-0.911552	-2.266328	-1.544487
Н	-0.818192	-0.589102	-1.997115
Н	0.960461	-2.137049	-0.033589
С	3.180842	-1.527469	0.816961
С	3.952540	0.037300	-0.968000
С	2.972643	0.935221	1.179445
Н	0.733475	0.940928	-2.224952
Н	1.892267	1.826600	-1.276327
Н	-1.718329	4.024981	1.167132
Н	-2.353509	2.454036	1.669276
Н	-2.899214	3.184538	0.155572
Н	2.237172	0.786465	1.974747
Н	2.807528	1.926002	0.749594
Н	3.968589	0.934952	1.632468
Н	2.463755	-1.742588	1.613535
Н	4.176151	-1.483914	1.267606
Н	3.173371	-2.363530	0.112510
Н	4.947935	0.037110	-0.513746
Н	3.830284	0.992352	-1.484543
Н	3.920926	-0.759221	-1.716736

Energy + ZPE = -1374.605972 au. Free Energy= -1374.653890 au.

References

- 1. R. F. W. Bader, *Atoms in Molecules. A Quantum Theory*, Oxford Science Publications, Clarendon Press, London 1990.
- 2. C. F. Matta and R. J. Boyd, *The Quantum Theory of Atoms in Molecules: from solid state to DNA and drug design*, Wiley-VCH, Weinheim, 2007.
- 3. C. S. López, O. N. Faza, F. P. Cossío, D. M. York and A. R. de Lera, *Chem. Eur. J.*, 2005, **11**, 1734-1738.
- 4. D. Cremer and E. Kraka, Angew. Chem. Int. Ed. Eng., 1984, 23, 627-628.
- 5. G. Merino, A. Vela and T. Heine, *Chem. Rev.*, 2005, **105**, 3812-3841.
- 6. P. L. A. Popelier, *Coor. Chem. Rev.*, 2000, **197**, 169-189.
- 7. R. F. W. Bader, T. T. Nguyen-Dang and Y. Tal, *Rep. Prog. Phys.*, 1981, 44, 893-948.
- 8. M. M. Vallejos, N. M. Peruchena and S. C. Pellegrinet, *Org. Biomol. Chem.*, 2013, **11**, 7953-7965.