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Abstract

The structure–activity relationship (SAR) for the newly discovered oxadiazole class of antibiotics 

is described with evaluation of 120 derivatives of the lead structure. This class of antibiotics was 

discovered by in silico docking and scoring against the crystal structure of a penicillin-binding 

protein. They impair cell-wall biosynthesis and exhibit activities against the Gram-positive 

bacterium Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA) and 

vancomycin-resistant and linezolid-resistant S. aureus. 5-(1H-Indol-5-yl)-3-(4-(4-

(trifluoromethyl)phenoxy)phenyl)-1,2,4-oxadiazole (antibiotic 75b) was efficacious in a mouse 

model of MRSA infection, exhibiting a long half-life, a high volume of distribution, and low 

clearance. This antibiotic is bactericidal and is orally bioavailable in mice. This class of antibiotics 

holds great promise in recourse against infections by MRSA.
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INTRODUCTION

Staphylococcus aureus is a leading human bacterial pathogen that is a common source of 

infections in healthcare and community environments. The 2013 Centers for Disease Control 

and Prevention (CDC) report on antibiotic resistance prioritized methicillin-resistant 

Staphylococcus aureus (MRSA) as an ongoing serious threat, with 2011 records indicating 

that 11 285 of the 23 000 deaths caused by antibiotic-resistant bacteria and fungi in the 

United States were directly attributed to MRSA infections.1 Antibiotics that are approved for 

treatment of MRSA infections are vancomycin (a glycopeptide), linezolid (an 

oxazolidinone), daptomycin (a lipopeptide), and, more recently, ceftaroline (a β-lactam) and 

tedizolid (an oxazolidinone). Only linezolid and tedizolid are orally bioavailable among 

these agents.2 Furthermore, resistance to each of these antibiotics is known.3–8

We described recently the discovery of the oxadiazole class of antibiotics.9 The lead in this 

class came out of an in silico search for potential inhibitors for penicillin-binding protein 2a 

(PBP2a) of MRSA. PBPs are targets of β-lactam antibiotics. Inhibition of PBPs by β-

lactams is bactericidal, as it interferes with biosynthesis of cell wall.10 Resistance to β-

lactam antibiotics is widespread,11–14 but the importance of PBPs as targets for antibiotics 

has not diminished. We reasoned that PBPs remain worthy targets for antibiotics, and we 

sought to discover a new class of non-β-lactam inhibitors for these enzymes in this effort.

The in silico search and scoring of 1.2 million compounds from the ZINC library led to 

selection and purchase of the top-ranked compounds for screening with living bacteria.9 We 

set the bar high from the outset by screening compounds first against Escherichia coli and 

the ESKAPE panel of antibiotics, instead of against the recombinant protein. The ESKAPE 

panel is composed of Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, 

Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species, a collection 

of bacteria that cause the majority of nosocomial infections.15 This strategy for screening 

easily eliminates any compound that would not have activity against bacteria, so the search 

was streamlined. The discovery produced the lead oxadiazole 1 (Scheme 1).9 We have 

explored in the present report the structural space for oxadiazole antibiotics by syntheses of 

derivatives. These compounds were in turn screened against the bacterial panel, from which 

a number exhibited good anti-MRSA activity. In another effort in streamlining the discovery 

process, the promising compounds went directly into the mouse MRSA peritonitis model for 

infection. This model has shown excellent correlation between the minimal-inhibitory 

concentration (MIC) and ED50 (the effective dose that rescues 50% of the animals from the 

infection) for 14 β-lactam antibiotics16 and for linezolid.17 This is a rapid animal model of 

infection that results in 100% fatality within 48 h. The compounds that would show efficacy 

would by necessity exhibit reasonable pharmacokinetic (PK) properties. This approach sped 

up lead optimization by identifying compounds with in vivo activity early. The compounds 

that resulted in survival of the animals were then further scrutinized for optimization by 

additional syntheses around the structural space and for attributes such as improved PK, 

decreased metabolism, and lack of toxicity to mammalian cells. The ring A of structure 1 
(Scheme 1) produced excellent opportunities for these additional explorations. These efforts 

led to the SAR for the oxadiazoles as studied by 120 synthetic derivatives in ring A.
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RESULTS AND DISCUSSION

Synthesis.

The focus of this SAR study is the variation of structure within ring A of the oxadiazole 

lead. This ring, attached to position 5 of the 1,2,4-oxadiazole moiety (1), proved versatile in 

generating many active antibiotics of this class. The diphenyl ether portion (rings C and D) 

was obtained by reaction of either 4-fluorobenzonitrile (2) or 4-iodobenzoni-trile (3) with 

the appropriate counterpart phenol (4a, 4b, or 4c, Scheme 2). Typically, coupling with 2 was 

done via nucleophilic aromatic substitution, and the reaction with 3 was achieved with an 

Ullmann coupling. Our variations to the aromatic rings of the diphenyl ether were minimal 

and involved only substitution at the 4-position of ring D with a fluoro or trifluoromethyl 

group. The para substitution of ring D, specifically with those two variations, proved 

beneficial for improved metabolic stability and lowered clearance. Nitriles 5a, 5b, and 5c 
were converted into their corresponding N′-hydroxybenzimidamides 6a, 6b, and 6c, 

respectively, using hydroxylamine in refluxing ethanol.

The left-hand portions of the oxadiazoles were accessed by starting (with a few exceptions) 

with the corresponding carboxylic acids, which would ultimately become ring A and the C5 

of the oxadiazole ring (Scheme 2). These were converted to the corresponding acyl chlorides 

by reaction with either oxalyl chloride or thionyl chloride. The starting materials included 

several benzoic acid derivatives (7–28) and a variety of heteroatom-containing carboxylic 

acids (29–56). Biological analysis of the lead compound 1 and a few close analogues 

established that a hydrogen bond donor at the 4-position of ring A is generally beneficial for 

activity against S. aureus.9 Thus, the phenolic hydroxyl was retained using several different 

protected derivatives (7–16), while the 4-amino group (for anilines) was accessed by starting 

with the corresponding 4-nitrobenzoic acid derivatives (17–21), wherein the nitro 

functionality was later reduced. We also explored the effect of several other substituents at 

the 4-position of the phenyl ring, as exemplified by precursors 22–28. The heteroatom-

containing starting materials included several pyrazoles (29–34), pyrroles (35, 36), 

imidazole 37, triazoles (38, 39), indole 40, indazoles (41, 42), pyrrolopyridine 43, pyridines 

(44–48), several aliphatic derivatives (49–53), protected amino acids (54, 55), and 

pyrimidine 56. While most of these precursors are commercially available, carboxylic acids 

9, 12, 13, 20, 27, and 52, and acyl chlorides 14 and 15, had to be synthesized (procedures 

given in the Supporting Information). Once in hand, the acyl chlorides were allowed to react 

with 6a, 6b, or 6c in refluxing pyridine/toluene or 1,4-dioxane to produce the 1,2,4-

oxadiazoles.

Many of these immediate oxadiazole products were subjected to further synthetic 

manipulation to broaden the structural diversity of the derivatives (protective group removal, 

nitro reduction, metal-catalyzed coupling, substitution on amine, etc.). These reactions are 

described in the Experimental Methods and Supporting Information.

Structure–Activity Relationship (SAR).

The SAR for the synthetic oxadiazole compounds was investigated using antibacterial 

screening against the aforementioned ESKAPE panel of bacteria plus E. coli. The 120 
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synthetic samples encompassed modifications in the lead at the 5-position of the 1,2,4-

oxadiazole (ring A in Scheme 1), while keeping the 3-position constant as a 4-substituted 

diphenyl ether moiety (Figure 1). The oxadiazoles exhibit activity against Gram-positive 

bacteria. We expressly explored the activity against S. aureus for this study, for reasons that 

we outlined earlier. The SAR was evaluated by minimal-inhibitory concentration (MIC) 

measurements against S. aureus ATCC 29213, a standard methicillin-sensitive S. aureus 
(MSSA) strain for the purpose of screening. Active compounds (MIC ≤ 8 μg/mL) are 

enclosed within the blue shading in Figure 1. The substituents at the 4-position of ring D 

were hydrogen, trifluoromethyl, or fluorine (Figure 1), as indicated earlier. These 

modifications had little effect on the in vitro activity of compounds, except for some specific 

cases that are discussed below. However, the substitution with trifluoromethyl or fluorine at 

this position resulted in lower clearance and better metabolic stability, thus improving the 

PK properties.

Replacement of the phenol or aniline moieties in ring A with certain heterocyclic rings 

improved antibacterial activity. Introduction of 4-halogen-substituted pyrazoles (60a–c, 
61a,b, 62a–c) maintained MIC values of ≤1 μg/mL. The pyrazolyl compounds also tolerated 

NO2 (63a–c) and NH2 (64b) substitution in this position; however, introduction of an 

isopropyl group on the amine (65a,b) caused the MIC to drop further to 0.5 μg/mL. The 

lowest observed MIC value of 0.25 μg/mL came from the ethynyl substituted derivative 66b. 

Other sp-hybridized functional group substitutions (67b and 68b) also maintained good 

activity.

Addition of a 3-hydroxyl group (69b,c) retained activity, and the addition of fluorine atoms 

in the 3- and 5-positions on the phenol (70a–c and 71b,c) and the aniline (72b, 73a,b) was 

possible without significant loss of activity, but an additional methylene spacer between the 

1,2,4-oxadiazole and the phenol ring (74a) increased the MIC to 8 μg/mL. The other 

heterocyclic substitutions that retained good activity were the indolyl compounds (75a–c), 

the imidazolyl compound (76b), the substituted pyridinyl compounds (77b,c), and the nitro 

substituted pyrrolyl compound (78b).

Replacement of the hydrogen-bond donating phenol and aniline groups with aryl halogens 

(80a,b, 81b,c) resulted in loss of activity, as did replacement with other hydrogen-bond 

accepting aryl moieties (82a,b, 84c). Interestingly, the aniline derivative with a 4-F 

substitution on the biphenyl ether (58c) had no antibiotic activity despite the low MIC values 

for the 4-H and 4-CF3 substituted compounds (58a,b). All other substituted aryl systems 

failed to show activity (87b,c, 88c, 89c, 90c, 91c, 92c, 93b), including changing the 

hydroxyl group to the 2- or 3-positions (95a, 96a, 97a). No activity was seen for 

unsubstituted pyrazoles (102b,c), and the activity seen in the secondary amine series did not 

extend to larger straight chain alkyl or cyclic alkyl substitution (104b, 105b, 106b, 107b) or 

acylation (108b, 109b). Complete replacement of an aryl moiety with a simple hydroxyl 

(112a) or methyl (113a) abolishes activity and underlines the significance for activity of a 

spacing group between the 1,2,4-oxadiazole ring and the hydrogen-bond donating group. No 

activity was observed for any of the other heteroaromatic substituents that were introduced 

(114a, 115a, 116b, 117b, 118c, 119c, 120b,c, 121b,c, 122b,c, 123b,c, 124a, 125b,c, 78c, 
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126c, 127c). In a similar trend observed with the inactive 4-F diphenyl ether substituted 

aniline (58c), the 4-F diphenyl ether substituted imidazole derivative (76c) showed no 

activity compared to the active 4-CF3 derivative (76b). The effect of the 4-position diphenyl 

ether substitutions on activity in these cases is yet to be resolved. Several derivatives with 

saturated cyclic substitutions were also synthesized; however, activities were poor (≥32 

μg/mL) (128a, 132a, 133b, 134b, 135b, 136a, 137a).

Activity Against Gram-Positive Organisms.

Compounds 60b, 60c, 65b, 66b, 75b, and 76b were evaluated against a panel of Gram-

positive organisms. The pyrazoles showed activity against S. aureus MSSA (ATCC 29213) 

and MRSA (ATCC 27660, NRS119, VRS1, and VRS2) strains, including vancomycin-

resistant strains (Table 1). The pyrazoles were not active against S. aureus NRS120 and other 

Gram-positive organisms. Replacement of the pyrazole with an indole (75b) broadened the 

spectrum of activity against Gram-positive organisms. The activity of the indole 75b was 

similar to that of the phenol derivative 1 (Table 1).

Plasma-Protein Binding.

Protein binding for compounds 60b, 60c, 65b, 66b, 75b, and 76b was determined in human 

plasma using equilibrium dialysis. Results are shown in Table 2. Protein binding of the 

pyrazoles 60b, 60c, 65b, 66b, and the imidazole 76b was lower than that of the indole 75b 
(98.2 ± 3.2%). Although plasma protein binding was high, 43% of the 1500 most frequently 

prescribed drugs have protein binding >90%,18 and 12 of the 100 most prescribed drugs 

have >98% plasma protein binding.19 Plasma protein binding of many antibiotics on the 

market, including daptomycin, oxacillin, teicoplanin, rifampicin, and clindamycin, is >91%.
20–23

Fast Pharmacokinetic (PK) Studies.

To rapidly ascertain the PK properties of the compounds, fast PK studies were conducted. 

These studies involve administration of the compounds using a limited number of animals (n 
= 2 mice per time point) for a few time points. This allows us to rapidly compare the 

preliminary PK properties of the compounds, so that full PK studies are conducted only with 

the most promising compound(s). All compounds were administered intravenously (iv) with 

a single dose at 20 mg/kg. The alkyne substituted pyrazole 66b had the lowest clearance and 

the highest systemic exposure, as measured by area under the curve (AUC, Table 2). The 

highest clearance was observed for 60c, and as a result it had the lowest systemic exposure.

In Vitro Cytotoxicity.

We used the XTT assay with HepG2 cells to evaluate the in vitro toxicity of compounds 

60b, 60c, 65b, 66b, 75b, and 76b (Table 2). The highest toxicity was observed for 65b and 

the lowest for the indole 75b. Compared to the lead 1, indole 75b was 5-fold less toxic.

In Vivo Efficacy.

Compounds 60b, 60c, 65b, 66b, 75b, and 76b were evaluated in the mouse peritonitis model 

of infection (Table 2). We used the ICR out-bred strain of mice that provides a 
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heterogeneous population, similar to the human situation, thus ensuring the relevance of the 

antibacterial effect. This animal model of infection is widely used, it is easy to carry out, and 

the end points (death or survival) are rapidly assessed, making it less resource-intensive 

compared to other infection models. In addition, excellent correlation between MIC and 

ED50 has been shown for 14 β-lactam antibiotics using this model.16 The mouse peritonitis 

infection model continues to be an important model for evaluation of the efficacy of 

antibiotics against human pathogens.17 We use the iv route of administration in initial 

efficacy studies, as this allows us to test the efficacy without knowledge of the oral 

bioavailability of the lead. Evaluation was done at 20 mg/kg. The highest efficacy was 

observed for indole 75b (Table 2).

Minimal-Bactericidal Concentration (MBC).

The MBC of compound 75b was determined using S. aureus ATCC 29213, S. aureus ATCC 

277660, and E. faecium NCTC 7171. For S. aureus ATCC 29213 (an MSSA strain), the 

MBC was the same as the MIC value, while for the two other strains, the MBC was 2-fold 

above the MIC values. These data indicated that compound 75b is bactericidal at 

concentrations that inhibit bacterial growth (Table 4).

Full PK Study.

A full PK study was conducted with indole 75b after iv and oral (po) administration. This 

compound had the lowest in vitro toxicity and the highest efficacy in the mouse peritonitis 

infection model. Results are summarized in Figure 2 and Table 3. Antibiotic 75b was 

characterized by low clearance of 5.68 mL/min/kg (less than 10% of hepatic blood flow), a 

high volume of distribution of 4.73 L/kg, and a terminal half-life after iv administration of 

9.6 h. After oral administration, maximum concentrations were observed at 6 h, after which 

time relatively high concentrations were sustained. The terminal half-life after oral 

administration was long (18.6 h). The oral bioavailability of 75b at 97% was high, and was 

similar to that of compound 1.9 Antibiotic 75b had 13-fold higher volume of distribution and 

3-fold lower clearance than 1 and was more rapidly absorbed than 1 (t1/2abs of 0.8 h vs 3.3 

h9). Thus, antibiotic 75b has superior PK properties compared to 1.

In Vivo Efficacy of 75b.

Antibiotic 75b was evaluated in the mouse peritonitis infection model using S. aureus ATCC 

27660 (MRSA) after iv and po administration (Table 3). The mean effective dose (ED50) 

values were 7.6 mg/kg and 1.7 mg/ kg after iv and po doses given at 30 min and 7.5 h after 

infection, respectively. The excellent oral efficacy was attributed to the sustained plasma 

concentrations of 75b following po administration. The ED50 value after iv administration of 

75b is 6-fold better than that of 1. The ED50 of compound 75b was also evaluated after a 

single po dose given at 1 h after infection. Compound 75b has an excellent ED50 of 3.1 

mg/kg, comparable to that of linezolid of 2.8 mg/kg (Table 3) and 14-fold better than that of 

1. These data indicated that antibiotic 75b is superior than 1 and comparable in efficacy to 

linezolid.
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CONCLUSION

The recent discovery of the oxadiazole class of anti-MRSA antibiotics provided the 

opportunity to explore the structural space for these cell-wall-active antibiotics. We have 

disclosed in the present work the SAR for this class by synthesis and evaluation of 120 

structural variants, of which a few dozen exhibit antibacterial activity against S. aureus and 

MRSA strains. Certain heterocycles with the ability to donate hydrogen bonds are well-

tolerated at ring A. Thus, the 4-phenol (57a–59b, 69b–71c) and 4-aniline (72b–73b) analogs 

are active against S. aureus, but substituents such as phosphates (84c), sulfonamides (87b, 
87c), amides (88c), and carboxylic acids (89c) attenuate or abrogate activity. Hydrogen-

bond-accepting substituents on ring A abolish activity (e.g., 80a–82b, 91c, 93b, 94a, 99a–
101c). Replacing the phenyl moiety of ring A for an aromatic heterocyclic ring retains 

activity in some cases. Pyrazoles substituted with halogens (60a–62c), a nitro group (63a–
63c), an isopropylamino group (65a, 65b), or sp-hybridized groups (66b–68b) are all active, 

as are indoles (75a–75c) and an imidazole (76b). Pyrazoles containing amino groups with 

larger substituents (104b–110b) lead to abolishment of antibacterial activity. Heteroaromatic 

systems such as pyridines (114a, 115a, 120b–122c), triazoles (116b, 117b), and pyroles 

(78c, 126c, 127c) generally abolish antibacterial activity, as do aliphatic heterocycles (128a–
135b).

Although introducing a pyrazole at ring A generally results in compounds that are potently 

active in vitro with living bacteria, they are also generally cytotoxic. Thus, while pyrazole 

derivatives 65b and 66b are among the most active compounds reported here, they also 

exhibit the highest toxicity toward mammalian cells. Replacing the pyrazole with an indole 

circumvents these toxicity problems, while retaining antibacterial activity. One compound, 

antibiotic 75b, shows excellent efficacy in vivo with a long half-life, a high volume of 

distribution, and low clearance. Antibiotic 75b is bactericidal and is 97% orally bioavailable. 

This class of antibiotics holds great promise in treatment of infections by these difficult 

human pathogens.

EXPERIMENTAL METHODS

In Silico Screening.

A library of 1.2 million drug-like compounds from the ChemDiv subset of the ZINC 

database24 was prepared for high-throughput virtual screening against the X-ray structure of 

PBP2a (PDB ID: 1VQQ).25 The protein was prepared using the Schrödinger Preparation 

Wizard (Schrödinger, LLC, 2009). The top scoring 10% of the compounds by Schrödinger 

Glide were cross-docked with Glide-SP,26–28 Autodock,29 Gold-chemscore, Gold-goldscore, 

and Gold-PLP.30 The top-scoring 2000 poses from each were extracted and refined using 

Glide-XP mode.26–28 Finally, the best 2500 compounds were clustered according to 

structural similarity using hierarchical clustering. Binding poses of these clusters were 

inspected visually. From these, 29 compounds were selected and purchased from ChemDiv 

for in vitro activity experiments.
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Syntheses.

The synthetic procedures for the six compounds chosen for in vivo evaluation are detailed 

below. These are representative of the methods that were used for the preparation of other 

derivatives. Purity of the final products was generally >95%, as confirmed by HPLC. 

Detailed conditions are provided in the HPLC section.

Methyl 1H-indole-5-carboxylate (40).—1H-Indole-5-carboxylic acid (0.843 g, 5.23 

mmol), methyl iodide (3.21 g, 22.7 mmol), and NaHCO3 (1.76 g, 20.92 mmol) were stirred 

in DMF (24 mL) at room temperature for 3 days at which point water (50 mL) was added to 

the mixture forming a milky precipitate that was extracted with ethyl acetate (3 × 30 mL). 

The combined organic layer was washed with 5% LiCl (2 × 50 mL) and dried over 

anhydrous Na2SO4, and the suspension was filtered. The filtrate was concentrated to dryness 

in vacuo to produce an off white solid, which was purified by silica-gel chromatography 

(ethyl acetate/hexanes, 1:10) to give the desired product as a white solid (0.820 g, 90%). 1H 

NMR (400 MHz, CDCl3) δ 3.93 (s, 3H), 6.64 (m, 1H), 7.26 (m, 1H), 7.39 (dt, J = 8.6 Hz, 

0.8 Hz, 1H), 7.91 (dd J = 8.6 Hz, 1.6 Hz, 1H), 8.42 (m, 1H), 8.48 (s, 1H). 13C NMR (100 

MHz, CDCl3) δ 52.1, 104.2, 111.0, 122.2, 123.6, 124.0, 125.7, 127.7, 138.6, 168.5. HRMS 

(ESI): calcd for C10H10NO2 [M + H]+ 176.0706, found 176.0710.

5-(4-Chloro-1H-pyrazol-3-yl)-3-(4-(4-(trifluoromethyl)phenoxy)-phenyl)-1,2,4-
oxadiazole (60b).—This compound was synthesized using the same procedure as for 63b 
and purified by silica-gel chromatography (EtOAc/hexanes, 1:4) to yield the product as an 

off-white powder (58%). Mp 193–195 °C. 1H NMR (400 MHz, CDCl3) δ 7.16–7.19 (m, 

4H), 7.66 (d, J = 8.8 Hz, 2H), 8.02 (s, 1H), 8.17–8.20 (m, 2H), 13.58 (br, 1H). 13C NMR 

(100 MHz, DMSO-d6) δ 110.8, 119.8, 120.6, 122.6, 124.8, 125.1, 128.3 (q, J = 3.6 Hz), 

130.1, 130.9, 134.1, 158.8, 159.9, 168.0, 170.2. HRMS (ESI): calcd for C18H11ClF3N4O2 

[M + H]+ 407.0517, found 407.0540.

5-(4-Chloro-1H-pyrazol-3-yl)-3-(4-(4-fluorophenoxy)phenyl)-1,2,4-oxadiazole 
(60c).—This compound was synthesized using the same procedure as for 63b and was 

purified by silica-gel chromatography (EtOAc/hexanes, 1:6) to yield the product as an off-

white powder (61%). Mp 212–214 °C. 1H NMR (400 MHz, CDCl3) δ 7.07–7.13 (m, 6H), 

7.91 (s, 1H), 8.16 (d, J = 9.2 Hz, 2H). 13C NMR (100 MHz, DMSO-d6) δ 110.1, 116.8, 

117.0, 117.9, 120.6, 121.8, 121.9, 129.3, 130.3, 133.5, 151.2, 151.3, 157.6, 160.0, 160.2, 

167.4, 169.4. HRMS (ESI): calcd for C17H11ClFN4O2 [M + H]+ 357.0549, found 357.0544.

5-(4-Iodo-1H-pyrazole-3-yl)-3-(4-(4-trifluoromethyl)phenoxy)-phenyl)-1,2,4-
oxadiazole (62b).—This compound was synthesized according to the procedure for 63b 
and was purified by silica-gel chromatography (EtOAc/hexanes, 1:3.5) to afford compound 

62b as an off-white powder (64.0%). Mp 222–225 °C. 1H NMR (400 MHz, DMSO-d6) δ 
7.29–7.36 (m, 4H), 7.80 (d, J = 8.8 Hz, 2H), 8.16 (d, J = 8.4 Hz, 2H), 8.31 (s, 1H). 13C 

NMR (100 MHz, DMSO-d6) δ 60.4, 119.1, 120.0, 122.1, 122.8, 124.1, 124.4, 125.5, 127.6 

(q, J = 3.5 Hz), 129.4, 137.4, 138.3, 158.1, 159.2, 167.3, 170.4. HRMS (ESI): calcd for 

C18H11F3IN4O2 [M + H]+ 498.9873, found 498.9879.
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5-(4-Nitro-1H-pyrazole-3-yl)-3-(4-(4-(trifluoromethyl)phenoxy)-phenyl)-1,2,4-
oxadiazole (63b).—4-Nitropyrazole-3-carboxylic acid (34, 0.24 g, 1.50 mmol) was 

dissolved in SOCl2 (2.2 mL, 30.548 mmol), and the solution was stirred at reflux for 2 h. 

The excess SOCl2 was evaporated to dryness in vacuo, and the residue was taken up in 

toluene (15 mL) and pyridine (0.61 mL, 7.0 mmol), followed by the addition of (Z)-N′-

hydroxy-4-(4-(trifluoromethyl)phenoxy)-benzimidamide (6b, 0.30 g, 1.0 mmol). The 

resultant mixture was stirred at reflux overnight. The solvent was evaporated to dryness in 

vacuo, and the residue was purified by silica-gel chromatography (CH2Cl2/MeOH, 100:1) to 

afford the title compound as a yellow powder (0.20 g, 48.0%). Mp 204–206 °C. 1H NMR 

(400 MHz, CDCl3) δ 7.15–7.18 (m, 4H), 7.65 (d, J = 8.4 Hz, 2H), 8.18–8.20 (m, 2H), 8.55 

(s, 1H). 13C NMR (100 MHz, CDCl3) δ 120.0, 120.5, 122.2, 123.5, 125.0, 125.3, 126.2, 

128.3 (q, J = 3.5 Hz), 130.2, 133.1, 134.8, 159.2, 159.8, 168.4, 169.3. HRMS (ESI): calcd 

for C18H10F3N5 NaO4 [M + Na]+ 440.0577, found 440.0579.

3-(3-(4-(4-(Trifluoromethyl)phenoxy)phenyl)-1,2,4-oxadiazol-5-yl)-1H-pyrazol-4-
amine (64b).—Anhydrous THF (5 mL) was slowly added to a mixture of sulfur (0.22 g, 

6.86 mmol) and sodium borohydride (74.4 mg, 1.96 mmol) in a round-bottom flask at room 

temperature. After stirring for 10 min, compound 63b (0.10 g, 0.24 mmol) in THF (2.0 mL) 

was added dropwise to the above mixture before heating it to 65 °C for 2.5 h. Upon cooling 

to room temperature, water (6 mL) and diethyl ether (6 mL) were added, and the mixture 

was stirred for 5 min. The layers were separated, and the aqueous portion was extracted with 

diethyl ether (3 × 12 mL). The combined organic layer was washed with brine and dried 

(Na2SO4) and was concentrated to dryness in vacuo. The residue was purified by silica-gel 

chromatography (EtOAc/hexanes, 1:2 to 2:1) to yield the title compound as a yellow foam 

(75.4 mg, 80.0%). Mp 184–187 °C. 1H NMR (400 MHz, CDCl3) δ 7.07–7.13 (m, 4H), 7.48 

(s, 1H), 7.63 (d, J = 8.4 Hz, 2H), 8.08 (d, J = 8.4 Hz, 2H). 13C NMR (100 MHz, DMSO-d6) 

δ 118.3, 119.0, 119.2, 122.3, 124.1, 126.0, 126.3, 127.5 (q, J = 4.0 Hz), 129.5, 132.4, 158.6, 

159.2, 167.3, 170.0. HRMS (ESI): calcd for C18H13F3N5O2 [M + H]+ 388. 1016, found 

388.1010.

N-Isopropyl-3-(3-(4-(4-(trifluoromethyl)phenoxy)phenyl)-1,2,4-oxadiazol-5-
yl)-1H-pyrazol-4-amine (65b).—To a solution of compound 64b (75.4 mg, 0.19 mmol) 

and acetone (17 μL, 0.23 mmol) in 5 mL of CH2Cl2 were added activated 3 Å molecular 

sieves and sodium triacetoxyborohydride (62.0 mg, 0.29 mmol). The mixture was stirred at 

room temperature for 7 days. The mixture was filtered through Celite, which was washed 

with EtOAc. The filtrate was concentrated to dryness, and the residue was purified by silica-

gel chromatography (EtOAc/hexanes, 1:3) to afford the desired product as a light green 

powder (44 mg, 53%). Mp 158–161 °C. 1H NMR (400 MHz, CDCl3) δ 1.33 (s, 3H), 1.35 (s, 

3H), 3.50–3.56 (m, 1H), 7.15–7.20 (m, 4H), 7.47 (s, 1H), 7.65 (d, J = 8.8 Hz, 2H), 8.18–8.21 

(m, 2H). 13C NMR (100 MHz, CDCl3) δ 23.2, 47.8, 116.0, 119.1, 119.6, 122.8, 122.9, 

125.9, 126.2, 127.6 (q, J = 3.7 Hz), 129.8, 135.7, 158.9, 159.6, 167.6, 170.6. HRMS (ESI): 

calcd for C21H19F3N5O2 [M + H]+ 430. 1485, found 430.1489.

5-(4-Ethynyl-1H-pyrazol-3-yl)-3-(4-(4-(trifluoromethyl)phenoxy)-phenyl)-1,2,4-
oxadiazole (66b).—Compound 103b (0.12 g, 0.26 mmol), KF (31 mg, 0.53 mmol), and 
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10 mL of MeOH were placed in a round-bottom flask. The mixture was stirred at room 

temperature for 17 h. After the completion of the reaction, the solvent was removed in 

vacuo, and the residue was purified by silica-gel chromatography (EtOAc/hexanes, 1:4) to 

give the compound as an off-white powder (84.7 mg, 81%). Mp 206–209 °C. 1H NMR (500 

MHz, CDCl3) δ 3.39 (s, 1H), 7.14–7.19 (m, 4H), 7.64 (d, J = 8.5 Hz, 2H), 8.06 (s, 1H), 

8.21–8.23 (m, 2H). 13C NMR (100 MHz, CDCl3) δ 72.8, 83.1, 119.2, 119.8, 122.5, 122.9, 

125.6, 126.0, 126.4, 127.6 (q, J = 3.6 Hz), 129.9, 159.1, 159.5, 168.5, 169.6. HRMS (ESI): 

calcd for C20H12F3N4O2 [M + H]+ 397.0907, found 397.0914.

5-(1H-Indol-5-yl)-3-(4-(4-(trifluoromethyl)phenoxy)phenyl)-1,2,4-oxadiazole 
(75b).—A solution of N′-hydroxy-4-(4-(trifluoromethyl)-phenoxy)benzimidamide (6b, 

1.02 g, 3.44 mmol) in anhydrous THF (15 mL) was stirred under an argon atmosphere, and 

sodium hydride (60% in mineral oil, 0.172 g, 4.30 mmol) was added to the flask. The 

mixture was left to stir for 1 h at room temperature, and then a solution of methyl 1H-

indole-5-carboxylate (40, 0.302 g, 1.72 mmol) in anhydrous THF (15 mL) was added and 

the mixture heated at reflux for 3.5 h. Once the solution had cooled to room temperature, 

water (50 mL) was added, and the resulting mixture was extracted with ethyl acetate (3 × 50 

mL). The combined organic layer was dried over anhydrous Na2SO4 and then filtered, and 

the filtrate was evaporated to leave an orange residue. This was purified using column 

chromatography on silica gel (dichloromethane/hexanes, 9:1) to give the desired product as a 

white solid (0.190 g, 26%). Mp 138–141 °C. 1H NMR (400 MHz, CDCl3) δ 6.69 (m, 1H), 

7.11 (d, J = 9.0 Hz, 2H), 7.14 (d, J = 8.9 Hz, 2H), 7.29 (m, 1H), 7.48 (dt J = 8.5 Hz, 1.6 Hz 

1H), 7.61 (d, J = 9.0 Hz 2H), 8.03 (dd, J = 8.6 Hz, 1 Hz, 1.6 Hz 1H), 8.20 (d, J = 8.9 Hz, 

2H), 8.6 (m, 1H), 8.6 (s, 1H). 13C NMR (100 MHz, CDCl3) δ 104.2, 111.9, 116.2, 118.9, 

119.8, 122.1, 122.3, 123.5, 124.3 (q, J = 272.2 Hz), 125.9 (q, J = 32.9 Hz), 126.2, 127.5 (q, J 
= 3.6 Hz), 128.2, 129.7, 138.4, 158.6, 159.7, 168.3, 177.4. 19F NMR (376 MHz, CDCl3) δ 
99.9 (s, 3F). HRMS (ESI): calcd for C23H14F3N3O2 [M + H]+ 422.1111, found 422.1078.

5-(1H-Imidazol-4-yl)-3-(4-(4-(trifluoromethyl)phenoxy)phenyl)-1,2,4-oxadiazole 
(76b).—The compound was synthesized according to the procedure used for 63b and 

purified by silica-gel chromatography (EtOAc/hexanes, 1:4 to 1:1.5) to afford the product as 

an off-white powder (72.0%). Mp 243–245 °C. 1H NMR (400 MHz, DMSO-d6) δ 7.29–7.31 

(m, 4H), 7.80 (d, J = 8.8 Hz, 2H), 7.99 (s, 1H), 8.12 (d, J = 8.4 Hz, 2H), 8.24 (s, 1H), 13.00 

(br, 1H). 13C NMR (100 MHz, DMSO-d6) δ 119.2, 119.8, 122.4, 122.5, 124.1, 124.4, 126.3, 

127.7 (d, J = 3.0 Hz), 129.4, 138.3, 158.0, 159.2, 167.2, 172.2. HRMS (ESI): calcd for 

C18H12 F3N4O2 [M + H]+ 373.0907, found 373.0911.

3-(4-(4-Trifluoromethyl)phenoxy)phenyl)-5-(4-((trimethylsilyl)-ethynyl-1H-
pyrazol-3-yl)-1,2,4-oxadiazole (103b).—Compound 62b (0.19 g, 0.38 mmol) was 

placed in a 10 mL round-bottom flask, and 5 mL of anhydrous THF was added to the flask. 

Ethynyltrimethylsilane (0.12 mL, 0.84 mmol), Pd(Ph3P)2Cl2 (21.4 mg, 0.03 mmol), CuI 

(9.00 mg, 0.05 mmol), and Et3N (0.14 mL, 0.99 mmol) were added to the above mixture. 

The resultant solution was heated in reflux for 5 h. After completion of the reaction, the 

solvent was evaporated to dryness in vacuo, and the residue was purified by silica-gel 

chromatography (EtOAc/hexanes, 1:6) to afford the product as a white foam (0.14 g, 

Spink et al. Page 10

J Med Chem. Author manuscript; available in PMC 2019 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



79.5%). 1H NMR (400 MHz, CDCl3) δ 0.32 (s, 9H), 7.15–7.19 (m, 4H), 7.65 (d, J = 8.8 Hz, 

2H), 8.18 (s, 1H), 8.22 (d, J = 8.8 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ 0.1, 93.7, 100.8, 

105.5, 119.2, 119.7, 122.6, 122.9, 125.6, 126.0, 126.4, 127.6 (q, J = 3.7 Hz), 129.9, 135.6, 

138.5, 159.1, 159.4, 159.5, 168.5, 169.8. HRMS (ESI): calcd for C23H20F3N4O2Si [M + H]
+ 469.1303, found 469.1336.

High Performance Liquid Chromatography (HPLC).—The system used was a 

PerkinElmer Series 200 Chromatography System (PerkinElmer, Waltham, MA) equipped 

with an autosampler, UV–vis detector, LC pump, NCI 900 Network Chromatography 

Interface, and 600 Series Link Chromatography Interface. The samples were analyzed on a 

Zorbax RX-C8 analytical column (5.0 μm, 4.6 mm id × 250 mm, Agilent Technologies, 

Santa Clara, CA). The mobile phase consisted of isocratic elution for 10 min with a 1:1 

mixture of water/ 0.1% trifluoroacetic acid (TFA) and acetonitrile/0.1% TFA at a flow rate 

of 1.0 mL/min, with the effluent monitored by UV detection (detection window set to 250–

255 nm).

Microbial Strains.—The ESKAPE organisms (E. faecium NCTC (ATCC 19734), S. 
aureus ATCC 29213, K. pneumonia ATCC 700603, A. baumannii ATCC 17961, P. 
aeruginosa ATCC 17853, E. aerogenes ATCC 35029) and E. coli ATCC 25922) in the initial 

screen, S. aureus ATCC 27660, S. epidermis ATCC 35547, S. hemolyticus ATCC 29970, S. 
oralis ATCC 9811, S. pyogenes ATCC 49399, B. cereus ATCC 13061, B. licheniformis 
ATCC 12759, and E. faecalis ATCC 29212 were purchased from the American Type Culture 

Collection (Manassas, VA). S. aureus strains NRS100, NRS119, NRS120, VRS1, and VRS2 

were obtained from the Network on Antimicrobial Resistance in Staphylococcus aureus 
(Chantilly, VA). E. faecalis strains 201 and 99, and E. faecium strains 119–39A and 106 

were collected from Wayne State University School of Medicine.

Minimal-Inhibitory Concentration (MIC) Determination.—The procedure for MIC 

determination was the same as that previously reported.9

Minimal-Bactericidal Concentration (MBC) Determination.—The MBC of 

antibiotic 75b was determined by incubation of 1.5 × 105 cells of S. aureus ATCC29213, S. 
aureus ATCC 27660, and E. faecium NCTC7171 at MIC, 2× MIC, and 4× MIC. Aliquots of 

10 μL (corresponding to 1.5 × 104 cells) were plated on agar plates and incubated for 48 h, 

and colonies were counted in the presence and absence of antibiotic 75c.9 The MBC was the 

concentration of antibiotic 75b that resulted in >1000-fold reduction in colonies.

Plasma Protein Binding.—Plasma protein binding was determined using human plasma 

and a rapid equilibrium dialysis device (Pierce Biotechnology, Thermo Scientific, Waltham, 

MA). Human plasma was thawed and centrifuged at 1200 g for 10 min to remove 

particulates. A 200 μL aliquot of human plasma was added to the sample chamber and 350 

μL of 0.1 M phosphate buffered saline (pH 7.4) containing 0.15 mM sodium chloride was 

added to the adjacent chamber. A 2 μL aliquot of a stock solution of the compounds at a 

concentration of 1 mM in DMSO was diluted with human plasma to a final drug 

concentration of 10 μM and added to the sample chamber. The compounds were dialyzed at 

37 °C in an orbital shaker for 6 h. Aliquots (50 μL) were taken from the buffer chamber 
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(representing the free concentration) and from the plasma chamber (representing the total 

concentration) and mixed with 100 μL of internal standard in acetonitrile to a final 

concentration of 5 μM. Samples were analyzed by UPLC with UV detection at 285 nm. The 

plasma protein binding ratio (B%) was calculated according to the following equation

B% = Cp − Cf /Cp × 100

where Cp and Cf are the total plasma concentration and the free concentration of compound, 

respectively.

XTT Cytotoxicity Assay.—The XTT cytotoxicity assay was performed in triplicated 

using HepG2 cells (ATCC HB-8065), as previously described.9 The IC50 values were 

calculated with GraphPad Prism 5 (GraphPad Software, Inc., San Diego, CA).

Animals.—Female ICR mice (6–8 weeks old, ∼20-g body weight) were used for the PK 

and peritonitis studies. Animals were purchased from Harlan Laboratories, Inc. 

(Indianapolis, IN) and given Teklad 2019 Extruded Rodent Diet and water ad libitum. Mice 

were maintained in polycarbonate shoebox cages with 1/4 in. corncob (The Andersons Inc., 

Maumee, OH) and Alpha-dri (Sheperd Specialty Papers, Inc., Richland, MI) bedding under 

12-h light/12-h dark cycle at 72 ± 2 °F. All procedures involving animals were approved by 

the University of Notre Dame Institutional Animal Care and Use Committee.

Fast Pharmacokinetic (PK) Studies.—For fast PK studies, the compounds were 

dissolved in 10% DMSO/25% Tween-80/65% water at a concentration of 5 mg/mL. The 

dosing formulations were sterilized by filtration through a 0.2 μm, 13 mm diameter PTFE 

membrane attached to an Acrodisc syringe filter (Pall Life Sciences, Ann Arbor, MI). Mice 

(n = 2 per time point) were given 100 μL of the test compound(s) intravenously (iv), 

equivalent to 20 mg/kg. Terminal blood was collected at 5 min, 40 min, 2 h, 4 h, and 8 h; 

blood was centrifuged at 1200 g for 10 min to harvest plasma.

Full PK Studies.—Antibiotic 75b was dissolved in 10% DMSO/25% Tween-80/65% 

water at a concentration of 5 mg/mL. Mice (n = 3 per time point per route of administration) 

were administered 100 μL of 75b (equivalent to 20 mg/kg) iv. A separate group of mice was 

given 100 μL of 75b (equivalent to 20 mg/kg) orally (po). Terminal blood was collected in 

heparin by cardiac puncture at 2, 5, 10, 20, and 40 min, and at 1, 2, 3, 4, 8, and 24 h after iv 

administration and at 0.5, 1, 2, 3, 4, 6, 9, 24, and 36 h after po administration. Blood was 

centrifuged at 1200 g for 10 min to obtain plasma. Plasma samples were stored at −80 °C 

until analysis.

Bioanalytical Method.—Plasma (50 μL aliquot) was mixed with 100 μL of acetonitrile 

containing internal standard (final concentration 8 μg/mL). After centrifugation at 10 000 g 

for 10 min, the supernatant was analyzed by ultraperformance liquid chromatography 

(UPLC) with UV detection at 285 nm. A Waters Acquity UPLC System (Waters 

Corporation, Milford, MA), consisting of a binary pump, an autosampler, a column heater, 

and a photodiode array detector, was used. An Acquity UPLC C18 1.7 μm, 2.1 mm id × 50 
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mm column was used. Elution was at 0.5 mL/min with 70% A/30% B for 2 min, followed 

by a 10 min linear gradient to 10% A/90% B, and then 70% A/30% B for 2 min, where A = 

0.1% formic acid/water and B = 0.1% formic acid/acetonitrile. Monitoring was by UV 

detection at 285 nm. Calibration curves for each compound were prepared in control plasma 

containing internal standard. The concentrations in the PK samples were obtained using 

peak area ratio to the internal standard and the calibration curve regression analysis 

parameters. The methods were linear from 0.01 to 100 μg/mL; coefficients of determination 

R2 range from 0.98 to 0.99.

Pharmacokinetic Parameters.—The area under the curve (AUC), clearance (CL), 

volume of distribution (Vd), and terminal half-life were calculated using Phoenix WinNonlin 

6.3 (Certara LP, St Louis, MO) noncompartmental analysis using uniform weighing. Half-

lives were estimated from the linear portion of the initial or terminal phase of the 

concentration–time data by linear regression, where the slope of the line was the rate 

constant k and t1/2 = ln 2/k.

Mouse Peritonitis Studies.—The mouse peritonitis model was used with S. aureus 
ATCC 27660, as described previously.9 The final bacterial inocula contained 5 × 107 cfu/mL 

and 5% mucin (Sigma-Aldrich Chemical Co., St Louis, MO). Just prior to inoculation, 

bacteria at 108 cfu/mL were mixed 1:1 with 10% mucin. Mice (n = 6 per group) were given 

0.5 mL of the bacterial inocula intraperitoneally. Mice were given two iv doses of the 

compounds at 30 min and 7.5 h after infection by tail vein injection. Vehicle and positive 

control (vancomycin at 5 mg/kg) groups were included. Mice were monitored for 48 h, at 

which time the number of surviving mice were counted.

ED50 Determination.—The effective dose that results in survival of 50% of the mice was 

determined using Probit analysis (XLSTAT, New York, NY). Groups of six mice per dose 

level were evaluated in the mouse peritonitis infection model at iv doses of 2.5, 5, 7.5, 10, 

15, and 20 mg/kg and after po doses at 2.5, 5, 10, 20, and 40 mg/kg. The doses were given at 

30 min and 7.5 h after infection. In addition, ED50 values were determined for compound 

75b and linezolid after a single po dose given at 1 h after infection.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS USED

AUC area under the curve

DMAP dimethyl amino pyridine

DMF N,N-dimethylformamide
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DMSO dimethyl sulfoxide

Et3N triethylamine

MIC minimum-inhibitory concentration

MRSA methicillin-resistant Staphylococcus aureus

PK pharmacokinetics

TBS tert-butyldimethylsilyl

THF tetrahydrofuran

TLC thin layer chromatography

UPLC ultraperformance liquid chromatography

UV ultraviolet
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Scheme 1. 
Structure of the Lead Oxadiazole 1
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Scheme 2. 
General Synthetic Route To Access the 1,2,4-Oxadiazoles, and the Starting Materials Used 

for Variations within Ring Aa

aCompounds 14, 15, and 28 were prepared from acyl chlorides, compound 40 from a methyl 

ester, and all others from the corresponding carboxylic acids. Aromatic substitution: K2CO3, 

DMF, 60–100 °C. Ullmann coupling: CuI, Cs2CO3, N,N-dimethylglycine·HCl, 1,4-dioxane 

90 °C.
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Figure 1. 
Antibacterial activities of the synthetic 1,2,4-oxadiazole derivatives. The functionality within 

the green box was altered to generate all the synthetic compounds in this series, whereas Y 

was limited to the three entities that are indicated. The MIC values (in μg/mL) measured for 

S. aureus ATCC 29213, with the active compounds placed within the shaded blue area (MIC 

≤ 8 μg/mL). Compounds in red font underwent in vivo evaluation. Properties of the lead 

compounds (57a, 57b, and 58b) have been described previously.9 Compound 57b is 

identical to compound 1 and will be referred to as such in the remainder of the text.
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Figure 2. 
Pharmacokinetics of 75b after single iv and po administration at 20 mg/kg to mice (n = 3 per 

time point).
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Table 3.

In Vivo Efficacy of Compound 75b in the Mouse Peritonitis Model

compd route of administration dose frequency ED50 (mg/kg)

75b iv 2 doses given at 30 min and 7.5 h after infection 7.6

75b po 1.7

1 iv
40

a

75b po single dose given at 1 h after infection 3.1

1 po
44

a

linezolid po 2.8

a
Data from O’Daniel et al.,9 reproduced for the sake of comparison.
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