An eco-friendly synthesis of novel 3,5-disubstituted-1,2isoxazoles in PEG-400, employing the Et₃N-promoted hydroamination of symmetric and unsymmetric 1,3-diyneindole derivatives

Mariana M. Bassaco,^a Margiani P. Fortes,^a Davi F. Back,^a

Teodoro S. Kaufman^{b,*} and Claudio C. Silveira^{a,*}

Supplementary Information

Content	Page №
Synthetic procedures	4
Figure S1. 200 MHz ¹ H NMR spectrum of compound 2a in CDCl ₃ .	5
Figure S2. 50 MHz ¹³ C NMR spectrum of compound 2a in CDCI ₃ .	5
Figure S3. 400 MHz ¹ H NMR spectrum of compound 2b in CDCl ₃ .	6
Figure S4. 100 MHz ¹³ C NMR spectrum of compound 2b in CDCl ₃ .	6
Figure S5. 400 MHz ¹ H NMR spectrum of compound 2c in CDCl ₃ .	7
Figure S6. 100 MHz ¹³ C NMR spectrum of compound 2c in CDCl ₃ .	7
Figure S7. 400 MHz ¹ H NMR spectrum of compound 2d in CDCl ₃ .	8
Figure S8. 100 MHz ¹³ C NMR spectrum of compound 2d in CDCl ₃ .	8
Figure S9. 400 MHz ¹ H NMR spectrum of compound 2e in DMSO- d_6 .	9
Figure S10. 100 MHz ¹³ C NMR spectrum of compound 2e in DMSO- d_6 .	9
Figure S11. 400 MHz ¹ H NMR spectrum of compound 2f in DMSO- d_6 .	10
Figure S12. 100 MHz ¹³ C NMR spectrum of compound 2f in DMSO- d_6 .	10
Figure S13. 400 MHz ¹ H NMR spectrum of compound 3a in CDCl ₃ .	11
Figure S14. 100 MHz ¹³ C NMR spectrum of compound 3a in CDCl ₃ .	11

^{*} Corresponding authors. Tel.: + 55-55-32208754; E-mail: silveira@quimica.ufsm.br (Claudio C. Silveira); kaufman@iquir-conicet.gov.ar (Teodoro S. Kaufman)

Figure S15. 400 MHz ¹ H NMR spectrum of compound 3b in CDCl ₃ .	12
Figure S16. 100 MHz ¹³ C NMR spectrum of compound 3b in CDCI ₃ .	12
Figure S17. 400 MHz ¹ H NMR spectrum of compound 3c in DMSO- d_{6} .	13
Figure S18. 100 MHz ¹³ C NMR spectrum of compound 3c in DMSO- d_6 .	13
Figure S19. 400 MHz ¹ H NMR spectrum of compound 3d in DMSO- d_6 .	14
Figure S20. 100 MHz ¹³ C NMR spectrum of compound 3d in DMSO- d_{6} .	14
Figure S21. 400 MHz ¹ H NMR spectrum of compound 3e in DMSO- d_{6} .	15
Figure S22. 100 MHz ¹³ C NMR spectrum of compound 3e in DMSO- d_6 .	15
Figure S23. 400 MHz ¹ H NMR spectrum of compound 3f in DMSO- d_6 .	16
Figure S24. 100 MHz ¹³ C NMR spectrum of compound 3f in DMSO- d_6 .	16
Figure S25. 400 MHz ¹ H NMR spectrum of compound 5a in CDCl ₃ .	17
Figure S26. 100 MHz ¹³ C NMR spectrum of compound 5a in CDCl ₃ .	17
Figure S27. 400 MHz ¹ H NMR spectrum of compound 5b in CDCl ₃ .	18
Figure S28. 100 MHz ¹³ C NMR spectrum of compound 5b in CDCl ₃ .	18
Figure S29. 400 MHz ¹ H NMR spectrum of compound 5c in CDCI ₃ .	19
Figure S30. 100 MHz ¹³ C NMR spectrum of compound 5c in CDCl ₃ .	19
Figure S31. 400 MHz ¹ H NMR spectrum of compound 5d in CDCl ₃ .	20
Figure S32. 100 MHz ¹³ C NMR spectrum of compound 5d in CDCl ₃ .	20
Figure S33. 400 MHz ¹ H NMR spectrum of compound 5e in DMSO- d_6 .	21
Figure S34. 100 MHz ¹³ C NMR spectrum of compound 5e in DMSO- d_6 .	21
Figure S35. 400 MHz ¹ H NMR spectrum of compound 5f in DMSO- d_6 .	22
Figure S36. 1 00 MHz ¹³ C NMR spectrum of compound 5f in DMSO- d_6 .	22
Figure S37. 400 MHz ¹ H NMR spectrum of compound 6a in CDCl ₃ .	23
Figure S38. 100 MHz ¹³ C NMR spectrum of compound 6a in CDCl ₃ .	23
Figure S39. 600 MHz HMBC NMR spectrum of compound 6a in CDCI ₃ .	24

Figure S40. Expansion of the 600 MHz HMBC NMR spectrum of 6a.	24
Figure S41. 400 MHz ¹ H NMR spectrum of compound 6b in CDCl ₃ .	25
Figure S42. 100 MHz ¹³ C NMR spectrum of compound 6b in CDCl ₃ .	25
Figure S43. 400 MHz ¹ H NMR spectrum of compound 6c in CDCl ₃ .	26
Figure S44. 100 MHz ¹³ C NMR spectrum of compound 6c in CDCl ₃ .	26
Figure S45. 400 MHz ¹ H NMR spectrum of compound 6d in CDCl ₃ .	27
Figure S46. 100 MHz ¹³ C NMR spectrum of compound 6d in CDCl ₃ .	27
Figure S47. 400 MHz ¹ H NMR spectrum of compound 6e in CDCI ₃ .	28
Figure S48. 100 MHz ¹³ C NMR spectrum of compound 6e in CDCl ₃ .	28
Figure S49. 400 MHz ¹ H NMR spectrum of compound 6f in DMSO- d_6 .	29
Figure S50. 100 MHz ¹³ C NMR spectrum of compound 6f in DMSO- d_6 .	29
Figure S51. 400 MHz ¹ H NMR spectrum of compound 7a in CDCl ₃ .	30
Figure S52. 100 MHz ¹³ C NMR spectrum of compound 7a in CDCl ₃ .	30
Figure S53. 400 MHz ¹ H NMR spectrum of compound 7b in CDCl ₃ .	31
Figure S54. 100 MHz ¹³ C NMR spectrum of compound 7b in CDCl ₃ .	31
Figure S55. 400 MHz ¹ H NMR spectrum of compound 7c in CDCl ₃ .	32
Figure S56. 100 MHz ¹³ C NMR spectrum of compound 7c in CDCl ₃ .	32
Figure S57. 400 MHz ¹ H NMR spectrum of compound 7d in CDCl ₃ .	33
Figure S58. 100 MHz ¹³ C NMR spectrum of compound 7d in CDCl ₃ .	33
Figure S59. 400 MHz ¹ H NMR spectrum of compound 7e in DMSO- d_{6} .	34
Figure S60. 100 MHz ¹³ C NMR spectrum of compound 7e in DMSO- d_6 .	34
Figure S61. 400 MHz ¹ H NMR spectrum of compound 7f in DMSO- d_6 .	35
Figure S62. 100 MHz ¹³ C NMR spectrum of compound 7f in DMSO- d_6 .	35
References	36

Synthetic Procedures

2-Methyl-1*H*-indole (1d)¹

A mixture of phenyl hydrazine (2.16 g, 20 mmol), acetone (20 mL) and AcOH (6 drops) in EtOH (20 mL) was heated to reflux for 6 h. After cooling, the organic solvent was removed and the residue was partitioned between H₂O (50 mL) and EtOAc (2 × 50 mL). The combined organic phases were dried with MgSO₄ and concentrated under reduced pressure. The resulting hydrazone was treated dropwise with polyphosphoric acid until the color changed from red to black (10 mL). When the reaction began to give off gas, it was neutralized with 1M NaOH until a clear solution. The reaction was diluted with brine (50 mL) and the product was extracted with EtOAc (2 × 50 mL). The combined organic phases were dried (MgSO₄) and concentrated under reduced pressure. The residue was purified chromatographically, affording **1m** (1.89 g, 72%), as a brown solid, m.p.: 51-53 °C (Lit.:² 52 °C). ¹H NMR (200 MHz, CDCl₃) δ : 2.36 (s, 3H), 6.18 (s, 1H), 7.23-7.01 (m, 3H), 7.52-7.48 (m, 1H) and 7.69 (bs, 1H).

5-(*p*-Tolyl)-1*H*-indole (1e)³

5-Bromoindole (**1c**, 2.0 g, 10.2 mmol), Pd(PPh₃)₄ (1.17 g, 10 mol%) and toluene (20 mL) were successively added to a round bottom flask and the stirred mixture was treated with a solution of *p*-tolueneboronic acid (2.08 g, 15.2 mmol) in EtOH (10 mL) and saturated NaHCO₃ (6 mL) under argon. The reaction was heated to reflux for 24 h, when the system was cooled to room temperature, treated with brine (10 mL) and extracted with EtOAc (2 × 30 mL). The organic phase was washed with water (30 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography to give **1e** (1.56 g, 74%), as a beige solid, m.p.: 76-77 °C (Lit.:⁴ 78-79 °C). ¹H NMR (200 MHz, CDCl₃) δ : 2.38 (s, 3H), 6.57-7.55 (m, 1H), 7.14-7.11 (m, 1H), 7.24 (d, *J* = 8.0, 2H), 7.34 (d, *J* = 8.5, 1H), 7.43 (dd, *J* = 8.5 and 1.5, 1H), 7.54 (d, *J* = 8.0, 2H), 7.83 (s, 1H) and 7.97 (bs, 1H).

Figure S1. 200 MHz ¹H NMR spectrum of compound 2a in CDCl₃.

Figure S2. 50 MHz ¹³C NMR spectrum of compound 2a in CDCl₃.

Figure S3. 400 MHz ¹H NMR spectrum of compound 2b in CDCI_{3.}

Figure S4. 100 MHz ¹³C NMR spectrum of compound 2b in CDCl_{3.}

Figure S5. 400 MHz ¹H NMR spectrum of compound 2c in CDCI_{3.}

Figure S6. 100 MHz ¹³C NMR spectrum of compound 2c in CDCI_{3.}

Figure S7. 400 MHz ¹H NMR spectrum of compound 2d in CDCI_{3.}

Figure S8. 100 MHz ¹³C NMR spectrum of compound 2d in CDCI_{3.}

Figure S9. 400 MHz ¹H NMR spectrum of compound **2e** in DMSO-*d*₆.

Figure S10. 100 MHz ¹³C NMR spectrum of compound **2e** in DMSO-*d*₆.

Figure S11. 400 MHz ¹H NMR spectrum of compound 2f in DMSO-d₆.

Figure S12. 100 MHz ¹³C NMR spectrum of compound 2f in DMSO-d₆.

Figure S14. 100 MHz ¹³C NMR spectrum of compound 3a in CDCI_{3.}

Figure S15. 400 MHz ¹H NMR spectrum of compound 3b in CDCl_{3.}

Figure S16. 100 MHz ¹³C NMR spectrum of compound 3b in CDCI_{3.}

Figure S17. 400 MHz ¹H NMR spectrum of compound 3c in DMSO-d₆.

Figure S18. 100 MHz ¹³C NMR spectrum of compound 3c in DMSO-d₆.

Figure S20. 100 MHz ¹³C NMR spectrum of compound 3d in DMSO-d_{6.}

Figure S22. 100 MHz ¹³C NMR spectrum of compound **3e** in DMSO-*d*₆.

Figure S24. 100 MHz ¹³C NMR spectrum of compound 3f in DMSO-d₆.

Figure S25. 400 MHz ¹H NMR spectrum of compound 5a in CDCI_{3.}

Figure S26. 100 MHz ¹³C NMR spectrum of compound 5a in CDCI_{3.}

Figure S27. 400 MHz ¹H NMR spectrum of compound 5b in CDCl₃.

Figure S28. 100 MHz 13 C NMR spectrum of compound 5b in CDCl₃.

Figure S29. 400 MHz ¹H NMR spectrum of compound 5c in CDCI₃.

Figure S30. 100 MHz ¹³C NMR spectrum of compound **5c** in CDCl₃.

Figure S31. 400 MHz ¹H NMR spectrum of compound 5d in CDCl₃.

Figure S32. 100 MHz ¹³C NMR spectrum of compound **5d** in CDCl₃.

Figure S34. 100 MHz ¹³C NMR spectrum of compound **5e** in DMSO-*d*₆.

Figure S35. 400 MHz ¹H NMR spectrum of compound 5f in DMSO-*d*₆.

Figure S36. 100 MHz 13 C NMR spectrum of compound 5f in DMSO- d_6 .

Figure S37. 400 MHz ¹H NMR spectrum of compound 6a in CCl₃.

Figure S38. 100 MHz ¹³C NMR spectrum of compound 6a in CCl₃.

Figure S39. 600 MHz HMBC NMR spectrum of compound 6a in CCI₃.

Figure S40. Expansion of the 600 MHz HMBC NMR spectrum of 6a.

Figure S41. 400 MHz ¹H NMR spectrum of compound 6b in CDCI₃.

Figure S42. 100 MHz ¹³C NMR spectrum of compound **6b** in CDCl₃.

Figure S43. 400 MHz ¹H NMR spectrum of compound 6c in CDCI₃.

Figure S44. 100 MHz ¹³C NMR spectrum of compound 6c in CDCl₃.

Figure S45. 400 MHz ¹H NMR spectrum of compound 6d in CDCI₃.

Figure S46. 100 MHz ¹³C NMR spectrum of compound 6d in CDCI₃.

Figure S48. 100 MHz ¹³C NMR spectrum of compound 6e in CDCI₃.

Figure S49. 400 MHz ¹H NMR spectrum of compound 6f in DMSO-d₆.

Figure S50. 100 MHz ¹³C NMR spectrum of compound 6f in DMSO-*d*₆.

Figure S51. 400 MHz ¹H NMR spectrum of compound 7a in CDCl₃.

Figure S52. 100 MHz 13 C NMR spectrum of compound 7a in CDCl₃.

Figure S53. 400 MHz ¹H NMR spectrum of compound 7b in CDCI₃.

Figure S54. 100 MHz ¹³C NMR spectrum of compound 7b in CDCl₃.

Figure S55. 400 MHz ¹H NMR spectrum of compound 7c in CDCI₃.

Figure S56. 100 MHz ¹³C NMR spectrum of compound 7c in CDCl₃.

Figure S57. 400 MHz ¹H NMR spectrum of compound 7d in CDCI₃.

Figure S58. 100 MHz ¹³C NMR spectrum of compound 7d in CDCl₃.

Figure S59. 400 MHz ¹H NMR spectrum of compound 7e in DMSO-d₆.

Figure S60. 100 MHz ¹³C NMR spectrum of compound **7e** in DMSO-*d*₆.

Figure S61. 400 MHz ¹H NMR spectrum of compound 7f in DMSO-d₆.

Figure S62. 100 MHz ¹³C NMR spectrum of compound 7f in DMSO-*d*₆.

References

- a) C. J. Roxburgh, P. G. Sammes and A. Abdullah, *Dyes Pigm.*, 2009, 82, 226–237; b) S. A. Samsoniya, N. N. Barbakadze and I. S. Chikvaidze, *Arkivoc* 2012, 143–154.
- 2 K.-S. Masters, M. Wallesch and S. Bräse, J. Org. Chem., 2011, 76, 9060–9067.
- M. Prieto, E. Zurita, E. Rosa, L. Muñoz, P. Lloyd–Williams and E. Giralt, *J. Org. Chem.*, 2004, **69**, 6812–6820.
- 4 Y.-Y. Peng, J. Liu; X. Lei and Z. Yin, *Green Chem.*, 2010, **12**, 1072–1075.