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Abstract. We theoretically consider transport properties of a normal metal
(N)- superconducting semiconductor nanowire (S)-normal metal (N) structure
(NSN) in the context of the possible existence of Majorana bound states
in semiconductor-superconductor hybrid systems with spin-orbit coupling and
external magnetic field. We study in detail the transport signatures of the
topological quantum phase transition as well as the existence of the Majorana
bound states in the electrical transport properties of the NSN structure. Our
treatment includes the realistic non-perturbative effects of disorder, which is
detrimental to the topological phase (eventually suppressing the superconducting
gap completely), and the effects of the tunneling barriers (or the transparency at
the tunneling NS contacts), which affect (and suppress) the zero bias conductance
peak associated with the zero-energy Majorana bound states. We show that in
the presence of generic disorder and barrier transparency the interpretation of the
zero bias peak as being associated with the Majorana bound state is problematic
since the non-local correlations between the two NS contacts at two ends may
not manifest themselves in the tunneling conductance through the whole NSN
structure. We establish that a simple modification of the standard transport
measurements using conductance differences (rather than the conductance itself
as in a single NS junction) as the measured quantity can allow direct observation
of the non-local correlations inherent in the Majorana bound states. We also show
that our proposed analysis of transport properties of the NSN junction enables the
mapping out of the topological phase diagram (even in the presence of considerable
disorder) by precisely detecting the topological quantum phase transition point.
We propose direct experimental studies of NSN junctions (rather than just a
single NS junction) in order to establish the existence of Majorana bound states
and the topological superconducting phase in semiconductor nanowires of current
interest. Throughout the work we emphasize that the NSN transport properties
are sensitive to both the bulk topological phase and the end Majorana bound
states, and thus the NSN junction is well-suited for studying the non-local
correlations between the end Majorana modes as well as the bulk topological
quantum phase transition itself.

PACS numbers: 73.63.Nm, 74.45.+c, 74.81.-g, 03.65.Vf
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1. Introduction

The subject of topological superconductors (SCs) hosting non-Abelian quasiparticles
has become one of the most intensively investigated topics in condensed matter
physics.[1, 2] In particular, one-dimensional topological superconductors have been
predicted to support zero-energy particle-hole symmetric non-Abelian Majorana
bound-states (MBS) localized at the ends.[2] Beyond their intrinsic fundamental
interest, MBS have attracted attention for their potential use in fault-tolerant
topological quantum computation schemes.[3] Far from being a subject of purely
theoretical interest, concrete experimental proposals to realize these exotic states of
matter have been put forward recently,[4–8] some of which have been implemented
experimentally.[9–14] In particular, Refs. [6–8] showed that a one-dimensional
semiconductor nanowire in proximity to a bulk s-wave superconductor, and subjected
to strong Rashba spin-orbit coupling can be driven into a topologically non-trivial
phase with MBS localized at the ends, upon the application of an external Zeeman
magnetic field. In this topologically non-trivial phase, the nanowire becomes effectively
a helical spinless p-wave superconductor, realizing an idea originally proposed by
Kitaev for the localization of isolated MBS in a physical system.[2] Other experimental
setups involving arrays of magnetic atoms on s-wave SCs,[15] or cold-atomic systems
[16] have also been proposed and are currently under experimental consideration. It
is important to mention here that the real significance of course is the creation of
isolated zero-energy MBS at the ends of the nanowire which are well-separated from
each other so that they can be considered topologically protected.

On the experimental side, one of the most relevant questions is how to establish
the presence of “true” MBS in a real experiment. In principle, the tunneling
conductance at the end of the topological SC nanowire should reveal an MBS
as a quantized zero-bias peak (ZBP) of magnitude 2e2/h in the conductance at
zero temperature, which is a direct manifestation of the perfect Andreev reflection
associated with the MBS.[8, 17–21] Recent experiments implementing the proposal
in Refs. [6–8] have shown an intriguing ZBP, in apparent agreement with theoretical
predictions for the existence of MBS, which appears upon application of a Zeeman field,
providing compelling preliminary evidence of the Majorana scenario.[9–11] However,
the interpretation of these experiments seems to be considerably more complex than
the ideal models originally proposed and show several deviations from the predicted
behavior, among which we mention the most important ones: a) the smallness of the
ZBP in comparison to the ideally theoretical value of 2e2/h (i.e., 0.1− 0.2 e2/h in the
low temperature limit), b) the presence of a continuum of fermionic excitations in the
subgap region (i.e., the so-called “soft-gap” feature) instead of a well-defined SC gap,
and c) the lack of evidence for the closing and then reopening of this SC soft-gap upon
increasing the Zeeman field across the putative critical field Vc. We stress that this last
feature is a crucial prerequisite for the existence of MBS, which would be indicative
of a topological quantum phase transition (TQPT) taking place in the sample where
the gap must vanish.

Contrasting with the interpretation that the recent nanowire experimental
observations are indeed evidence for the isolated existence of MBS in a topological
SC system, it has been pointed out that other ZBPs (or near-ZBPs) sharing similar
features with the MBS are generically allowed in spin-orbit-coupled nanowires subject
to a magnetic field in the presence of disorder or smooth confining potentials, both
in the topologically trivial and non-trivial phases, a fact that would hinder the
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observation of bona fide Majorana-type excitations.[22–26] In particular, disorder
is known to have strong detrimental effects in p-wave SCs.[27–42] Motrunich et al.
showed more than a decade ago that Andreev subgap states induced by disorder
tend to proliferate in one-dimensional systems described by Bogoliubov-de Gennes
Hamiltonians with broken time and spin-rotational symmetry (symmetry class D,
like the nanowires in Refs. [6–8]), and render the system gapless.[27] These authors
predicted that for weak disorder an infinite system realizes a topologically non-trivial
phase with two degenerate zero-energy MBS localized at the ends of the wire. In a
finite-length system of size Lw, this degeneracy is lifted by an exponential splitting
∆ε ∼ e−Lw/ξ, where ξ is the superconducting coherence length. Increasing the amount
of disorder generates low-energy Andreev bound states, and the (averaged) scaling of
the splitting energy changes to ∆ε ∼ e−Lw/ξ+Lw/(2`e), where `e is the elastic mean-free
path of the system.[30] Beyond a critical disorder amount, defined by the condition
`e = ξ/2, the system experiences a TQPT induced by disorder and enters a non-
topological insulating phase with no end-MBS. At both sides of the TQPT, the system
is localized at zero energy, and exactly at the critical point separating these phases,
the wave functions become delocalized and the smallest Lyapunov exponent (i.e., the
inverse of the localization length of the system) vanishes. This intimate connection
between localization and topology in disordered topological superconductors has been
stressed in a series of theoretical works.[27, 33, 34, 39] The interplay among disorder,
superconductivity, and possible Majorana zero modes is still very much an important
open problem in the subject, and whether the experimentally observed ZBP is indeed
the manifestation of the theoretically predicted MBS can only be sorted out definitively
by accurately understanding the precise role of disorder in the experimental systems.
In particular, a key question is the effect of disorder on the TQPT itself, which is a
central topic of the current work.

Concerning the rather ubiquitous presence of in-gap states (or “soft gap”)
in the experiment, it is important to note the lack of evidence of a well-
defined superconducting gap in most of the experiments involving evaporated SC-
semiconductor SN contacts, even in absence of an applied magnetic field, when the
time-reversal symmetry is not broken (i.e., symmetry class DIII or BDI). By improving
the quality of the semiconductor/SC interface using molecular beam-epitaxy methods,
as was theoretically predicted [43], recent experiments have reported much harder
gaps [44, 45], suggesting that some sort of disorder at the might be operative at the
SN interface. Since the topological protection of the MBS is directly provided by
the existence of the SC gap, it is of obvious importance to understand the physical
origin of this soft gap for the correct interpretation of the experiment (as well as
to help produce hard gap systems for future Majorana experiments). Stanescu
et al. have suggested recently that intrinsic quasiparticle broadening effects due
to the hybridization of the SC with the normal metallic lead, could explain this
feature.[46] Indeed, it is well-known that a highly transparent NS barrier can produce
large subgap conductance[47] [i.e. Blonder-Tinkham-Klapwijk (or BTK) barrier
parameter Z → 0], and therefore could also induce a large broadening of Bogoliubov
quasiparticles, and hence a soft gap through this “inverse proximity effect” of the
normal metallic lead on the SC nanowire. However, this does not seem to be the
complete explanation of the experiment. Recent experiments where the transparency
of the NS contact was systematically reduced have shown that the soft gap persists
even in the low-transparency limit (i.e., “pinching off” the quantum point contact when
the inverse proximity effect should be exponentially suppressed).[14, 45] An alternative
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explanation for the soft gap, valid in the limit of low transparency (i.e., large BTK
barrier parameter Z →∞), was proposed in Ref. [43]. Among the many different pair-
breaking mechanisms that might be operative in Majorana nanowires as considered
in Ref. [43] (e.g., finite temperature T , presence of magnetic impurities, quasiparticle
broadening, etc.) realistic parameter considerations point to the predominance of
a special kind of inhomogeneity, which was not considered before in the present
context: the spatial fluctuations in the proximity-induced pair potential ∆ (x).[43]
Physically, spatial fluctuations in ∆ (x) are likely to be introduced by disorder or
inhomogeneities at the SC/semiconductor contact.[48] Following the suggestion of the
theoretical explanation given in Ref. [43], the above-mentioned experiments involving
epitaxially grown SC/semiconductor nanowires [44, 45] have reported much harder
gaps. This constitutes a qualitative improvement in the fabrication of Majorana
nanowires, and hopefully a new generation of experiments where disorder effects are
dramatically reduced will be soon available with hard proximity gaps (i.e. no subgap
fermionic excitations) and well-defined MBS. We incorporate this aspect of the soft
gap physics in the current work through a simple model approximation which mimics
the spatial variation in the proximity-induced superconducting pair potential arising
from the inhomogeneities at the superconductor-nanowire interface [see Eq. (4) below
and the associated discussion].

The above discussion describes the rather complex situation faced in the
experiments in order to detect “true” MBS in the topological phase. In this article
we focus on a specific configuration, the normal-topological superconductor-normal
(NSN) configuration, which is currently under experimental study. The SC part of
this NSN (i.e. the S-part) junction is the semiconductor nanowire which has proximity-
induced superconductivity from an underlying ordinary s-wave SC system. Many of
the recent experiments have focused specifically on just the simple NS junction, but
NSN junctions are essentially “equally easy” to study, and they have been studied also.
We believe that NSN junctions have some intrinsic advantages over the minimal NS
junction transport for studying MBS physics and the associated TQPT. We provide a
comprehensive theoretical analysis of its transport properties taking into account the
effects of disorder, inhomogeneities and temperature. As noted in previous works,
the NSN configuration allows to extract the same information as in the simpler
NS contacts, but contains additional interesting new physics arising from non-local
correlations.[49–52]

The current work is a generalization and extension of our earlier work in Ref.
[39], where we introduced an original proposal for a direct experimental study of the
Majorana fermion-related TQPT in hybrid semiconductor nanowire structures. Here,
we present a more detailed study of the tunneling transport properties of the NSN
junction, a fact that allows us to make contact with recent and ongoing experiments.
[9–11, 13, 14] In contrast to our previous Ref. [39], where we computed the differential
conductance only at one end of the NSN system, at zero bias voltage and at zero
temperature, in this work we extend our calculation to the full differential conductance
matrix (see Eq. 1) at finite bias voltage. In addition, we also study the thermal effects
(see Fig. 5), which are important in order both to quantify the detrimental effects
on the efficency of our proposed detection scheme for the TQPT [see Eq. (17)], as
well as for allowing a more realistic comparison with the experiments. Finally, in this
work we also provide a physically intuitive theoretical description (see Section 6) of
the proposed experiment in terms of an exaclty solvable “random-mass” Dirac model,
where the interplay between disorder, external magnetic fields, and the emergence or
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Figure 1. (a) Schematic diagram of a NSN circuit where the superconducting
(S) part corresponds to the proximity-induced semiconductor Majorana nanowire.
Figures (b) and (c) correspond to the proximity-induced superconducting pair
potential ∆ (x) and chemical potential µ (x) profiles, respectively.

destruction of MBS, is made fully transparent.
While this is not a “smoking-gun” experiment, it might be an extremely useful

experimental tool providing information about the topological phase diagram of
the system, complementary to non-local shot noise correlations.[49–52] Observation
of non-local correlations as well as studying the TQPT itself using our suggested
transport techniques in NSN junctions taken together may in fact serve as the smoking
gun evidence for the existence of Majorana modes in nanowire systems. An associated
significant advantage of the NSN junctions over the much-studied NS junctions in the
context of Majorana physics in nanowires, which should be obvious from the above
discussion and is emphasized throughout this work, is that transport in NSN junctions
potentially studies both the end MBS and the bulk topological SC phase whereas NS
junction tunneling properties may very well be dominated by the end MBS so as to
suppress the manifestation of the bulk TQPT and the non-local correlations between
the two end MBS which must go through the bulk nanowire. This is the key reason for
our promoting NSN junction transport studies as an important tool for the Majorana
investigation.

In order to illustrate the main motivation of this article, let us first consider a
“dirty” proximity-induced SC Majorana nanowire, electrically connected to ground
and attached to normal contacts in a NSN configuration, as shown schematically in
Fig. 1(a). Here we consider a generic situation where inhomogeneities are present
both in the form of spatial fluctuations of the (proximity-induced) pairing potential,
and in the form of quenched disorder in the on-site chemical potential fluctuations
[Figs. 1(b) and (c)]. We also assume an external Zeeman field applied in the direction
parallel to the nanowire, which allows to drive the system across the TQPT. A relevant
experimental quantity is the differential conductance matrix, defined as

Gij (eVj) ≡
dIi
dVj

(eVj) , (1)
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(a) (b ) (c)

Figure 2. (a) Differential conductance at the left end GLL as a function of the left
bias voltage eVL, for different values of the Zeeman field Vx, and at a temperature
T/∆0 = 0.02, which corresponds to the experimental temperature Texp ≈ 60 mK
(see e.g. Ref. [9]). The curves have been shifted vertically for clarity. (b) idem for
the conductance at the right end GRR as a function of the right bias voltage eVR.
In both Figs. 2(a) and 2(b) the zero-bias peaks are smeared by temperature,
disorder and quasiparticle broadening arising from the coupling to the normal
leads, and they appear at different values of the Zeeman field [see Figs. 4(a) and
4(b) below for more details], complicating the physical interpretation. (c) Color
map of the thermal transmission probability T1N as function of Zeeman field Vx
and disorder strength υµ. The blue regions correspond to values close to the
maximum T1N = 1 and therefore correspond to the location of the topological
quantum phase transition. Each dot corresponds to each one of the curves in Figs.
2(a) and 2(b).

where Ii and Vj are, respectively, the current and voltage applied in the {i, j} = {L,R}
normal contact. In ideal conditions, the local conductances GLL and GRR should
reveal the presence of end-MBS as a quantized ZBP peak of magnitude 2e2/h at
T = 0.[8, 17–19] In practice, however, disorder, finite temperatures, quasiparticle
poisoning, etc., might hinder or even destroy the purported topological phases and,
therefore, the MBS. Since we are motivated by the current experiments, we start
by showing a typical example of our numerical simulations of tunneling transport in
Figs. 2(a) and 2(b), and leave the explanation of the theoretical details for Secs.
2,3 and 4. In these plots have computed the local conductances GLL and GRR for
a disordered wire at a finite temperature as a function of the local bias voltages
VL and V R, respectively, and for different values of the applied Zeeman field. In
contrast to the ideal case[53] (i.e., clean system and T = 0), where a vanishing single-
particle excitation gap signals the TQPT across the critical Zeeman field, with the
ZBP emerging on the topological side at higher magnetic field, here the presence of
the above mentioned non-idealities renders the situation much less clear to determine
the TQPT and the nature of the ZBPs. In other words, the information about the ZBP
has been “washed out” by a combination of thermal effects, disorder and quasiparticle
broadening, although the conductance results in Fig. 2 are explicitly obtained
theoretically in a system where the MBS definitively exists in the ideal situation. (As
an aside, we mention that the theoretical conductance results depicted numerically in
Fig. 2 look remarkably similar to the measured tunneling spectroscopy results reported
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so far in the literature in the context of Majorana nanowire experiments.). The ZBPs
emerge in a soft-gap background and, in agreement with recent experimental results,
the left and right ZBPs appear and disappear at different values of the Zeeman field
(i.e., they appear not to be correlated). Is the wire “fragmented”, so that the end
Majoranas do not know about the existence of each other? What is the topological
state of the nanowire? Does the wire have more than one pair of MBS because of
disorder? How do we establish the existence of MBS using such imperfect ZBP data
in a manifestly soft gap situation? These are the kind of questions that motivate our
work.

The article is divided as follows. In Sec. 2 we present the theoretical framework,
the model and the main approximations. In Sec. 3 we describe the method used to
determine theoretically the topological phase diagram of a disordered Majorana wire.
In Sec. 4 we present the theoretical technique to describe the differential conductance
of a generic disordered Majorana wire in the NSN configuration and analyze the
physical content in the analytical expressions. In Sec. 5 we describe in detail a proposal
to extract information about the TQPT and to assess the topological stability of MBS.
Sec. 6 is intended to provide a simple intuitive theoretical understanding the physics
underlying our proposal, in Sec. 7 we present a summary and our conclusions, and
finally in Appendix Appendix A we give a detailed derivation of the Eqs. (11)-(14)
for the conductance matrix in the NSN configuration.

2. Theoretical model

In accordance with previous works on Majorana wires,[6, 7, 53] we consider the
following Hamiltonian describing a disordered semiconductor nanowire of length Lw,
subjected to Rashba spin-orbit coupling and a Zeeman field, HNW = H0 +H∆, where

H0 =

ˆ Lw

0

dx ψ†σ (x)

[
− ∂2

x

2m
− µ (x) + iαRσ̂y∂x

+ Vxσ̂x

]
σσ′
ψσ′ (x) , (2)

H∆ =

ˆ Lw

0

dx ∆ (x)
[
ψ†↑ (x)ψ†↓ (x) + ψ↓ (x)ψ↑ (x)

]
. (3)

Here, ψ†σ (x) creates a fermion with spin projection σ, and σ̂i (with i = x, y, z) are
the Pauli matrices acting on spin space. The parameter αR is the Rashba spin-orbit
coupling strength and Vx is the Zeeman field along the wire, and summation over
repeated indices σ is implied. The term H∆ represents the effect of a proximate bulk
s-wave SC on the nanowire [not shown in Fig. 1(a)], which induces a mean-field SC
pairing potential ∆ (x) through the proximity effect. For simplicity, we have assumed
single-channel occupancy in the nanowire with no loss of generality. As we will explain
later, our results are generic and this single-channel (or single-subband) assumption
does not affect the main conclusions in the case of many occupied subbands (as long
as an odd number of subbands are occupied which is a necessary condition for the
existence of the MBS for many occupied subbands [54]). We recall that HNW is only
an effective one-dimensional model describing the system at low temperatures. A more
realistic model should involve an explicit coupling t⊥ to the proximate bulk SC, which
is the source of superconducting correlations, and a self-consistent determination of
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∆ (x). However, this task is beyond the scope of this work and does not change
our results qualitatively since all we need in our model is the existence of a pairing
potential in the nanowire. For more details, we refer the reader to Refs. [53, 55] where
a deeper discussion on this issue is provided, which is not particularly germane for our
consideration in the current work where we are interested in the realistic manifestation
of the MBS themselves rather the issue of proximity effect.

Disorder and inhomogeneities enter in the above model through two physically
different mechanisms: a) Local fluctuations of the chemical potential µ (x) = µ0 +
δµ (x), with µ0 a uniform value which in principle can be controlled by external
gates, and the fluctuations δµ (x) are physically related to the presence of impurities,
vacancies, etc. in the environment (both the nanowire itself and the surrounding). We
assume δµ (x) to be a Gaussian random variable fully characterized by 〈δµ (x)〉 = 0
and 〈δµ (x) δµ (y)〉 = υ2

µδ (x− y), with the standard deviation υµ representing the
“strength” of disorder [see the horizontal axis in Fig. 2(c)]. For one single realization
of disorder, once the nanowire is deposited and electrically contacted, we assume
this parameter to be fixed throughout the experiment. b) Local variations in the
(induced) pair potential ∆ (x), which for concreteness (and numerical convenience)
here we model as

∆ (x) = ∆0 tanh

(
x

d∆

)
tanh

(
Lw − x
d∆

)
, (4)

for 0 < x < Lw, i.e., a smooth profile that vanishes at the ends of the nanowire. Here
∆0 is the value in the bulk (i.e., right next or beneath the bulk SC), and d∆ is an
adjustable parameter that controls the slope of the profile. As mentioned above, a
more rigorous treatment of this mean-field Hamiltonian should involve a self-consistent
determination of this profile, but for our present purposes this simplification is well
justified. In contrast to Ref. [43], here we only consider the deterministic profile Eq.
(4) and we neglect other random inhomogeneities in ∆ (x) introduced by disorder.
More details on disorder-induced SC pairing potential fluctuations can be found in
Ref. [43].

In the absence of disorder and in the uniform case (i.e., limit υµ = d∆ = 0), the
Hamiltonian H in the limit Lw →∞, can be easily diagonalized in momentum space
k. In that case, the dispersion relation for the Bogoliubov quasiparticles is[5, 7] E2

k,± =

V 2
x + ∆2

0 + ξ2
k + (αRk)

2 ± 2

√
V 2
x ∆2

0 + ξ2
k

[
V 2
x + (αRk)

2
]
, with ξk = ~2k2/ (2m) − µ0.

For given values µ0,∆0 and αR, this model has a TQPT as a function of magnetic
field Vx (i.e., the Zeeman spin splitting) from a topologically trivial phase to a non-
trivial phase with the appearance of MBS localized at the ends of the nanowire at
the critical Zeeman field value Vx,c =

√
∆2

0 + µ2
0, as originally shown by Sau et al.[5]

In the presence of disorder and other spatial fluctuations of the parameters in the
model, the critical field Vx,c typically shifts to larger values and its value depends on
the precise details of the disorder realization.[31, 34, 35, 38, 39] The determination of
the critical field defining the TQPT is then non-trivial and has to be done numerically
for a given disorder realization. This is the subject of the next section.

Finally, we mention that our NSN system is actually conceptually (and perhaps
practically too) simpler than the usual NSN system (where the ‘S’ part is an intrinsic
superconductor) because of the proximate nature of the superconductivity induced in
the nanowire from the metallic superconductor underneath the semiconductor. Thus
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various complications (e.g. dissipation, cooling, self-consistency, nontrivial Fermi
distribution, electron heating, etc.) which might make the description of the usual
NSN structures difficult[56] are most likely irrelevant in our system, where the ‘S’
part is the nanowire on a real superconductor, making our theoretical description
easier than that for the standard NSN structures with ‘S’ being a real superconducting
nanowire connected to two normal metallic tunnel contacts.

3. Thermal transport and topological phase diagram of a dirty Majorana
nanowire

Let us now focus on the topological phase diagram of the disordered Majorana
nanowire. In order to make progress, we have discretized the Hamiltonian in Eqs.
(2) and (3), and obtained a N−site tight-binding model with the lattice parameter a
(see Ref. [53])

HNW = − t
∑
〈lm〉,σ

c†l,σcm,σ −
∑
l,σ

c†l,σ (µl − Vxσ̂xσσ′) cl,σ′

+
∑
l,σ

(
iα c†l,σσ̂

y
σσ′cl+1,σ′ + ∆lc

†
l↑c
†
l↓ + H.c.

)
, (5)

where c†l,s, µl and ∆l are the discrete versions of ψ†σ (x), µ (x) and ∆ (x), respectively,
and t = ~2/2mea

2 is the effective hopping parameter. Here α =
√
mα2

R/2 is the
corresponding Rashba coupling parameter in the tight-binding model. The first site
at the left end corresponds to l = 1 and the final site at the right is l = N .

We consider a single distribution of µl (disorder realization), and systematically
vary its dispersion υµ around the mean value µ0. As mentioned above, υµ is not
an experimentally tunable parameter, but it is useful and instructive to visualize the
topological phase diagram as a function of varying disorder. Presumably, a fixed
disorder realization is closer to the experiment, where the semiconductor nanowire is
in the mesoscopic regime, and it is not clear that disorder necessarily self-averages at
the very low experimental temperatures. We mention that whether the experimental
temperatures are low enough so that the system is not self-averaging (so that
mesoscopic fluctuations are important as one goes from one sample) is currently not
known for the Majorana experiments, and the issue of whether to ensemble average
over disorder realizations or not for quantitative comparison with experiments remains
open at this stage.

We compute the topological phase diagram of the isolated nanowire (i.e., in
absence of the normal contacts) using the transfer-matrix approach[34, 39] for the
model Hamiltonian Eq. (5), as a function of the disorder strength υµ and the external
Zeeman field Vx. Physically, the transfer matrix relates states in the left end to states
in the right end of the wire. This statement can be made more precise introducing
the Majorana basis cl,σ = (aσ,l + ibσ,l) /

√
2, where the Majorana operators obey the

anti-commutation relations {aσ,l, as,m} = {bσ,l, bs,m} = δl,mδσ,s and zero otherwise.
In terms of these operators, a generic eigenmode Ψ of HNW satisfying the eigenvalue
equation HNWΨ = EΨ can be written as

Ψ =

N∑
l=1

(γ↑,la↑,l + γ↓,la↓,l + η↑,lb↑,l + η↓,lb↓,l) , (6)
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with real coefficients γσ,l and ησ,l. At E = 0, defining the matrices κ =

(
t −α
α t

)
,

ul =

(
µl ∆l − Vx

−∆l − Vx µl

)
and the vector of coefficients ~ψl = (γ↑,l, γ↓,l)

T , the

above eigenvalue equation can be written as 0 = κ† ~ψl−1 + κ~ψl+1 + ul ~ψl, and from
here we obtain the transfer equation

(
~ψl+1

κ† ~ψl

)
= Ml

(
~ψl

κ† ~ψl−1

)
, (7)

where

Ml ≡
(
−κ−1ul −κ−1

κ† 0

)
,

=


−tµl+α(Vx−∆l)

t2+α2

−αµl+t(Vx+∆l)
t2+α2

t
t2+α2

α
t2+α2

αµl+t(Vx−∆l)
t2+α2

−tµl−α(Vx+∆l)
t2+α2

−α
t2+α2

t
t2+α2

−t −α 0 0
α −t 0 0

 (8)

is the l−th transfer matrix relating the vectors ~ψl+1 and ~ψl−1. Then, the full transfer
matrix of the nanowire, from site l = 1 to site l = N , is simply given by M =

∏N
l=1 Ml.

The eigenvalues of M can be written as e±Nλn , where λn are the (dimensionless)
“Lyapunov exponents” of the system,[57] which represent the inverse of the localization
length. The connection to localization properties are better understood recalling that
the transmission probability from site 1 to site N is T1N =

∑4
n=1 Tn, with

Tn = cosh−2 (Nλn) , (9)

the transmission eigenvalue corresponding to the n−th channel .[57]
The connection between the localization and the topological properties of a

“dirty” class D nanowire was made explicit by Akhmerov et al ,[33] who obtained
the topological invariant Q = sign(

∏2M
n=1 tanhλn), with M the number of channels in

the the wire. These authors have shown that in the clean case this topological invariant
actually reduces to the one derived by Kitaev which is given in terms of the Pfaffian
of the Hamiltonian in momentum space.[2] Here we see explicitly that Q changes sign
when one of the Lyapunov exponents vanishes and changes sign. This signals the
TQPT. As discussed in Refs. [27, 33], the TQPT of a class D SC corresponds to a
delocalization point for zero-energy particles, i.e., one of the Lyapunov exponents λn
vanishes and changes sign at the TQPT inducing a “perfect” transmission probability
Tn = 1. Everywhere else in the parameter space the system is localized at zero
energy, i.e., all λn are finite. This crucial result will be addressed in detail in Section
6. For the moment, we can check that this idea also works in the clean case: for
a clean nanowire, sufficiently close to the TQPT on the topological side, the MBS
wavefunctions are localized within the SC correlation length ξclean ' ~vF /∆ (Vx),
where ∆ (Vx) is the effective SC quasiparticle gap controlled by the Zeeman field.
The TQPT is reached at the critical field Vx,c =

√
∆2

0 + µ2
0, where the quasiparticle

gap ∆ (Vx,c) → 0 and the localization length ξclean → ∞. When ξclean ' Lw, the
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Parameter Value in InSb (if applicable) TB equivalent
Wire length Lw = 2 µm N = 300

Mass m = 0.015 me m =
(
2ta2

)−1

Chemical Potential not known µ0 = −1.72 t
Bulk pairing potential ∆0 = 250 µeV ∆0 = 0.05 t

Rashba spin-orbit coupling αR = 0.2 eV. α =
√
mα2

Rt/2 = 0.15 t
Slope of pairing profile not applicable d∆ = 30 a

Table 1. Parameters used in the model (5) in the numerical simulations in Figs.
2, 4 and 5. The hopping parameter t = 1 meV has been chosen to reproduce a ratio
Lw/ξclean ≈ 15. The average chemical potential µ0 has been chosen to reproduce
the reported experimental value of the critical Zeeman field[9] (i..e, B ' 250 mT)

using the formula[5] Vx,c =
√

∆2
0 + µ20 and assuming weak disorder.

MBS localized at opposite ends can “see” each other and overlap forming a Majorana
“channel” that connects the left and the right end. Therefore, for a clean system near
the TQPT the smallest Lyapunov exponent is λclean ∝ ξ−1

clean. Since the Majorana
channel has equal contributions of electrons and holes at E = 0, the current sustained
by electron-like states exactly cancels the current of hole-like states, and the total
electric current vanish. Therefore, the perfectly quantized transmission coefficient
Tn = 1 occurring at the TQPT is physically related to the thermal conductance (and
not to the electrical conductance). We will return to this point in Sec. 4.

In Fig. 2(c) we show a 2D color map of the thermal transmission coefficient T1N

for a dirty wire as a function of disorder “strength” υµ and applied Zeeman field Vx,
fixing all other parameters (chemical potential, pair-potential profile, etc.) according
to Table 1. These parameters correspond exactly to those used in Figs. 2(a) and 2(b)
for the same configuration of disorder potential, and each dot corresponds to each
one of the curves in those figures. The blue regions indicate the points for which the
transmission coefficient is close to the maximal value T1N = 1, and therefore indicate
the approximate location of the TQPT. Therefore, Fig. 2(c) allows to determine the
phase boundary separating the topological from the non-topological region. Note that
this boundary has an intrinsic width which scales as ∝ 1/N ∝ 1/Lw. More precisely,
as we will see in Sec. 6, the width corresponds to the Thouless energy ~vF /Lw.
For the parameters in Table 1 and in the absence of disorder, we estimate an upper
bound Lw/ξ ' 15, where we have used the estimation for the minimal value of the SC
correlation length ξclean = ~vF /∆0 ' 20 a and Lw = 300 a.

Contrasting Figs. 2(a), 2(b) and 2(c), we note that the four curves on the top
correspond to dots in (c) which are closer to the topological phase boundary, where the
topological protection is expected to be more fragile. This seems to be in agreement
with the fact that Fig. 2(a) shows a splitting in the ZBP. The ZBP appearing in
the corresponding curves in Figs. 2(b) and the apparent inconsistency with Fig. 2(a)
(i.e., peaks not correlated) will be addressed and discussed in the next section. In
contrast, the four central curves in both figure (a) and (b) show a more robust ZBP,
which is consistent with the corresponding points in Fig. 2(c) located further from
the boundary. As we see, this analysis showing all curves “side-to-side” is potentially
helpful to interpret the experimental transport results. A natural question arises: is
it possible to access the information in (c) experimentally? This will be the subject
of the next sections.
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Figure 3. (a) Schematic view of an NSN circuit. (b) Assuming that the coupling
to the leads can be controlled in situ experimentally [e.g., using pinch off gates
(not shown here)], the system can be effectively disconnected from the right lead
and turned effectively into an NS junction.

4. Electronic transport properties in the NSN configuration

We now turn to quantities with more relevance to current experimental measurements.
To that end, we introduce a term in the Hamiltonian describing the coupling to
external normal leads [see Fig. 3(a)]

Hmix =
∑
σ

(
tLd
†
Lk,σc1,σ + tRd

†
Rk,σcN,σ

)
+ H.c., (10)

where the term where tL(R) is the coupling to the left (right) lead and d†L(R)k,s

is the corresponding creation operator for fermions with quantum number k and
spin σ. The external leads are modeled as large Fermi liquids with Hamiltonian
Hlead,j =

∑
k,σ εkd

†
j,k,σdj,k,σ, where j = {L,R}. We assume that each lead is in

equilibrium at a chemical potential µj = eVj controlled by external voltages, and
that the SC nanowire is grounded. The expression for the electric current flowing
through the contacts is Ij = e〈dNj/dt〉 = ie〈[H,Nj ]〉/~ = ie〈[Hmix, Nj ]〉/~, which can
be written using equations of motion in terms of the Green’s function in the nanowire
[58, 59]. The excess current IS flowing to ground through the bulk of the SC wire
ensures the average conservation of charge IL + IR + IS = 0. The conductance matrix
of the NSN system Eq. (1) can be expressed as

GLL =
e2

h

ˆ ∞
−∞

dω

[
−dnL (ω)

d (eVL)

]
Tr
[
2rLLeh

(
rLLeh

)†
+ tLRee

(
tLRee

)†
+ tLReh

(
tLReh

)†]
ω
,(11)

GLR =
e2

h

ˆ ∞
−∞

dω

[
dnR (ω)

d (eVR)

]
Tr
[
tLRee

(
tLRee

)† − tLReh
(
tLReh

)†]
ω
, (12)

GRL =
e2

h

ˆ ∞
−∞

dω

[
dnL (ω)

d (eVL)

]
Tr
[
tRLee

(
tRLee

)† − tRLeh
(
tRLeh

)†]
ω
, (13)

GRR =
e2

h

ˆ ∞
−∞

dω

[
−dnR (ω)

d (eVR)

]
Tr
[
2rRReh

(
rRReh

)†
+ tRLee

(
tRLee

)†
+ tRLeh

(
tRLeh

)†]
ω
,(14)
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These formulas are standard (see Refs. [20, 39, 47, 60]) and we do not derive
them here. The reader will find more details in the aforementioned references and
in Appendix Appendix A. We have defined the normal reflection and transmission
matrices (i.e., with subindex “ee” or “electron-electron”)

[
rLLee (ω)

]
σ,σ′ = γL (ω) gr1σ,1σ′ (ω) ,[

rRRee (ω)
]
σ,σ′ = γR (ω) grNσ,Nσ′ (ω) ,[

tLRee (ω)
]
σ,σ′ =

√
γL (ω) γR (ω)gr1σ,Nσ′ (ω) ,

and the Andreev reflection and transmission matrices (i.e., with subindex “eh” or
“electron-hole”) [

rLLeh (ω)
]
σ,σ′ = γL (ω) fr1σ,1σ′ (ω) ,[

rRReh (ω)
]
σ,σ′ = γR (ω) frNσ,Nσ′ (ω) ,[

tLReh (ω)
]
σ,σ′ =

√
γL (ω) γR (ω)fr1σ,Nσ′ (ω) ,

where grls,ms′ (ω) and frls,ms′ (ω) are the normal and anomalous retarded Green’s
functions[61] in the nanowire respectively (see Appendix Appendix A). We have also
defined the effective couplings to the leads

γj (ω) = 2πt2jρ
0
j (ω) (j = L,R) , (15)

where ρ0
j (ω) is the density of states in the j−lead. Assuming a large bandwidth in

the normal contacts, in the following we set ρ0
j (ω) = ρ0

j (0), the value at the Fermi
level.

Let us analyze the physical content of Eqs. (11)-(14). We first focus on the “local”
conductances Eqs. (11) and (14). In these expressions, the first term corresponds to
the local contribution 2Tr

[
rLLeh

(
rLLeh

)†]
ω
and 2Tr

[
rRReh

(
rRReh

)†]
ω
, i.e., the Andreev

reflection probability at the left and right lead, respectively. These terms are the
only terms appearing in the case of NS or SN contacts,[18] and they already contain
the information about the presence of a MBS localized at the corresponding end.
From this perspective, the quantized value of the conductance 2e2/h corresponds to
a “perfect” Andreev reflection Tr

[
rLLeh

(
rLLeh

)†]
ω=0

= 1 at T = 0, due to the presence
of the MBS. However, note that in Eqs. (11) and (14) we also encounter a non-
local contribution Tr

[
tLRee

(
tLRee

)†
+ tLReh

(
tLReh

)†]
ω
, which physically corresponds to

particles that travel from one to the other end of the wire, and return to the original
lead with information about the opposite lead. These non-local terms are present only
in the NSN junctions, and not in the simple NS configuration so far studied extensively
in the literature. Our primary motivation for considering NSN junctions (with the ’S’
part being the nanowire carrying MBS under suitable conditions) is to study the effect
of these non-local terms in the transport experiments, since non locality is the key
concept underlying MBS in the topological phase. Therefore, this contribution must
be proportional to the electron-electron and electron-hole transmission coefficients,
Tr
[
tLRee

(
tLRee

)†]
ω
and Tr

[
tLReh

(
tLReh

)†]
ω
respectively, and vanishes if either γL or γR

vanishes by, e.g., “pinching off” one of the quantum point contacts using underlying
gates (i.e., pinch off gates) [see Fig. 3(b)]. Note that the presence of such a non-local
contribution is expected in multi-terminal phase-coherent mesoscopic systems.[62]
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Figure 4. (a) Differential conductances GLL vs VL , (b) GRR vs VR and (c)
GLR vs VR. All the curves in the top [i.e, (a), (b) and (c)] have been computed
at a temperature T/∆0 = 0.02 (corresponding to the experimental temperature
Texp ≈ 30 mK) and for effective couplings to the leads γL = 0.85 t and γR = 0.95 t.
Figs. 4(a) and (b) correspond to Figs. 2(a) and (b) and exemplify the potential
difficulties in detecting the TQPT in a disordered Majorana wire, with non-
topological ZBPs appears at finite Zeeman field. In the bottom plots [i.e, (d),
(e) and (f)] we show the same quantities computed at much lower a temperature
T/∆0 = 2× 10−4 (below experimental capabilities) and for effective couplings to
the leads γL = γR = 0.1 t. In these conditions, the widths of the conductance
peaks decrease dramatically, revealing the splitting of the ZBPs due to disorder.

Interestingly, the thermal conductance Gth across the wire[62–64]

Gth = Gth,0Tr
[
tLRee

(
tLRee

)†
+ tLReh

(
tLReh

)†]
ω
, (16)

where Gth,0 = π2k2
BT/6h is the thermal quantum of conductance, is closely connected

to the non-local contribution in Eqs. (11) and (14), and allows to make a link with
our previous discussion in Sec. 3. The connection with the thermal transmission
probability T1N at zero energy is T1N = 2Tr

[
tLRee

(
tLRee

)†
+ tLReh

(
tLReh

)†]
ω=0

. In
principle, the information about the TQPT is contained in this expression. However,
such thermal measurements are in general very challenging experimentally, and we
need to come up with a different approach which is experimentally feasible. In
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particular, it is desirable to use electrical measurements (i.e., electrical conductance)
for observing the non-local MBS correlations at the TQPT and beyond.

We now briefly discuss Eqs. (12) and (13) (i.e., the so-called transconductances
GLR and GRL, which obey GRL = GLR), where a more explicit difference with
respect to the NS geometry appears. Physically, the minus sign in these expressions
appears because while electrons contribute with a plus sign to the transport, a hole
will contribute a minus sign. As discussed previously in Sec. 3, note that if the system
is in the topological phase with end-MBS, particle-hole symmetry dictates that the
contributions Tr

[
tLRee

(
tLRee

)†]
ω=0

and Tr
[
tLReh

(
tLReh

)†]
ω=0

must be identical, and
therefore the transconductance must vanish.[33] This might seem to rule out the
possibility to see the TQPT via electrical measurements of GLR.

In Figs. 4(a) and 4(b) we reproduce the same Figs. 2(a) and 2(b), computed
for the parameters in Table 1, at a temperature T/∆0 = 0.02 (which approximately
corresponds to the experimental temperature Texp ≈ 60 mK in Ref. [9]), and where
we have assumed effective couplings γL = 0.85 t and γR = 0.95 t, corresponding to
an open wire condition (i.e., “good” electrical contact with the leads). In Fig. 4(c) we
present a plot for GLR vs VR for the same parameters. Note that this quantity is rather
featureless, and is vanishingly small near zero bias as expected. For comparison, in
Figs. 4(d), 4(e) and 4(f) we show GLL, GRR and GLR, respectively, for the same
parameters but for a much lower temperature T/∆0 = 2×10−4 and smaller couplings
γL = γR = 0.1 t . In these conditions the thermal and quasiparticle broadenings
decrease dramatically and we realize that the preliminary information about the ZBPs
in Figs. 4(a) and 4(b) is misleading: the system does not have zero-bias excitations
and the peaks are actually split (rather than being a single zero energy peak) in Figs.
4(d) and 4(e) at low temperatures and at low transparency of the contacts. This
picture is actually consistent with Fig. 2(c), where the dots corresponding to the
largest magnetic fields are very close to the topological phase boundary, and therefore
we expect the MBS to recombine into Dirac fermions and consequently the peaks to
shift away from zero bias voltage. This allows to interpret the uncorrelated ZBPs
for GLL and GRR. The results in Fig. 4 shows that already for the simple model of
Eq. (5), detection of a “true” Majorana ZBP based only on the information about
the local conductances might be very tricky.[23] Therefore, the presence of ZBPs in
the local conductances GLL and GRR cannot by itself be considered as a “smoking-
gun” evidence of the Majorana scenario without some critical considerations of the
correlations in the existence of these ZBPs arising from the two end conductances.

5. Electrical detection of topological phase transitions in the NSN
configuration

As mentioned before, in the case of clean wires, the TQPT should be observed in
the closing and reopening of the gap of electronic excitations in the nanowire. This
re-organization of the fermionic spectrum is necessary in order to accommodate a new
MBS at zero energy. However, the experiments so far have been unable to report
any definitive closing of the gap. It has been suggested that this negative results
might originate because while the tunneling occurs at the end of the nanowire, the
information about the gap-closing is contained in wavefunctions with most of the
weight in the bulk of the nanowire. Therefore, measurements of the LDOS in the
middle of the wire[65], capacitive measurements of the total DOS[66], or phase-locked
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magnetoconductance oscillations in flux-biased topological Josephson junctions [67]
should reveal this gap-closing occurring at the TQPT, but no experimental evidence
of these predictions have been reported so far in nanowires contacted at the ends.

In addition to characterizing the transport properties of disordered NSNMajorana
wires, another goal of the present work is to explore experimental proposals to
determine the topological phase diagram. We believe that the NSN geometry offers
an interesting possibility to achieve this goal, and to provide information about
the topological stability of the MBS. In Sec. 3 we stressed that the TQPT in
Majorana wires corresponds to a delocalization point at zero energy, a fact that can
be detected in the thermal transmission probability across the system. On the other
hand, in Sec. 4 we showed that in the NSN geometry, the local conductance of a
phase-coherent Majorana nanowire depends on the non-local transmission probability
Tr
[
tLRee

(
tLRee

)†
+ tLReh

(
tLReh

)†]
ω
, in addition to the local Andreev reflection coefficient,

which exactly corresponds to the (dimensionless) thermal transport at energy ω [see
Eq. (16)]. This enables mapping out the topological phase diagram by purely
electrical measurements.[39] In this section we provide more details in the way the
non-local information could be extracted in the NSN configuration in order to obtain
the topological phase diagram.

Following Ref. [39], we define the following quantity

∆Gjj (0) ≡ Gjj (0)−G′jj (0) , (17)

i.e., the difference of local zero-bias conductances computed for different values of
couplings to the opposite lead, while keeping all other parameters fixed. The zero-bias
conductance at one end Gjj (0) is computed for a given value of γj̄ (with compact
notation L̄ = R and R̄ = L) and G′jj (0) is computed for a different value γ′

j̄
. From

the experimental point of view, this means using γR and γL as tuning parameters,
something that could be achieved varying the pinch-off gates underneath the ends of
the nanowire.[9–14] This constitutes a new experimental knob which has not been
explored so far in the Majorana experiment. Note that this quantity [as defined by
Eq. (17)], being a difference, is not quantized and can take either positive or negative
values. For this reason in what follows we will take the absolute value.

A priori, it might seem counter-intuitive that the transport through a disordered
medium could be influenced by the change of a boundary condition at the far-end.
However, this intuition is typically built upon the more usual case of trivial Anderson-
localized 1D systems, where any amount of disorder localizes the wavefunctions
and therefore any object placed at distances larger than the localization length ξloc
has essentially no effect. The crucial difference with class D conductors is that
ξloc ∝ λ−1

n → ∞ at the TQPT (since the gap closes here), i.e., the delocalization
point. Therefore, assuming that Lw < Lφ, where Lφ is the phase-relaxation length,
the aforementioned intuition is usually correct except at the TQPT. The physical
idea behind using ∆Gjj (0) as an indicator of the TQPT can be seen quite simply
in the extreme case when γ′

j̄
= 0. In this case, in Eqs. (11) and (14) for

G′LL and G′RR respectively, one completely suppresses the coupling to the opposite
lead and the transmission coefficients vanish. The remaining part (i.e., Andreev

reflection 2Tr
[
rjjeh

(
rjjeh

)†]
ω

) is a purely local contribution. Therefore, Eq. (17) must

correspond to a non-local contribution which contains information about the TQPT.



Tunneling transport in NSN Majorana junctions across the topological quantum phase transition17

Vx,c

0 2 4 6 8 10
0.

0.015
Vx,c

0 2 4 6 8 10 12 14

0.

0.5

1.

1.5

0.

0.5

1.

Vx�D0

ÈDG
L

L
H0LÈ

�G 0

T
1

N

T�D0=2´10-2

T�D0=2´10-3

T1 N

Figure 5. Solid lines represent |∆GLL (0)| in Eq. (17) as a function of
Vx at T/∆0 = 0.02 (black line) comparable to the experimental temperature
Texp ≈ 60 mK, and at T/∆0 = 0.002 (blue line). These curves approximately
follow the (thermal) transmission probability T1N (dashed red line), which shows a
maximum T1N = 1 at Vx,c/∆0 ≈ 5.2, corresponding to the TQPT (see arrow). All
curves have been calculated with the same configuration of the disorder potential
as in Figs. 2 and 4, and correspond to υµ/∆0 = 2 [i.e., line of dots in Fig.
2(c)]. Inset: Plot of |∆GLL (0)| at T/∆0 = 0.02 in a smaller scale showing that,
although weaker, the signal persists and is still experimentally measurable.

This statement is not entirely correct because modifying the coupling γj̄ to γ′
j̄
also

modifies the local Andreev reflection coefficient through the local anomalous Green’s
functions fr1s,1s′ (ω), which contains information about the entire system. Only in the
perturbative limit where δγj̄ ≡ γ′j̄ − γj̄ � γj̄ , one can rigorously show[39] that at the
lowest order in δγj̄ , Eq. (17) becomes

∆Gjj (0) ≈ δγj̄
e2

h

ˆ ∞
−∞

dω

[
−dnj (ω)

d (eVj)

]
eVj=0

× Tr
[
tLRee

(
tLRee

)†
+ tLReh

(
tLReh

)†]
ω
,

i.e., proportional to the thermal transmission.
In Fig. 5 we show |∆GLL (0)| as a function of Vx for the same parameters as before

(see Table 1), for υµ/∆0 = 2 and for γR = 0.94 t and γ′R = 0.01 t, and γL = 0.85 t.
The black solid line corresponds to the experimental temperature Texp/∆0 = 0.02,
while the blue solid line corresponds to a temperature T/∆0 = 2× 10−3 (one order of
magnitude smaller). We also show a vertical cut of T1N [corresponding to υµ/∆0 = 2
in Fig. 2(c)] as a red dashed line. That curve indicates the location of the TQPT
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(i.e., whenT1N ≈ 1) in a theoretically isolated wire, which occurs at Vx,c/∆0 ≈ 5.2
(indicated by a blue dot in the horizontal axis in Fig. 5). For Vx > Vx,c, strictly
speaking the system remains in the topologically non-trivial phase, but the strong
fluctuations of T1N indicate a very fragile topological protection of the Majorana
modes.

5.1. Experimental considerations

In order to assess the experimental feasibility of our proposal, one important aspect
to consider is the effect of a finite temperature. Comparing the black and blue lines
in Fig. 5 we can see that thermal effects dramatically decrease the magnitude of
∆Gjj (0), as can be seen in the overall reduction of the signal when the temperature
increases from T/∆0 = 2×10−3 to T/∆0 = 2×10−2 (comparable to the experimental
value Texp = 60 mK in Ref. [9]). While at higher fields Vx > Vx,c the signal is still
clearly visible at T/∆0 = 2 × 10−2, closely following the fluctuations in T1N , near
the critical field Vx,c the signal drops to |∆Gjj (0)| ∼ 3 × 10−3e2/h (see inset in Fig.
5). Although this value is still experimentally measurable, it would be desirable to
minimize thermal effects in order to have a stronger signal to detect the TQPT.

In what follows, we show that the effect can still be measured under reasonable
experimental conditions. An important point which should be taken into account to
minimize thermal effect is that our proposal is expected to work best for short wires,
where the maximal ratio Lw/ξ is not too large (in Fig. 5, using the parameters in
Table 1, we estimate an upper bound Lw/ξ ≈ 15). Therefore, using shorter nanowires
should yield more robust signals, albeit at the cost of less resolution. This is because
the visibility of the electrical signal crucially depends on the width ~vF /Lw of
the peak in |∆GLL (0)| (see last paragraph in Sec. 6 for an intuitive explanation).
Therefore, a very narrow peak ~vF /Lw � T might be hard to detect, or could
be washed away by thermal effects or other dissipative mechanisms not considered
here. Lower base temperatures or larger induced gaps should also produce a stronger
signal, as can be seen in Fig. 5 (blue line). None of these requirements represent an
intrinsic experimental limitation in future samples or experiments. For instance, base
temperatures of the order of Texp ≈ 20 mK have been recently reported in Ref. [45],
which would produce T/∆0 ∼ 7.10−3, allowing a stronger signal and better resolution
of the transition near the critical field.

We also note that the magnetic fields required to see the signal are also within
experimental reach. For the nanowires studied in Ref. [9], the large g ≈ 50 factor
produces Vx/B ≈ 1.5 meV/T. Assuming a maximal magnetic field of Bmax ∼ 2 T
(see for instance Fig. S2 in the supplementary material in that reference) the Zeeman
energy can be made as large as Vx ≈ 3 meV. Recalling that the experimentally induced
gap is estimated in ∆0 ≈ 0.25 meV, we conclude that Vx,max/∆0 ∼ 12, which implies
that the range of energies in Fig. 5 is perfectly feasible. We stress that an important
requirement for this proposal is that the nanowire must be shorter than the phase-
relaxation length Lw < Lφ for the two end-MBS to hybridize coherently, a condition
that is typically very well met in mesoscopic samples.

Overall, from the above discussion we conclude that |∆Gjj (0)| is a bona fide
indicator of the TQPT and the topological stability of the MBS at low enough
temperatures. While the experimental details will obviously depend on non-universal
quantities (such as the size of the SC gap, length of the wire, degree of disorder,
etc), our results in Fig. 5 indicate that the nonlocal conductance effect is definitely
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an experimentally observable quantity at finite temperatures. From a general point
of view, our proposed experiment is much easier than either braiding or fractional
Josephson effect (although harder perhaps than the straight ZBCP measurement).

Finally, although we have suggested using the pinch off gates as a physical way
to effectively tune the coupling to the normal contacts, this is not necessarily the only
way to change the parameter γjj . For instance, schemes using quantum dots (QDs)
between the normal contact and the Majorana nanowire[68–70] (i.e., N-QD-S-QD-N
setups) will also serve the same purpose. In this case, it would be relatively easy to
modify the transparency of the coupling to the lead by changing the gate voltages
in each QD. However, the QDs should be large enough to avoid strong Coulomb
effects, which might introduce unwanted effects (e.g., Kondo effect[71]) complicating
the experimental interpretation. We also mention that in Ref. [33], an alternative
method to detect the TQPT based on the measurement of the current shot noise was
proposed, which would be a complementary to the idea discussed here.

6. Intuitive theoretical picture

In this section we provide a simple theoretical framework to interpret our numerical
simulations in previous sections. To that end we focus on a simplified version of the
Hamiltonian HNW in Eqs. (2) and (3), which will allow us to obtain an exact solution,
therefore providing a valuable physical insight, while retaining at the same time the
relevant physics. These simplifications will not modify our main conclusions because
they do not depend on the details of HNW itself, but on its symmetry class (i.e.,
class D in this case) which is a robust feature. Therefore, for the present purposes
we assume a uniform chemical potential µ0 = δµ (x) = 0. In this simplified model,
disorder enters only through the inhomogeneous pair potential ∆ (x), which we now
assume to be generic and not necessarily of the form (4).

It is simpler to start the analysis from the uniform case with periodic boundary
conditions, where the band theory helps to visualize the relevant physics related to
the TQPT occurring near the point k = 0, at the intersection of the spin-orbit coupled
bands with different spin projection [see Fig. 6]. The modes at finite momentum ±kF
are assumed to be gapped by the SC paring interaction (not shown in the picture),
and decouple from the relevant sector at k = 0. Projecting the original fermionic
operator around this point and linearizing the bands results in a helical liquid model
described by the Hamiltonian[24]

HNW =

ˆ
dx
[
−i~vF

(
ψ†R∂xψR − ψ

†
L∂xψL

)
+∆ (x) (ψLψR + H.c.) +

(
Vxψ

†
RψL + H.c.

)]
, (18)

where ψR ' ψ↑ (x) and ψL ' ψ↓ (x) result from spin-momentum locking around k = 0
due to the spin-orbit interaction. We now introduce the Majorana basis

η1 (x) =

(
η1,R

η1,L

)
≡ 1√

2

(
−ψR − ψ†R
iψL − iψ†L

)
, (19)

η2 (x) =

(
η2,R

η2,L

)
≡ 1√

2

(
iψR − iψ†R
ψL + ψ†L

)
, (20)
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Figure 6. Dispersion relation of a nanowire with Rashba spin-orbit coupling, in
the absence of proximity-induced pairing ∆ (x) = 0, in the absence of Zeeman
field Vx = 0 and for µ0 = δµ (x) = 0. Under these conditions, chosen to simplify
the theoretical model in Eq. (18), a helical liquid arises near the point k = 0.

in terms of which (18) splits into two independent modes

HNW =
1

2

∑
n=1,2

ˆ
dx ηTn (x)

{
−i~vF τ̂ z∂x

− [Vx + (−1)
n

∆ (x)] τ̂ y

}
ηn (x) , (21)

where we have introduced the Pauli matrices τ̂ i acting on LR space. The emergence of
Majorana zero-modes can be easily seen by solving the eigenvalue equation for E = 0

{−i~vF τ̂ z∂x − [Vx + (−1)
n

∆ (x)] τ̂ y}ηn (x) = 0, (22)

whose solution is

ηn (x) = exp

{
1

~vF

ˆ x

0

dx′ [Vx + (−1)
n

∆ (x′)] τ̂x

}
ηn (0) . (23)

We now define the zero-energy eigenmodes

χ±n (x) = exp

{
± 1

~vF

ˆ x

0

dx′ [Vx + (−1)
n

∆ (x′)]

}(
1
±1

)
, (24)

in terms of which the expression for a generic MBS localized at the origin (i.e., the
left end of the wire) is

η (x) = a1χ1 (x) + a2χ2 (x) . (25)

Although the form of the eigenmodes (24) is more convenient for our purposes, we
mention here that one can easily bring this expression into the more familiar form of
the Jackiw-Rebbi soliton solution[72] applying a rotation along the ŷ−axis R̂ = ei

π
4 τ̂y ,

which transforms to the usual eigenvectors of the operator τ̂ z. In order to ensure the
existence of MBS we need to find normalizable solutions that decrease sufficiently fast
as x→∞ and that satisfy generic boundary conditions. For a wire of length Lw, we
can define the quantity
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λn =
1

Lw~vF

ˆ Lw

0

dx′ [Vx + (−1)
n

∆ (x′)] , (26)

which in the limit Lw → ∞ corresponds to the Lyapunov exponent of the system at
zero energy for the channel n. In terms of these quantities, note that there are two
possible situations:[2]

(i) Both λ1 and λ2 have the same sign, in which case we need to choose either
η (x) = a1χ

+
1 (x) +a2χ

+
2 (x) or η (x) = a1χ

−
1 (x) +a2χ

−
2 (x) in Eq. (25), the sign

depending on which of the modes decays for x > 0. Since there are two decaying
contributions allowed, we can satisfy generic boundary conditions at the origin.
For instance, if the system is a trivial insulator for x < 0, then the boundary
condition η (0) = (0, 0)

T must be imposed. This is verified with a1 + a2 = 0.
Other boundary conditions for open wires will be analyzed later.

(ii) The Lyapunov exponents λ1 and λ2 have different signs. Then Eq. (25) is a linear
combination of spinors χ+ and χ−. This makes it impossible to satisfy generic
boundary conditions, except for accidental situations which are not protected
against local perturbations. For instance, in our previous example of a vanishing
boundary condition at the origin, the condition η (0) = (0, 0)

T implies that
a1 + a2 = a1− a2 = 0, which can only be satisfied for a1 = a2 = 0. Therefore the
MBS does not exist.

From this analysis, we conclude that the TQPT occurs when one of the Lyapunov
exponents λn passes through zero and changes sign, making explicit the connection
between the localization properties of a D-class nanowire and its topological properties.
This is a robust feature which is independent of the details of the microscopic
Hamiltonian as it depends only on the symmetry classification. Assuming that the
magnetic field Vx is such that λ2 > 0, the condition for the topological phase reduces
to

λ1 =
1

~vF
[
Vx − ∆̄

]
> 0, (27)

where we have defined the average gap ∆̄ ≡ 1
Lw

´ Lw

0
dx′ ∆ (x′). Note that this

expression coincides with the expression derived by Sau et al. Vx >
√
µ2

0 + ∆2
0 for the

ideal system, i.e., for a uniform ∆ (x)→ ∆0 and for µ0 = 0.[5]

6.1. Open wires

We now assume that our wire is connected to conducting leads at both ends, and focus
on the transport across the NSN configuration at zero energy, as depicted in Fig. 7(a).
We define the scattering matrix [33]

(
ψR (Lw)
ψL (0)

)
= S0

(
ψR (0)
ψL (Lw)

)
, S0 =

(
t0 r′0
r0 t′0

)
, (28)

where ψν (x) ≡ (η1,ν (x) , η2,ν (x))
T are ν−moving (with ν = {L,R}) scattering

Majorana states in the left and right leads (x = 0 and x = Lw, respectively). In
the Majorana basis, S0 is a real orthonormal matrix ST0 = S†0 = S−1

0 .[33] Since from
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Figure 7. Schematic view of the scattering across a disordered Majorana wire
in the NSN configuration. In (a) a reflectionless boundary at the right end is
assumed and, consequently, the boundary condition ψL (Lw) = (0, 0)T must be
imposed. This is a very special case, typically incompatible with the experimental
situation. In (b) we assume a generic barrier Vb (x) at the right end inducing a
reflection amplitude matrix rb 6= 0. In this case different boundary conditions
must be imposed [see Eq. (32)].

Eq. (18), the modes n = {1, 2} are decoupled and independent, the transmission and
reflection matrices, t0, t

′
0 and r0, r

′
0 respectively, acquire a diagonal form, an can be

diagonalized independently with diagonal elements t0,n, t′0,n and r0,n, r
′
0,n. Without

loss of generality, in what follows we assume that the only incident modes are right-
moving modes arriving from the left lead. This imposes the boundary conditions [see
Fig. 7(a)]

ψL (Lw) =

(
0
0

)
ψR (0) =

(
1
1

)
, (29)

which in combination with Eqs. (23) and (28), allow to obtain closed analytical
expressions for the reflection and transmission coefficients

t0,n = cosh−1 (Lwλn) , (30)
r0,n = − tanh (Lwλn) , (31)

and we recover Eq. (9) for the transmission probability.
Exactly at the TQPT, the determinant of the reflection matrix vanishes and a

“Majorana channel” with perfect transmission opens at zero energy. As mentioned in
Sec. 3, Akhmerov et al.[33] derived a suitable topological invariant for a dirty class D
nanowire directly in terms of the reflection matrix as Q = sign Det r0 = sign Det r′0 =∏
n tanhλ0,n, and suggested that the TQPT could be observed as a quantized

peak in the thermal conductance through the nanowire Gth/G0 = Tr
(
t0t
†
0

)
=∑

n cosh−2 (Lwλn), where we recover the result in Sec. 3. This is consistent with the
results in Ref. [27], where the authors predicted that the transition from topologically
trivial to topologically non-trivial phases should be a delocalization transition, and
at both sides of this point the system should be generically localized at zero energy.
However, unfortunately a Majorana channel is necessarily neutral (i.e., particles and
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holes have equal weight in the MBS wavefunction) and therefore cannot support an
electrical current. On the other hand, direct thermal transport measurements could
provide evidence of the transition,[33] but this remains an experimental challenge.

To understand better our experimental proposal in Sec. 5 we first note that
the form of Eqs. (30) and (31) are a consequence of the particular “reflectionless”
boundary conditions (29) at the right end. In other words, in Fig. 7(a) at the right
end of the wire, the barrier at x = Lw is “transparent”, and all right-moving Majorana
states ψR (Lw) that are transmitted to the right-end of the nanowire disappears in the
right lead. As shown in Ref. [39], this is not the most general situation. The generic
presence of a barrier Vb (x) at the end of the nanowire induces some probability of
reflection, and imposes a non-vanishing amplitude ψL (Lw) [see Fig. 7(b)]. More
physically, any potential profile at the end nanowire, or the presence of pinch off gates
could play the role of a barrier inducing a non-ideal coupling to the right-lead. For
simplicity, let us consider a point-like scatterer sitting at some point xb > Lw, as
depicted in Fig. 7(b). The crucial point is that, in the presence of this new barrier,
the reflectionless boundary conditions (29) are no longer possible. Assuming that
the potential barrier Vb (x) induces reflection and transmission amplitudes, rb,n and
tb,n respectively (subject to the unitary condition |rb,n|2 + |tb,n|2 = 1), the scattering
matrix obeys (

ψR (xb)
ψL (Lw)

)
= Sb

(
ψR (Lw)
ψL (xb)

)
, Sb =

(
tb r′b
rb t′b

)
, (32)

and the new boundary conditions for right-moving Majorana states arriving from the
left lead are

ψL (xb) =

(
0
0

)
ψR (0) =

(
1
1

)
. (33)

In combination with Eqs. (28) and (32), we obtain the transmission and reflection
amplitudes at the left-end of the complete system (nanowire and barrier):

tn =
tb,nt0,n

1− rb,nr0,n
, (34)

rn = r0,n + t0,n

(
rb,n

1− rb,nr0,n

)
t0,n. (35)

In particular, the last term in Eq. (35) physically represents processes in which
the right-moving Majorana mode is transmitted to the right-end of the nanowire
with amplitude t0,n and is reflected back as a left-mover with amplitude rb,n. The
denominator in rb,n (1− rb,nr0,n)

−1
= rb,n + rb,nr0,nrb,n + . . ., represents an infinite

sum of all backward and forward internal reflection processes occurring in the wire.
Importantly, even though rn is a local quantity involving the reflection at the left-
end of the nanowire, Eq. (35) explicitly contains non-local contributions involving
scattering at the right-end, and its form is closely related to Eqs. (11) and (14) for the
local differential conductances. This is a milestone result in phase-coherent mesoscopic
transport which has been well-known for almost thirty years.[62]

The above considerations summarize the main theoretical ideas in this work.
Assuming that rb,n is a parameter that can be modified in situ in the experiment (as
is the case of the pinch off gates in Ref. [9]), Eq. (35) shows that a small variation δrb,n
gives rise to a modification δrn ∝ cosh−2 (Lwλn) δrb,n, which would be non-vanishing
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precisely at the TQPT and which could be detected in electrical measurements. This
is the main idea of our proposal, and the main reason for us to propose experiments
in the NSN geometry in order to establish the existence of the TQPT and the MBS
in Majorana nanowires.

7. Summary and conclusions

We have explored the transport properties of disordered Majorana nanowires in the
NSN configuration with the nanowire being the superconducting S part and the two
N parts are ordinary metallic tunneling contacts with suitable gates controlling their
tunnel barriers. This type of geometry is being explored at present by experimental
groups studying Majorana bound states, and consequently, our study might be of
relevance for the interpretation of these results. The NSN configuration allows to
access qualitatively new information about the topological properties of the system
through a direct study of non-local correlations inherent in the MBS which cannot be
done in the NS geometry mostly used in the experimental Majorana measurements
so far. Physically, this is possible because in the NSN configuration one can test the
bulk properties, in addition to the boundary properties which are the only properties
accessible in NS contacts. In our work we have adopted a comprehensive point of
view, which links the deep theoretical aspects (i.e., topological invariants, topological
classification, topological quantum phase transition and topological phase diagram)
with the experimental observables (i.e., tunneling transport). We have also proposed
a useful tool, i.e., the difference of local conductances Eq. (17), to detect the TQPT
occurring as a function of the applied Zeeman field and to assess the topological
protection of a given system experimentally. The experimental signal Eq. (17) is
expected to be stronger and more robust to thermal broadening effects for “short”
wires with ratio Lw/ξ not too large (Lw/ξ ≈ 15 in this work) and Lw < Lφ, i.e.,
smaller than the phase-relaxation length. We stress that this proposal to detect the
TQPT is qualitatively different from the study of non-local correlations in the shot
noise measurements.[49–52] Despite the simplifications assumed in this work, we note
that our main ideas do not rely on the details of our model, but on generic symmetry
properties of class D Bogoliubov-de Gennes Hamiltonians. In particular, the fact that
the TQPT correspond to a delocalized point at zero energy is a robust feature in
these non-interacting Hamiltonians. In the presence of interactions the theoretical
description of transport becomes much harder and remains an open issue. However,
we speculate that the main idea behind Eq. (17) should remain valid in that case
too. Interestingly, using the framework of Abelian bosonization, in Ref. [32] it was
shown that the low-temperature properties of a disordered class D wire with repulsive
short-range electron-electron interactions (i.e., dimensionless Luttinger parameter[73]
K < 1) are adiabatically connected to those of a non-interacting wire (i.e., with
K = 1), provided the system remains in the topological phase as the interaction
is adiabatically “turned on”. In particular, the delocalized nature of the TQPT in
the interacting case can be inferred using an instanton calculation in the presence
of disorder, where the equivalent of the localization length (i.e., the exponent of the
instanton action) diverges at the critical point.[32]
This work is supported by Microsoft Q, LPS-CMTC and JQI-NSF-PFC. AML
acknowledges useful discussions with James Williams, L. Rokhinson and A. Akhmerov.
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Appendix A. Derivation of Eqs. (11)-(14)

Starting from Eqs. (5) and (10), the expression for the electric current flowing through
the contacts is Ij = e〈dNj/dt〉 = ie〈[H,Nj ]〉/~ = ie〈[Hmix, Nj ]〉/~, which can be
written in terms of the Green’s function at the contacts [58, 59]

IL =
ie

~
∑
σ

tL

[〈
d†L,σc1,σ

〉
−
〈
c†1,σdL,σ

〉]
, (A.1)

IR =
ie

~
∑
σ

tR

[〈
d†R,σcN,σ

〉
−
〈
c†N,σdR,σ

〉]
, (A.2)

where we have defined dj,σ = 1√
Nj

∑
k djk,σ , with j = {L,R}, and where Nj is

the number of sites in the lead j. With these definitions, note that the currents are
positive if particles move into the leads (i.e., exit the SC), and negative otherwise.
On the other hand, charge conservation demands that IL + IR + IS = 0, where IS
is the excess current that flows to ground through the SC (see Fig. 3). Within the
Baym-Kadanoff-Keldysh formalism [74, 75] we define the lesser and bigger Green’s
functions

g<iσ,jσ′ (t) ≡ ie
〈
c†i,σcj,σ (t)

〉
, (A.3)

g>iσ,jσ′ (t) ≡ −ie
〈
ci,σ (t) c†j,σ

〉
, (A.4)

so that we can write the currents as

IL =
e

~
tL
∑
σ

ˆ ∞
−∞

dω

2π

[
g<Lσ,1σ (ω)− g<1σ,Lσ (ω)

]
, (A.5)

IR =
e

~
tR
∑
σ

ˆ ∞
−∞

dω

2π

[
g<Rσ,Nσ (ω)− g<Nσ,Rσ (ω)

]
. (A.6)

Using equations of motion, we can express Eqs. (A.5) and (A.6) in terms of local
Green’s functions as [58, 59]

IL = − e

h
t2L
∑
σ

ˆ ∞
−∞

dω
[
g0,<
Lσ,Lσ (ω) g>1σ,1σ (ω)

−g0,>
Lσ,Lσ (ω) g<1σ,1σ (ω)

]
, (A.7)

IR = − e

h
t2R
∑
σ

ˆ ∞
−∞

dω
[
g0,<
Rσ,Rσ (ω) g>Nσ,Nσ (ω)

−g0,>
Rσ,Rσ (ω) g<Nσ,Nσ (ω)

]
. (A.8)

The unperturbed Green’s functions g0,≷
jσ,jσ (ω) in the leads

g0,<
jσ,jσ (ω) = 2πiρ0

j,σ (ω)nj (ω) , (A.9)

g0,>
jσ,jσ (ω) = 2πiρ0

j,σ (ω) [nj (ω)− 1] , (A.10)
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contain the information about the Fermi distribution functions nj (ω) = nF (ω + µj)
at the leads. Substituting Eqs. (A.9) and (A.10) into Eqs. (A.7) and (A.8) yields

IL = − ie
h

2πt2L
∑
σ

ˆ ∞
−∞

dω ρ0
L,σ (ω)

{
nL (ω)

[
gr1σ,1σ (ω)− ga1σ,1σ (ω)

]
+ g<1σ,1σ (ω)

}
,(A.11)

IR = − ie
h

2πt2R
∑
σ

ˆ ∞
−∞

dω ρ0
R,σ (ω)

{
nR (ω)

[
grNσ,Nσ (ω)− gaNσ,Nσ (ω)

]
+ g<Nσ,Nσ (ω)

}
,(A.12)

where we have used the identity g> (ω)−g< (ω) = gr (ω)−ga (ω).[74, 75] Obtaining an
explicit expression for the currents IL and IR in the general case is quite cumbersome.
However, since we will be interested only in the conductance, we note that there is
a great simplification if we compute directly the conductance matrix by deriving the
currents with respect to the voltages VL, VR. Then

GLL ≡
dIL
dVL

= − ie2

h
2πt2L

∑
σ

ˆ ∞
−∞

dω ρ0
L,σ (ω)

×

{
dnL (ω)

d (eVL)

[
gr1σ,1σ (ω)− ga1σ,1σ (ω)

]
+
dg<1σ,1σ (ω)

d (eVL)

}
,(A.13)

GLR ≡
dIL
dVR

= − ie2

h
2πt2L

∑
σ

ˆ ∞
−∞

dω ρ0
L,σ (ω)

dg<1σ,1σ (ω)

d (eVR)
, (A.14)

GRL ≡
dIR
dVL

= − ie2

h
2πt2R

∑
σ

ˆ ∞
−∞

dω ρ0
R,σ (ω)

dg<Nσ,Nσ (ω)

d (eVL)
, (A.15)

GRR ≡
dIR
dVR

= − ie2

h
2πt2R

∑
σ

ˆ ∞
−∞

dω ρ0
R,σ (ω)

×

{
dnR (ω)

d (eVR)

[
grNσ,Nσ (ω)− gaNσ,Nσ (ω)

]
+
dg<Nσ,Nσ (ω)

d (eVR)

}
.(A.16)

Therefore, we see that the problem is reduced to finding the Green’s functions in the
superconducting system. In a non-interacting system, the full Green’s function verifies
the Dyson’s equation in Nambu space [58]

G≷ (ω) = [1 + Gr (ω) (T L + T R)]G0,≷ (ω) [1 + (T L + T R)Ga (ω)] ,(A.17)

G(r,a) (ω) = G0,(r,a) (ω) + G0,(r,a) (ω) (T L + T R)G(r,a) (ω) , (A.18)

where we have introduced the Nambu notation

Gνiσ,jσ′ (z) =

(
gνiσ,jσ′ (z) fνiσ,jσ′ (z)

f̄νiσ,jσ′ (z) ḡνiσ,jσ′ (z)

)
, (A.19)

with ν = {>,<, r, a}, and where

T j =

(
tj 0
0 −tj

)
. (A.20)

The unperturbed Keldysh Green’s functions (i.e., computed for tL = tR = 0) are
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G0,<
iσ,jσ′ (ω) = 2πiρ0

iσ,jσ′ (ω)nF (ω) , (A.21)

G0,>
iσ,jσ′ (ω) = 2πiρ0

iσ,jσ′ (ω) [nF (ω)− 1] , (A.22)

ρ0
iσ,jσ′ (ω) = − 1

π
Im
[
G0,r
iσ,jσ′ (ω)

]
=

(
ρ0
iσ,jσ′ (ω) ζ0

iσ,jσ′ (ω)

ζ0
iσ,jσ′ (ω) ρ̄0

iσ,jσ′ (ω)

)
,(A.23)

We only need the derivative with respect to the voltages, which are only in the leads.
Therefore

dg
≷
1σ,1σ

d (eVL)
= 2πit2L

∑
s

[
dnL

d (eVL)
ρ0
Lg

r
1σ,1sg

a
1s,1σ +

dn̄L
d (eVL)

ρ̄0
Lf

r
1σ,1sf̄

a
1s,1σ

]
,

dg
≷
1σ,1σ

d (eVR)
= 2πit2R

∑
s

[
dnR

d (eVR)
ρ0
Rg

r
1σ,Nsg

a
Ns,1σ +

dn̄R
d (eVR)

ρ̄0
Rf

r
1σ,Nsf̄

a
Ns,1σ

]
,

dg
≷
Nσ,Nσ

d (eVL)
= 2πit2L

∑
s

[
dnL

d (eVL)
ρ0
Lg

r
Nσ,1sg

a
1s,Nσ +

dn̄L
d (eVL)

ρ̄0
Lf

r
Nσ,1sf̄

a
1s,Nσ

]
,

dg
≷
Nσ,Nσ

d (eVR)
= 2πit2R
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ρ0
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r
Nσ,Nsg
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dn̄R
d (eVR)

ρ̄0
Rf

r
Nσ,Nsf̄

a
Ns,Nσ

]
.

Replacing these expressions into Eqs. (A.13)-(A.16), and using the result grjσ,jσ (ω)−
gajσ,jσ (ω) = −2πiρjσ (ω), where we have defined the local density of states ρjσ (ω) ≡
ρjσ,jσ (ω), yields

GLL = − e2

h

∑
σ

ˆ ∞
−∞

dω γL (ω)

[
dnL

d (eVL)
2πρ1σ −

∑
s

dnL
d (eVL)

γLg
r
1σ,1sg

a
1s,1σ

−
∑
s

dn̄L
d (eVL)

γ̄Lf
r
1σ,1sf̄

a
1s,1σ

]
ω

, (A.24)

GLR =
e2

h

∑
σ,s

ˆ ∞
−∞
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[
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dnR
d (eVR)

gr1σ,Nsg
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dn̄R
d (eVR)
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r
1σ,Nsf̄

a
Ns,1σ

]
ω

,(A.25)

GRL =
e2

h

∑
σ,s

ˆ ∞
−∞

dω

[
dnL

d (eVL)
γRγLg

r
Nσ,1sg

a
1s,Nσ +

dn̄L
d (eVL)

γRγ̄Lf
r
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a
1s,Nσ

]
ω

,(A.26)

GRR = − e2

h

∑
σ

ˆ ∞
−∞

dω γR (ω)

[
dnR

d (eVR)
2πρNσ −

∑
s
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−
∑
s
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d (eVR)

γ̄Rf
r
Nσ,Nsf̄
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Ns,Nσ

]
ω

, (A.27)

where we have defined the broadening

γj (ω) = 2πt2jρ
0
j (ω) , (A.28)

γ̄j (ω) = 2πt2j ρ̄
0
j (ω) . (A.29)

To make contact with BTK theory,[60, 76] we can express these results in
a more standard form by recalling that ML (ω) = 2πTr [ΓL (ω)ρ1 (ω)] =
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σ 2πγL (ω) ρ1σ (ω) is the number of modes in the lead L at frequency ω, and

MR (ω) = 2πTr [ΓR (ω)ρN (ω)] =
∑
σ 2πγR (ω) ρNσ (ω) is the analog quantity for

lead R, where we have defined the matrices ΓL(R) (ω) =

(
γL(R) (ω) 0

0 γL(R) (ω)

)
,

and ρ1(N) (ω) = 2π

(
ρL(N),↑ (ω) 0

0 ρL(N),↓ (ω)

)
(see Ref. [77]). On the other hand,

defining the matrices
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we can express our Eqs. (A.24)-(A.27) in the BTK language as [60, 76]
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,(A.30)
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where for convenience we have omitted the argument ω inside the brackets.
In order to make explicit the non-local terms in these expressions we make use of

the identity [77]

Gr (ω)− Ga (ω) = Gr (ω) [Σr (ω)−Σa (ω)]Ga (ω) , (A.34)

From here, the following results are obtained

gr1σ,1σ (ω)− ga1σ,1σ (ω) = − 2πiρ1,σ (ω) = −2πi
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,(A.35)
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grNσ,Nσ (ω)− gaNσ,Nσ (ω) = − 2πiρN,σ (ω) = −2πi
∑
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,(A.36)

and hence, substituting into Eqs. (A.30)-(A.33), we obtain
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GLR =
e2

h

ˆ ∞
−∞

dω

[
dnR (ω)

d (eVR)

]{
Tr
[
tLRee

(
tLRee

)†]− Tr
[
tLReh

(
tLReh

)†]}
ω

, (A.38)
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,(A.40)

which correspond to Eqs. (11)-(14).
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