Competing mechanisms for the reaction of dichloropropynylborane with 2-tert-butylbutadiene. DielsAlder reaction versus Alkynylboration

Margarita M. Vallejos, ${ }^{*}$ and Silvina C. Pellegrinet ${ }^{*}$ b

Área de Química Orgánica, Departamento de Química, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avda. Libertad 5460, (3400) Corrientes, Argentina. ${ }^{\mathrm{b}}$ Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario (2000), Argentina. E-mail: vallejos.marga@ gmail.com, pellegrinet@iquir-conicet.gov.ar

Supporting Information

List of contents:

- MPWB1K/6-311++G(d,p) energies in DCM for reactants and products. Page S2.
- Topological analysis of charge density properties along the reaction paths. Pages S3-S10.
- Cartesian coordinates and absolute energies (in hartrees), including ZPE of all stationary points reported in the paper and values of imaginary frequencies of all transition structures. Pages S11-S16.
- References. Page S17.

Table S1. MPWB1K/6-311++G(d,p) absolute total energies (E, in a.u.) and free energies (G, in a.u.) and relative energies $\left(\Delta E\right.$, in $\mathrm{kcal} \mathrm{mol}^{-1}$) and free energies (ΔG, in $\mathrm{kcal} \mathrm{mol}^{-1}$) in DCM

Species	E	ΔE^{a}	G	ΔG^{a}
$\mathbf{1}$	-313.13095		-312.96274	
$\mathbf{2}$	-1061.52240		-1061.50106	-35.28
$\mathbf{3}$	-1374.741492	-55.31	-1374.520023	-35.35
$\mathbf{4}$	-1374.741573	-55.36	-1374.520132	-2.46
$\mathbf{5}$	-1374.678666	-15.88	-1374.46874 .467729	-1.74
$\mathbf{6}$				

[^0]
Topological analysis of charge density properties along the reaction paths

The topological concepts of the quantum theory of atoms in molecules (QTAIM) are well documented in the standard literature ${ }^{1,2}$ thus, we only give the theoretical information needed for the discussion of our results. In accordance with the QTAIM theory, a bond between two atoms is characterized by a line of maximum electron density, the bond path, that connects the respective nuclei and intersects the zero-flux surface of the electron density gradient field $\left(\nabla \rho_{\mathrm{r}}\right)$ at the bond critical point (bcp). Several topological properties evaluated at the bcp are used to characterize the nature of a bonding interaction (calculated properties at the bcp in ρ_{r} topology are labeled with the subscript "b"): (1) the charge density, ρ_{o}, as a measure of accumulation of electron charge between the bonded nuclei, which reflects the bond strength; (2) the Laplacian of electron charge density, $\nabla^{2} \rho_{\mathrm{b}}$, gives information about the local charge concentration ($\nabla^{2} \rho_{\mathrm{b}}<0$) or depletion ($\nabla^{2} \rho_{\mathrm{b}}>$ 0); and (3) the ellipticity, defined as $\varepsilon=\left(\lambda_{1} / \lambda_{2}\right)-1$, gives an idea about the charge distribution around the bond path and also is employed to determine the π character of a bond and its stability. ${ }^{3} \rho_{\mathrm{b}}$ and $\nabla^{2} \rho_{\mathrm{b}}$ are employed to analyze the covalent character of an interaction. ${ }^{4}$ The delocalization index $(D I)$ indicates the extent of exchange of electrons between two atomic basins, and it can be calculated between two atoms bonded by a bond path or without having a bond path. ${ }^{5}$ Another critical points often found in a molecular system are ring critical point (rcp) and cage critical point (ccp).
In the QTAIM context, an atom in a molecule might be defined as a region of space bounded by one or more zero-flux surfaces. The atomic electron population $N(\Omega)$ can be obtained by integrating the electron density over the atomic basin, which can be used to calculate the corresponding atomic net charge as $q(\Omega)=N(\Omega)-$ $Z \Omega,(Z \Omega)$ being the atomic number.

Moreover, the contour plot of the Laplacian function for the atomic system exhibits a shell of charge concentration and another one of charge depletion for each quantum shell. The outer quantum shell of an atom over $\nabla^{2} \rho_{r}<0$ is called valence shell charge concentration (VSCC). According to some authors, it is convenient to consider the $-\nabla^{2} \rho_{r}$ function for a more intuitive interpretation. ${ }^{6}$ For an isolated atom, the VSCC is located at a sphere in which the valence electronic charge is concentrated in a maximum and uniform way.
We carried out an analysis of the changes in the topological properties along the reaction coordinates associated with TSC-m and TSC-D. Fig. S1 shows the contour lines of the $-\nabla^{2} \rho_{r}$ superimposed on the molecular graphs for selected structures along the reaction paths. The variation of several topological properties ($\rho_{b}, \nabla^{2} \rho_{\mathrm{b}}$ and \mathcal{E}) at the selected bcps are displayed in Fig. S2 in which the energy profiles are also included. Fig. S3 shows the changes of the $D I$ of selected interactions and Fig. S4 displays the variation of the atomic net charges.

Fig. S1 Contour plots of $-\nabla^{2} \rho_{r}$ superimposed on the molecular graphs of selected structures along the reaction coordinate associated with TSC-m and TSD-m. Continuous blue lines and dashed red lines depict regions of local charge density depletion and concentration, respectively.

Fig. S2 Relative energy (ΔE), topological properties (ρ_{b} : charge density, $\nabla^{2} \rho_{0}$: Laplacian of the charge density and ε. ellipticity) along the IRC paths associated with (a) TSC-m and (b) TSD-m. TSs are located at $s=0.0 \mathrm{amu}^{1 / 2}$ Bohr.

Fig. S3 Evolution of the delocalization indices ($D I$) along the IRC paths associated with a) TSC-m and b) TSD-m. TSs are located at $s=0.0 \mathrm{amu}^{1 / 2}$ Bohr.

In the pathway associated with TSC-m the topological properties at the $\mathrm{C}_{1}-\mathrm{C}_{3}$ and $\mathrm{C}_{1}-\mathrm{B}$ beps show larger variations. The $\mathrm{C}_{1}-\mathrm{C}_{3}$ bond-forming and the $\mathrm{C}_{1}-\mathrm{B}$ bond-breaking begin after TSC-m. The topological properties at the $\mathrm{C}_{1}-\mathrm{C}_{3}$ bcp show important changes from TSC-m to $\mathbf{C m}-\mathbf{p - 1}$ on the IRC, the values of ρ_{b} increase from 0.052 au. to $0.147 \mathrm{au} ., \nabla^{2} \rho_{\mathrm{b}}$ varies from 0.079 to -0.133 au., ε decreases from 0.42 to 0.08 and $D I \mathrm{C}_{1}-\mathrm{C}_{3}$ increase from 0.31 to 0.67 . In this stage of the reaction, the $\mathrm{C}_{1}-\mathrm{C}_{3}$ interaction shows features of a shared-shell interaction, and the formation of the $\mathrm{C}_{1}-\mathrm{C}_{3}$ covalent bond occurs. In contour plot of the $-\nabla^{2} \rho_{\mathrm{t}}$ for TSC-m the $\mathrm{C}_{1}-\mathrm{C}_{3}$ bcp is localized in a region of the charge depletion while that for Cm-p-1 it appears in a region of charge concentration (See Fig. S1). After Cm$\mathbf{p - 1}, \rho_{0}$ and $D I$ at the $\mathrm{C}_{1}-\mathrm{C}_{3}$ bcp increase progressively and $\nabla^{2} \rho_{0}$ becomes more negative indicating that the $\mathrm{C}_{1}-\mathrm{C}_{3}$ covalent bond is reinforced.

The C_{1} - B bond-breaking occurs more delayed. ρ_{o} at the $\mathrm{C}_{1}-\mathrm{B}$ bcp decreases from 0.160 au. at TSC-m to 0.140 au. at $\mathbf{C m}-\mathbf{p - 1}$, then this undergoes a smooth and continuous decrease and after $\mathbf{C m} \mathbf{- p} \mathbf{- 3}$ the values of ρ_{b} fall down abruptly denoting the $\mathrm{C}_{1}-\mathrm{B}$ bond-breaking. Also, from $\mathbf{C m} \mathbf{- p}-\mathbf{3}$ to the end of the reaction ε at the $\mathrm{C}_{1}-\mathrm{B}$ bcp increases abruptly reflecting the instability of the $\mathrm{C}_{1}-\mathrm{B}$ interaction. In contour plot of the $-\nabla^{2} \rho_{\mathrm{r}}$ for $\mathbf{C m - p - 3}$, it can be visualized that the region of charge concentration around the C_{1} B bcp is slimmer while in Cm-p-4 this bcp is already located in a region of the charge depletion (See Fig. S1).

From IN-m to nearly before TSC-m the values of $\rho_{\mathrm{b}}, \nabla^{2} \rho_{\mathrm{b}}$ and $D I$ at the $\mathrm{C}_{6}-\mathrm{B}$ bcp remain practically constant ($\rho_{\mathrm{b}} \sim 0.13$ au., $\nabla^{2} \rho_{\mathrm{o}} \sim-0.18$ au. and $D I \sim 0.4$) then, ρ_{b} and $D I$ increase and $\nabla^{2} \rho_{\mathrm{b}}$ becomes more negative up to ca. 0.18 au., 0.5 and -0.30 au., respectively at $\mathbf{C m}-\mathbf{p - 1}$. These results demonstrate that the $\mathrm{C}_{6}-\mathrm{B}$ covalent bond is almost formed since an early stage of the reaction.
In the IRC associated with TSC-D, from 5 to the TS the topological properties change in a reverse manner than those from TSC-m to 5. ρ_{0} and $D I$ at the $\mathrm{C}_{1}-\mathrm{B}$ bcp increase from values close to zero, up to 0.157 au . and 0.45 at TSD-m and, consequently, the $\mathrm{C}_{1}-\mathrm{B}$ bond is formed.

At the $\mathrm{C}_{1}-\mathrm{C}_{3} \mathrm{bcp}, \rho_{\mathrm{b}}$ and $D I$ decrease progressively and $\nabla^{2} \rho_{\mathrm{b}}$ becomes less negative while ε remains close to zero from enyne 5 until nearly Dm-r-3. Also, the contour plots of $-\nabla^{2} \rho_{\mathrm{i}}$ show that the charge concentration around the $\mathrm{C}_{1}-\mathrm{C}_{3}$ bcp becomes narrower (See Fig. S1). Then after Dm-r-3, ρ_{b} and $D I$ at the $\mathrm{C}_{1}-\mathrm{C}_{3}$ bcp decrease more sharply, $\nabla^{2} \rho_{\mathrm{b}}$ reaches positive values and ε begins to increase, which denote an instability of the $\mathrm{C}_{1}-\mathrm{C}_{3}$ bonding interaction. At Dm-r-2, ρ_{b} at $\mathrm{C}_{1}-\mathrm{C}_{3}$ bcp is low (0.087 au .), $\nabla^{2} \rho_{0}$ is 0.056 au., and ε shows a relatively high value (1.20). Interesting, $D I \mathrm{C}_{1}-\mathrm{C}_{3}(0.41)$ has a similar value to $D I C_{2}-\mathrm{C}_{3}(0.40)$, indicating that C_{1} and C_{2} are sharing equivalent amount of electrons with C_{3} at Dm-r-2. In the following structure, Dm-r-1, a sudden change of the topological pattern occurs since the $\mathrm{C}_{1}-\mathrm{C}_{3} \mathrm{bcp}$ disappears and the $\mathrm{C}_{2}-\mathrm{C}_{3}$ bcp appears leading from a six-membered ring to a sevenmembered ring structure. At Dm-r-1, ε decrease significantly (0.79) at the new $\mathrm{C}_{2}-\mathrm{C}_{3}$ bcp and the $\mathrm{C}_{2}-$ C_{3} becomes stronger since $D I \mathrm{C}_{2}-\mathrm{C}_{3}(0.41)$ is greater than $D I \mathrm{C}_{2}-\mathrm{C}_{3}(0.36)$. These results suggest that
there is a conflict structure between Dm-r-2 and Dm-r-1, in which C_{3} and the $\mathrm{C}_{1}-\mathrm{C}_{2}$ bcp are connected through a bond path, i.e. wherein C_{1} and C_{2} are competing to become attached to $\mathrm{C}_{3}{ }^{7}$ The conflict structure is a key species for the rearrangement of the six-membered ring zwitterion towards the sevenmembered zwitterionic structure, which is involved in the pathway for the formation of the cycloadduct. In TSD-m, the $\mathrm{C}_{6}-\mathrm{B}$ bcp shows features of a closed shell interaction $\left(\rho_{\mathrm{b}}=0.160 \mathrm{au} ., \nabla^{2} \rho_{\mathrm{b}}=-0.287 \mathrm{au}\right.$. and $D I=0.51$) while the $\mathrm{C}_{2}-\mathrm{C}_{3}$ interaction displays features of open shell interaction (ρ_{b} is 0.095 au., $\nabla^{2} \rho_{\mathrm{b}}=0.026$ au. and the $D I=0.51$). In agreement with these results, in the contour plot of $-\nabla^{2} \rho_{\mathrm{r}}$ it can be observed that the $\mathrm{C}_{6}-\mathrm{B} / \mathrm{C}_{2}-\mathrm{C}_{3}$ bcps are placed in a region of the charge concentration/charge depletion. In addition, $D I \mathrm{C}_{1}-\mathrm{C}_{6}$ and $D I \mathrm{C}_{1}-\mathrm{C}_{3}$ are 0.15 and 0.31 , respectively indicating that these atoms are sharing their electrons in TSD-m. This topological pattern is typical of $[4+3]$ TS. Notably, TSB\mathbf{m}, which connects with IN-m and cycloadduct 3, has a similar topological pattern to TSD-m (two new bcps, $\mathrm{C}_{6}-\mathrm{B}$ and $\mathrm{C}_{2}-\mathrm{C}_{3}$, and a ring critical point (rcp) related to the seven-membered cyclic structure) but differs in the values of the topological properties (See Fig. S4). For TSB-m, ρ_{b} and $D I$ at the $\mathrm{C}_{6}-\mathrm{B}$ and $\mathrm{C}_{2}-\mathrm{C}_{3}$ bcps are lower ($0.142 \mathrm{au} . / 0.47$ and 0.077 au./ 0.46 at the $\mathrm{C}_{6}-\mathrm{B}$ and $\mathrm{C}_{2}-\mathrm{C}_{3} \mathrm{bcps}$, respectively) than those for TSD-m. Also, $D I C_{1}-C_{3}$ is 0.18 indicating that there are less electrons sharing between both atoms in TSB-m than in TSD-m while that $D I \mathrm{C}_{1}-\mathrm{C}_{6}$ is 0.18 , a little higher than in TSD-m. Therefore, the charge density among the atoms of the diene and the dienophile in TSD-m is higher due to the proximity to the conflict structure, in which the C_{1} and C_{2} atoms are closer to C_{3} facilitating the sharing of their electrons. Consequently, TSD-m is more stabilized.

Fig. S4. Contour plot of $-\nabla^{2} \rho_{\mathrm{t}}$ superimposed on the molecular graph of TSB-m. Continuous blue lines and dashed red lines depict regions of local charge density depletion and concentration, respectively. The values given for selected bcp, from top to bottom, are $\rho_{\mathrm{b}}, \nabla^{2} \rho_{\mathrm{b}}, \varepsilon$ and $D I$. Also, DI of other interactions are included. All symbols are explained in the text. See Fig. 1 for key.

After TSD-m, ρ_{b} and $D I$ increase abruptly, $\nabla^{2} \rho_{\mathrm{b}}$ becomes negative and ε reaches values close to zero at the $\mathrm{C}_{2}-\mathrm{C}_{3}$ bcp. At Dm-p-1 ρ_{b} is 0.210 au., $\nabla^{2} \rho_{\mathrm{b}}$ is -0.390 au. and is $D I 0.88$ denoting the shared-shell nature of the $\mathrm{C}_{2}-\mathrm{C}_{3}$ interaction which can be also seen in Fig. S1. Hence, at Dm-p-1 the $\mathrm{C}_{2}-\mathrm{C}_{3}$ covalent bond is almost completely formed, and it is involved in a seven-membered ring structure. Also, at this point the $\mathrm{C}_{1}-\mathrm{C}_{3}$ interaction becomes negligible being $D I \mathrm{C}_{1}-\mathrm{C}_{3}$ close to zero. Then, ρ_{0} and $D I$ at the $\mathrm{C}_{2}-$
C_{3} bcp increase slightly and $\nabla^{2} \rho_{0}$ becomes a little more negative ($0.245 \mathrm{au} ., 0.98$, and -0.556 au., respectively) at $\mathbf{D m}-\mathbf{p - 4}$, closer to the end of the reaction coordinate.

The most important changes from TSD-m to cycloadduct $\mathbf{3}$ occur in the region among $\mathrm{C}_{6}, \mathrm{~B}$ and $\mathrm{C}_{1} . \rho_{0}$ and $D I$ decrease and $\nabla^{2} \rho_{0}$ becomes less negative at the $\mathrm{C}_{6}-\mathrm{B}$ bcp. At Dm-p-2, ρ_{0} at the $\mathrm{C}_{6}-\mathrm{B}$ bcp is relatively low (0.091 au .), $\nabla^{2} \rho_{\mathrm{b}}$ has a small negative value (-0.036 au .) and ε increases up to 1.40 reflecting an instability of the $\mathrm{C}_{6}-\mathrm{B}$ bonding interaction and, the asymmetrical distribution of the charge density around the $\mathrm{C}_{6}-\mathrm{B}$ bcp, as it can seen clearly visualized in the contour plot of $-\nabla^{2} \rho_{\mathrm{t}}$ of this structure (See Fig. S1). Suddenly, at Dm-p-3 the $\mathrm{C}_{6}-\mathrm{B}$ bcp disappears and the $\mathrm{C}_{1}-\mathrm{C}_{6}$ bcp appears. ρ_{o} at the $\mathrm{C}_{1}-\mathrm{C}_{6}$ bcp is 0.088 au., $\nabla^{2} \rho_{\mathrm{b}}$ is 0.016 au . and ε reaches a maximum value of 2.82 . Furthermore, $D I \mathrm{C}_{1}-\mathrm{C}_{6}$ increases (0.61) and $D I \mathrm{C}_{6}-\mathrm{B}$ decreases (0.23). Therefore, an important rearrangement of the charge density occurs between C_{1} and C_{6} due to the rearrangement of these atoms to form the corresponding $\mathrm{C}_{1}-\mathrm{C}_{6} \sigma$-bond. These finding also suggest that the system passes through of a conflict structure, in which the B and C_{1} atoms are competing to be bound to $\mathrm{C}_{6}{ }^{7}$ This constitutes a key point in the evolution of the $[4+3]$ structure towards the $[4+2]$ structure. ${ }^{8}$
After the conflict species, at Dm-p-4, ρ_{b} at the $\mathrm{C}_{1}-\mathrm{C}_{6}$ bcp increases, $\nabla^{2} \rho_{\mathrm{b}}$ becomes more negative ($c a$. 0.229 au. and -0.478), and ε decreases abruptly towards values nearly zero. In this part of the IRC the $\mathrm{C}_{1}-\mathrm{C}_{6}$ bond is reinforced showing features of a covalent bond. At $\mathbf{D m - p - 4}$, both $\mathrm{C}_{1}-\mathrm{C}_{6}$ and $\mathrm{C}_{2}-\mathrm{C}_{3}$ covalent bonds are almost completely formed.
The variations of the atomic charges of selected atoms along the reaction coordinates associated with TSC-m and TSD-m are shown in Fig. S5.

Fig. S5 Atomic net charges for selected atoms (in e) along the reaction coordinates associated with TSC-m and TSD-m.

In path \mathbf{C}, before TSC-m the negative charge of \mathbf{C}_{1} is $\sim-0.50 e$ then, it changes up to $-0.03 e$ at $\mathbf{C m} \mathbf{- p}$ -
3. After $\mathbf{C m}-\mathbf{p - 3}, q\left(\mathrm{C}_{1}\right)$ becomes less negative up to $\sim-0.15 e$ and then remains constant. The electron
charge of \mathbf{C}_{2} is $-0.32 e$ at $\mathbf{T S C - m}$ and then decreases slightly at $\mathbf{C m}-\mathbf{p - 1}(-0.33 e)$ and $\mathbf{C m}-\mathbf{p - 2}(-0.36$ $e)$. From Cm-p-3 onwards $q\left(\mathrm{C}_{2}\right)$ increases reaching similar value $q\left(\mathrm{C}_{1}\right)$. Therefore, firstly C_{2} gains electron population and C_{1} loses electron population after TSC-m but after $\mathbf{C m} \mathbf{- p - 3}$, both atoms exhibit similar net charges. The electron charge of B undergoes remarkable changes during the course of the reaction. At TSC-m, $q(\mathrm{~B})$ is $+1.83 e$ then decreases abruptly to a minimum of $+1.71 e$ at $\mathbf{C m}-\mathbf{p - 3}$. The B atom in this stage of the reaction is tetracoordinated. Then, $q(\mathrm{~B})$ increases (passing by Cm-p-4 in which $q(\mathrm{~B})=+1.81 e$) up to a maximum of $+1.87 e$. In this part of the reaction coordinate the $\mathrm{C}_{1}-\mathrm{B}$ bond breaking occurs, and the B atom becomes tricoordinated $q\left(\mathrm{C}_{3}\right)$ remains close to zero along the reaction coordinate.

From enyne 5 to TSD-m, the changes in the net charges of the analyzed atoms are almost opposite to those observed from TSC-m to the enyne. The negative charges of C_{1} and C_{2} are practically similar (0.15 and $-0.17 e$, respectively) at Dm-r-6. Firstly, $q\left(\mathrm{C}_{1}\right)$ and $q\left(\mathrm{C}_{2}\right)$ change to -0.05 and $-0.30 e$, respectively at Dm-r-5. Then, C_{1} increases and C_{2} decreases their negative atomic charges becoming similar at Dm-r-2 $\left(q\left(\mathrm{C}_{1}\right)=-0.30 e\right.$ and $\left.q\left(\mathrm{C}_{2}\right)=-0.28 e\right)$. After this point, the charges of C_{1} and C_{2} undergo striking variations. $q\left(\mathrm{C}_{1}\right)$ becomes more negative ($-0.38,-0.66,-0.78 e$ at TSD-m, Dm-p-1 and Dm-p-2, respectively) down to a maximum negative value of $-0.82 e$ at $\mathbf{D m - p - 3}$, then it falls to ~-0.70 e, remaining constant until the end of the reaction. The negative charge of C_{2} decreases becoming positive $(+0.06,+0.07 e$ at $\mathbf{D m - p - 1}$ and $\mathbf{D m - p - 2}$, respectively) up to a maximum value of $+0.08 e$ at Dm-p-3, then it decreases to values close to zero until the final product. The maximum values of $q\left(\mathrm{C}_{1}\right)$ and $q\left(\mathrm{C}_{2}\right)$ occur at the same point of the reaction coordinate in which the ρ_{o} goes down to a minimum, $\nabla^{2} \rho_{\mathrm{b}}$ becomes positive and the ε is a maximum at the $\mathrm{C}_{6}-\mathrm{B} \mathrm{bcp}$, demonstrating that an important redistribution of the charge density occurs in this stage. In addition, these results reveal that a charge transfer process between C_{1} and C_{2} occur along the reaction coordinate. The notable variations in the net charges of C_{1} and C_{2} are attributed to the changes of their hybridization (from " $s p$ " in the enyne to " $s p^{2 "}$ hybridization in the cycloadduct).
$q(\mathrm{~B})$ undergoes significant variations during the course of the reaction. Close to the enyne $q(\mathrm{~B})$ is +1.87 e, then it decreases abruptly to $+1.70 e$ (close to Dm-r-5). Then, $q(\mathrm{~B})$ increases to $\sim+1.83 e$ near the conflict structure (Dm-r-1 and Dm-r-2). In this part of the reaction coordinate, the boron atom is tricoordinated (in the enyne product) and then the C_{1} - B bond formation occurs, becoming tetracoordinated.

At TSD-m $q(\mathrm{~B})$ is $+1.83 e$, then it decreases abruptly up to a minimum of $+1.74 e$ (close to Dm-p-1) . Afterwards, $q(\mathrm{~B})$ increases again up to $\sim+1.89 e$ at the end of the reaction. In this part of the reaction coordinate, firstly B gain electron population becomes less positive (in this stage the B atom is tetracoordinate), then the $\mathrm{C}_{6}-\mathrm{B}$ bond begins breaking and the B atom losses electron population, which is donated to C_{1} for the formation of the $\mathrm{C}_{1}-\mathrm{C}_{6} \sigma$-bond. The B atom becomes tricoordinated and its charge gets more positive.

From TSD-m afterwards, $q\left(\mathrm{C}_{6}\right)$ undergoes significant changes. The negative charge of C_{6} goes sharply from $-0.46 e$ at TSD-m up to $-0.18 e$ at $\mathbf{D m}-\mathbf{p - 3}$, and then remains close to zero. These results show that the C_{6} losses electron charge, which could be donated to C_{1} and/or B , and in this part of the reaction the $\mathrm{C}_{6}-\mathrm{B}$ bond is broken and C_{6} begins to form a new bond with C_{1}.

B3LYP/6-311++G(d,p) Cartesian coordinates, imaginary frequencies of transition structures, and computed absolute electronic energies (including zero-point energy -ZPE- corrections) and free energy of the stationary points involved in reaction of 2-tert-butylbutadiene (1) with dichloropropynylborane (2).

2-tert-butylbutadiene (1)				C	-1.618629	0.815785		0.261300	
				C	-1.310192	2.025997		0.347421	
C	-0.767303	1.775564	-0.129730	C	-1.694641	3.316210		0.976246	
C	-0.508440	0.459776	-0.127175	B	-1.870775	-0.622918		0.131457	
C	-1.614550	-0.511260	-0.306174	Cl	-1.416627	-1.785248		1.431585	
C	-2.842796	-0.393690	0.207422	Cl	-2.923319	-1.288255		-1.174814	
C	0.906115	-0.126777	0.029067	H	-0.877438	3.712376		1.584513	
H	-1.772981	2.143566	-0.298763	H	-1.938197	4.066402		0.219408	
H	0.000901	2.522204	0.021069	H	-2.567427	3.170118		1.615152	
H	-1.391583	-1.400762	-0.890380	C	0.253856	2.511894		-0.825955	
H	-3.121924	0.441001	0.842221	C	1.306256	1.695628		-0.424493	
H	-3.604991	-1.140073	0.012919	C	1.361340	0.294237		-0.642438	
C	1.324921	-0.820649	-1.290052	C	0.339092	-0.303335		-1.340201	
C	0.907958	-1.164821	1.175074	C	2.505070	-0.508114		0.011891	
C	1.951173	0.954533	0.353012	C	2.412278	-2.011535		-0.302711	
H	2.330617	-1.238867	-1.185836	C	3.851814	0.019806		-0.536469	
H	1.338068	-0.106861	-2.118437	C	2.471913	-0.331283		1.548369	
H	0.655687	-1.641034	-1.559139	H	0.340596	3.571324		-0.614122	
H	1.907467	-1.594243	1.292092	H	-0.300555	2.288672		-1.729278	
H	0.211556	-1.984713	0.983763	H	2.042584	2.137391		0.238499	
H	0.625236	-0.698922	2.123635	H	0.294276	-1.374116		-1.481282	
H	2.932168	0.488137	0.478493	H	-0.328676	0.274254		-1.961947	
H	1.711459	1.483091	1.279652	H	1.495892	-2.455062		0.094792	
H	2.035849	1.691421	-0.449946	H	3.256849	-2.531728		0.156568	
				H	2.449567	-2.203345		-1.378651	
$\begin{aligned} & \text { Energy + ZPE = -313.137193 au. } \\ & \text { Free Energy= }-313.170851 \mathrm{au} . \end{aligned}$				H	4.680550	-0.532501		-0.083715	
				H	3.998153	1.079466		-0.313675	
				H	3.909802	-0.108756		-1.621018	
dichloropropynylborane (2)				H	1.528693	-0.694338		1.963889	
				H	2.592789	0.713111		1.845315	
B $\quad-0.5441760 .000135-0.000002$				H	3.286537	-0.900872		2.005393	
$\begin{array}{lllll}\text { C } & 0.946511 & 0.001727 & -0.000012\end{array}$				Energy + ZPE $=-1374.563093$ au.					
Cl $-1.4594951 .515343-0.000002$				Free Energy $=-1374.607669 \mathrm{au}$.					
	2.160481	$65-0.000$							
Cl $-1.456543-1.516839-0.000002$									
$\begin{array}{lllll}\text { C } & 3.610565 & 0.001938 & -0.000008\end{array}$				TSA-p					
H 3.989398 -0.517144 0.885061				1 imaginary frequency : $-414.3 \mathrm{~cm}^{-1}$					
H $\quad 4.009198$ 1.019137 -0.003285									
	H $3.989573-0$.	-0.881516		C	-1.256982	0.992434	0.231024		
				C	-0.260570	1.750328	0.222687		
$\begin{aligned} & \text { Energy }+ \text { ZPE }=-1061.459765 \mathrm{au} . \\ & \text { Free Energy= }-1061.493790 \mathrm{au} . \end{aligned}$				C	0.283471	3.009510		3686	
				BCl	-2.346515	0.013175	0.224780		
Free Energy= -1061.493790 au.					-2.504558	-1.232429		8637	
				Cl	-3.750582	0.153281	-0.89	9318	
TSA-m 1 imaginary frequency : $-419.7 \mathrm{~cm}-1$				H	0.503987	3.736746	0.008035		

H	-0.445747	3.447882	1.477577
H	1.209433	2.824916	1.344104
C	1.181190	1.160441	-1.084454
C	1.550983	-0.134376	-0.717806
C	0.625345	-1.191370	-0.940178
C	-0.599695	-1.039094	-1.524496
C	2.829974	-0.437570	0.080037
C	3.608692	-1.568399	-0.635526
C	3.762302	0.782613	0.189081
C	2.457774	-0.898284	1.511527
H	1.893312	1.964415	-0.962628
H	0.512499	1.298280	-1.924148
H	0.849491	-2.160935	-0.508322
H	-1.280710	-1.879808	-1.584544
H	-0.861212	-0.175844	-2.119822
H	4.522704	-1.795283	-0.079175
H	3.892785	-1.267182	-1.647583
H	3.027390	-2.489936	-0.707287
H	3.303169	1.606570	0.740861
H	4.062797	1.152497	-0.795113
H	4.669739	0.497549	0.727504
H	1.904604	-0.119308	2.042536
H	3.367283	-1.117171	2.078739
H	1.843515	-1.801154	1.503450

```
Energy + ZPE = -1374.563762 au.
Free Energy = -1374.608561 au.
```


IN-m

C	1.299498	0.469636	-0.613831
C	1.125857	1.897824	-0.642632
C	0.114739	2.536506	-1.268898
C	0.275667	-0.395383	-1.096546
C	2.604117	-0.051372	-0.023581
C	2.734440	0.400160	1.457780
C	2.741441	-1.582433	-0.091398
C	3.765547	0.575150	-0.849852
H	1.847001	2.501162	-0.105974
H	0.025551	3.614668	-1.203119
H	-0.612061	2.031326	-1.889510
H	-0.288133	0.023893	-1.927679
H	0.604689	-1.407416	-1.306741
H	1.934176	-0.021878	2.066838
H	3.690198	0.038588	1.844997
H	2.720593	1.485558	1.567133
H	2.733312	-1.943476	-1.123032
H	3.698861	-1.870545	0.348719
H	1.951523	-2.088137	0.464080
H	3.691083	0.302682	-1.905494
H	3.796160	1.662941	-0.774978
H	4.710143	0.184080	-0.463630
C	-2.366804	1.748538	0.558403

C	-1.807207	0.698145	0.317933
B	-1.093872	-0.629638	0.012884
C	-3.070615	2.984632	0.875361
Cl	-2.222988	-1.816000	-0.959377
Cl	-0.526170	-1.504084	1.592170
H	-2.432457	3.670370	1.439714
H	-3.958284	2.778426	1.480371
H	-3.398462	3.497255	-0.033356

Energy + ZPE $=-1374.580216$ au.
Free Energy = -1374.626536 au.

IN-p			
C	-0.737929	-1.079278	-1.238727
C	0.529199	-1.088556	-0.654495
C	1.566126	-0.093884	-0.744424
C	2.846998	-0.315554	0.081973
C	1.350966	0.999584	-1.513977
C	2.487882	-0.360414	1.585435
C	3.870906	0.809929	-0.142476
C	3.496268	-1.654775	-0.340459
H	-0.907663	-0.440575	-2.099016
H	-1.212946	-2.054093	-1.306486
H	0.721710	-1.916443	0.021397
H	2.066819	1.807355	-1.579683
H	0.453557	1.113363	-2.106403
H	3.391832	-0.529834	2.176781
H	2.040358	0.582974	1.908404
H	1.785511	-1.163201	1.822355
H	4.769564	0.604107	0.443736
H	4.170030	0.884296	-1.191744
H	3.485561	1.781782	0.177265
H	4.407493	-1.822560	0.239949
H	2.838811	-2.510944	-0.168389
H	3.765471	-1.642114	-1.400187
B	-1.896320	-0.310431	0.001617
C	-1.487804	1.146410	0.226915
C	-1.147215	2.300007	0.386899
C	-0.773955	3.690342	0.610180
Cl	-3.554152	-0.475247	-0.870156
Cl	-1.873618	-1.375334	1.546480
H	0.225927	3.766981	1.046097
H	-0.780028	4.255357	-0.326094
H	-1.476977	4.172712	1.295359

Energy + ZPE $=-1374.578911 \mathrm{au}$.
Free Energy =-1374.626085 au.

TS-m

1 imaginary frequency : $-252.1 \mathrm{~cm}^{-1}$
C $\quad 1.193557 \quad 0.532375 \quad-0.550043$

C	0.915953	1.959860	-0.432611
C	-0.000629	2.642981	-1.136408
C	0.320336	-0.308334	-1.213308
C	2.492138	0.037426	0.095568
C	2.476050	0.313589	1.621398
C	2.742900	-1.463569	-0.134154
C	3.665246	0.823798	-0.550231
H	1.507793	2.513292	0.286855
H	-0.145777	3.703101	-0.964573
H	-0.605941	2.193712	-1.913614
H	-0.392728	0.132294	-1.898762
H	0.644062	-1.309049	-1.463257
H	1.657503	-0.217015	2.109936
H	3.416888	-0.036578	2.054295
H	2.383636	1.376595	1.851559
H	2.828554	-1.700322	-1.198031
H	3.685534	-1.744994	0.341563
H	1.954824	-2.081704	0.297560
H	3.699183	0.662083	-1.630887
H	3.598853	1.897786	-0.367122
H	4.607350	0.468987	-0.123775
C	-2.584788	1.454891	0.548912
C	-2.014162	0.413087	0.301940
B	-1.305066	-0.889692	-0.009899
C	-3.297782	2.682613	0.870035
Cl	-2.150636	-1.994624	-1.226458
Cl	-0.631187	-1.827213	1.418559
H	-2.663785	3.369503	1.437158
H	-4.182557	2.464771	1.475203
H	-3.629975	3.194918	-0.036933

Energy + ZPE $=-1374.579328 \mathrm{au}$.
Free Energy $=-1374.625992$ au.

TS-p

1 imaginary frequency : $-185.9 \mathrm{~cm}^{-1}$

C	-0.717369	-1.077529	-1.313733
C	0.518642	-1.093316	-0.703447
C	1.570263	-0.097032	-0.767961
C	2.823905	-0.337696	0.094257
C	1.401826	0.991547	-1.548838
C	2.421381	-0.392273	1.586527
C	3.866154	0.778754	-0.086431
C	3.475497	-1.679240	-0.318616
H	-0.919096	-0.390743	-2.126893
H	-1.250893	-2.020431	-1.356221
H	0.698354	-1.930005	-0.035554
H	2.139523	1.779845	-1.605293
H	0.520807	1.122588	-2.162846
H	3.305843	-0.578811	2.202015
H	1.977348	0.554033	1.905822
H	1.702158	-1.187541	1.796013

Energy + ZPE $=-1374.570257 \mathrm{au}$.
Free Energy $=-1374.613635 \mathrm{au}$.

TSB-p
1 imaginary frequency : $-207.1 \mathrm{~cm}^{-1}$

C	0.888434	0.996766	-1.057300
C	1.320950	-0.292429	-0.612209
C	0.416949	-1.316759	-0.706423
C	-0.972757	-1.148833	-1.147470
C	2.724668	-0.443083	0.007160
C	3.788910	-0.063791	-1.049517
C	2.994982	-1.886317	0.467383
C	2.863642	0.490226	1.231124
B	-1.896327	-0.263985	-0.064171
Cl	-2.087277	-1.206289	1.579535
C	-1.169534	1.085327	0.172140
C	-0.409271	2.050508	0.277570
C	0.132588	3.358862	0.648451
Cl	-3.613316	0.018222	-0.827471
H	1.567825	1.836307	-0.969485
H	0.227487	1.067672	-1.909519
H	0.693235	-2.290220	-0.319601
H	-1.048918	-0.589058	-2.084559
H	-1.475191	-2.109171	-1.272739
H	3.727000	-0.722571	-1.920105
H	3.672305	0.966299	-1.397473
H	4.791946	-0.156027	-0.623255
H	2.304265	-2.199318	1.254705
H	2.923634	-2.598867	-0.358966
H	4.008589	-1.951380	0.870691
H	2.115359	0.257164	1.992872
H	3.854102	0.368944	1.678531
H	2.760929	1.543614	0.959496
H	1.054707	3.258992	1.225141
H	-0.601052	3.886680	1.261621
H	0.338113	3.965143	-0.237027

Energy + ZPE $=-1374.569665 \mathrm{au}$.
Free Energy $=-1374.613757 \mathrm{au}$.

TSC-m

1 imaginary frequency : $-167.3 \mathrm{~cm}^{-1}$

Cl	-0.862069	-1.593496	1.632641
B	-1.081445	-0.823138	-0.101304
C	0.364871	-0.679608	-0.896527
C	1.234521	0.433003	-0.437627
C	2.653529	0.152508	0.048570
C	0.713488	1.708274	-0.455547
C	-0.543347	1.992157	-1.026712
C	-1.812307	0.559034	0.069346

C	-2.471379	1.559482	0.330979
C	-3.295280	2.704185	0.674727
Cl	-2.196131	-1.995542	-1.132769
C	3.368075	1.410191	0.575260
C	2.662065	-0.918110	1.164016
C	3.448977	-0.383096	-1.174599
H	0.066786	-0.492467	-1.935562
H	0.872924	-1.642618	-0.878337
H	1.225001	2.521017	0.042606
H	-0.934831	2.999106	-0.941464
H	-0.896997	1.452942	-1.895062
H	-3.705660	3.182389	-0.218438
H	-4.135005	2.367645	1.290521
H	-2.731238	3.443650	1.248957
H	4.382616	1.144701	0.881664
H	3.447490	2.187330	-0.189144
H	2.860015	1.831390	1.446896
H	3.697339	-1.122588	1.450310
H	2.124121	-0.570907	2.048403
H	2.210280	-1.857308	0.843756
H	4.479530	-0.585309	-0.870415
H	3.024173	-1.310107	-1.564078
H	3.470802	0.352353	-1.983241

Energy + ZPE $=-1374.573811 \mathrm{au}$.
Free Energy = -1374.618053 au.

TSC-p
1 imaginary frequency : $-171.6 \mathrm{~cm}^{-1}$

C	-0.912813	-1.350530	-1.120011
B	-1.778482	-0.378581	-0.097140
C	-1.091579	1.031859	0.027047
C	-0.680784	2.168843	0.237303
C	-0.283128	3.536333	0.515945
C	0.493270	-1.426976	-0.692906
C	1.321031	-0.336106	-0.628150
C	2.717099	-0.346633	0.025292
C	0.794354	0.890452	-1.126968
Cl	-3.543701	-0.168280	-0.782179
Cl	-1.882229	-1.168003	1.642273
C	2.713297	0.571699	1.268663
C	3.762903	0.167434	-0.991372
C	3.126496	-1.762995	0.464036
H	-1.016108	-0.879088	-2.104025
H	-1.376756	-2.336305	-1.162594
H	0.607342	3.577780	1.147845
H	-0.095693	4.091066	-0.407251
H	-1.098258	4.038522	1.046363
H	0.837723	-2.368927	-0.282694
H	1.369937	1.801452	-1.018797
H	0.141368	0.889529	-1.988153
H	3.701723	0.566495	1.736594

H	2.480860	1.608667	1.013319	C	-0.904294	0.326578	0.032483
H	1.983408	0.231171	2.007327	C	-0.915408	1.659178	-0.208398
H	4.758417	0.169499	-0.538619	C	-2.120352	2.479280	-0.585298
H	3.793937	-0.472355	-1.877701	B	-2.158261	-0.569572	0.016478
H	3.549229	1.188478	-1.319309	Cl	-3.699835	-0.165666	0.809877
H	4.135949	-1.734197	0.881769	Cl	-2.115702	-2.190280	-0.729583
H	2.461256	-2.161179	1.234471	H	-3.038824	1.907114	-0.679845
H	3.138013	-2.461168	-0.377708	H	-2.282990	3.271330	0.154948
				H	-1.933608	2.983029	-1.540000
Energy + ZPE = -1374.570099 au.				C	0.354079	2.472930	-0.155110
Free Energy $=-1374.613933 \mathrm{au}$.				C	1.628503	1.681827	-0.111358
				C	1.681551	0.365140	0.098209
				C	0.402360	-0.405044	0.349222
TSD-m				C	2.990762	-0.441197	0.105770
	aginary frequ	ncy : -168.6		C	3.025648	-1.383756	-1.122740
				C	4.232952	0.466218	0.042691
Cl	-1.067117	-1.569516	1.660485	C	3.083767	-1.291926	1.394838
B	-1.187991	-0.818685	-0.087426	H	0.291283	3.140407	0.719940
C	0.265229	-0.760962	-0.856226	H	0.374653	3.158192	-1.012825
C	1.201125	0.341829	-0.446385	H	2.534898	2.253738	-0.272652
C	2.616808	-0.007463	0.023220	H	0.375706	-0.711189	1.404542
C	0.758752	1.622079	-0.519281	H	0.423835	-1.345957	-0.206699
C	-0.563590	1.950810	-1.029833	H	2.199489	-2.098618	-1.118788
C	-1.758124	0.631738	0.087359	H	3.956710	-1.958825	-1.127746
C	-2.012549	1.829460	0.255451	H	2.975230	-0.811215	-2.053104
C	-2.598885	3.082196	0.731224	H	5.136876	-0.148336	0.072993
Cl	-2.404621	-1.871262	-1.117377	H	4.269567	1.158115	0.888722
C	3.424997	1.232358	0.447592	H	4.264163	1.051759	-0.879901
C	2.564117	-0.982314	1.222475	H	2.279286	-2.027931	1.460230
C	3.359060	-0.689143	-1.154805	H	3.040284	-0.660032	2.287088
H	0.015484	-0.633277	-1.916780	H	4.031473	-1.838000	1.413864
H	0.725480	-1.745020	-0.763938				
H	1.357595	2.448367	-0.161441		$+\mathrm{ZPE}=-1$. 650951 au .	
H	-0.782336	3.012876	-1.107492		nergy $=-137$. 6053 au.	
H	-0.909565	1.432166	-1.917362				
H	-3.054363	3.639536	-0.090463				
H	-3.371509	2.851899	1.467227	4			
H	-1.840146	3.709630	1.204806				
H	4.425913	0.922645	0.758877	C	1.086861	-0.106527	-0.157113
H	3.540553	1.945305	-0.372950	C	0.378621	1.016806	-0.437104
H	2.961577	1.749354	1.292255	C	0.943718	2.396268	-0.650757
H	3.583408	-1.239863	1.524337	B	2.606500	-0.170914	0.050399
H	2.059921	-0.526803	2.078013	Cl	3.503751	-1.655907	-0.378290
H	2.042158	-1.909441	0.982101	Cl	3.607959	1.097604	0.797157
H	4.374071	-0.953854	-0.845129	H	0.447496	2.862427	-1.508210
H	2.858911	-1.604077	-1.478483	H	0.725877	3.030900	0.216393
H	3.430700	-0.016303	-2.014028	H	2.015426	2.416075	-0.825008
				C	-1.121620	0.980851	-0.633479
Energy + ZPE $=-1374.572152 \mathrm{au}$.				C	-1.835868	-0.234677	-0.084805
Free Energy = 1374.615483 au.				C	-1.125340	-1.340393	0.146740
				C	0.356191	-1.447531	-0.074180
				C	-3.346423	-0.115010	0.158587
				C	-3.983544	-1.465932	0.530234
3				C	-3.608164	0.873680	1.321374

References

1. R. F. W. Bader, Atoms in Molecules. A Quantum Theory, Oxford Science Publications, Clarendon Press, London 1990.
2. C. F. Matta and R. J. Boyd, The Quantum Theory of Atoms in Molecules: from solid state to DNA and drug design, Wiley-VCH, Weinheim, 2007.
3. C. S. López, O. N. Faza, F. P. Cossío, D. M. York and A. R. de Lera, Chem. Eur. J., 2005, 11, 1734-1738.
4. D. Cremer and E. Kraka, Angew. Chem. Int. Ed. Eng., 1984, 23, 627-628.
5. G. Merino, A. Vela and T. Heine, Chem. Rev., 2005, 105, 3812-3841.
6. P. L. A. Popelier, Coor. Chem. Rev., 2000, 197, 169-189.
7. R. F. W. Bader, T. T. Nguyen-Dang and Y. Tal, Rep. Prog. Phys. , 1981, 44, 893-948.
8. M. M. Vallejos, N. M. Peruchena and S. C. Pellegrinet, Org. Biomol. Chem., 2013, 11, 79537965.

[^0]: ${ }^{\text {a }}$ Relative to $\mathbf{1 + 2}$.

