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Generation of chiral solitonsin antiferromagnetic chains by a quantum quench
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We analyze the time evolution of a magnetic excitation inia-@antiferromagnetic Heisenberg chain after
a quantum quench. By a proper modulation of the magneticagmgsh coupling, we prepare a static soliton
of total spin% as an initial spin state. Using bosonization and a numetios dependent density matrix
renormalization group algorithm, we show that the initiedigation evolves to a state composed of two counter-
propagating chiral states, which interfere to yi¢ff) = i for each mode. We find that these dynamically
generated states remain considerably stable as time volstcarried out. We propose spin-Peierls materials
and ultracold-atom systems as suitable experimental 6osria which to conduct and observe this mechanism.

PACS numbers: 75.10.Jm, 75.10.Pq, 03.75.Lm

I. INTRODUCTION Once the initial soliton is prepared, we follow the dynamics
of this excitation on the uniform zig-zag Heisenberg chain,

Thinking about classical nonlinear physics, solitons are p driven by a quench of the spin-phonon coupling. We ob-
culiar solutions which can be characterized by constant veS€rve that, in the gapless phase of the model, the initial sol
locity and shape. Recently, Wollert and Honeékeursuing (0N €volves into two counterpropagating modes, indicaging
the understanding of the extension of the soliton concept t§uantum superposition of left- and right- moving composent
the quantum regime, chose the easy-axis ferromaghetic of t_he or|_g|nal soliton. As time evolves, the excitation re-
model as the scenario in which to analyze how a localized"@iNs quite stable despite the quantum-mechanical sprgadi
quantum wave packet evolves in time. They have shown thdP"n the other hand, for a highly localized soliton generated i
besides the quantum mechanical delocalization due to the uf'® MG point, the excitation shows quick spreading with time
certainty principle, they are in qualitative agreementwiis ~ €volution. _ _ o
classical counterpart. Following this objective of de@ghg We sgelect the density matrix renormalization group
the quantum soliton term, we tackle an alternative probiem i (OMRG)® and bosonizatioH as the numerical and analytical
which we study the time evolution of a one-dimensional topo-€chniques to conduct our study. There are plenty of exam-
logical quantum soliton after a quench. plesin the literature showing that both methods are coevetni

The study of nonequilibrium phenomena in one- for giving a reliable description of spin chain systemstipar

dimensional systems has become a very active area Marly, when the coupling to the lattice is also consideted.

) e SICET
research in recent years due to new advances in the efmong different DMRG options? we use the algorithm in-

4
periments wih ultracold atoms in optical latticesnd the ~Uoduced by Manmanat al” that allows us to perform non
latest studies on thermalization after quantum quendhes. eauilibrium simulations for systems with interactions begi
With these ideas in mind, we propose a frustratge./s the nearest neighbors. Itis worth mentioning that relatied-s
spin-L antiferromagnetic Heisenberg chain as a suitabld®S Were done on spin transport, even at finite temperature.

framework in which to conduct the analysis. It is know

that this model undergoes a phase transition from a quasi-
long-range ordered ground state to a product of localized
singlets clusters as a function of the next-nearest neighbo

parameter. Moreover, this Hamiltonian has an exact ground . . . o
state at the Majumdar-Ghosh (MG) poiit = 2.»,2 and In order to generate a soliton-like topological excitation

a variational approach describes the elementary exaigtio W€ introduce a one dimensional antiferromagnetic Heisenbe
adequately. More specifically, in this work we propose a quﬂtoman W|th_f|rst and second neighbor interactions and
fine-tuned magnetic soliton as the initial pattern whichl wil SPin-lattice coupling, which reads

be evolved in time after a quantum quench of the model

parameters. In order to create this initial sgiexcitation, we H= Z [L+8i]8i - Sigr + BSiz1 - Siga. (1)
choose a one-dimensional chain with spin-phonon coupling !
as a witness case, which is realized in quasi-one dimerision&; is a spin-1/2 operator for thih lattice site, and we have
spin-Peierls systems such as CuGe@®ef.[7) and TiOX  set.J; = 1 as the energy scale, such that= Jo/J1 is the
(X = CI,Br).2 An alternative approach would be to preparesecond neighbor exchange coupling;= A(u; 1 — u;)/Jy

the initial excitation and conduct the time evolution in &uge  is the dimensionless bond length variation, wheyere the

of ultracold atoms in an optical lattice. displacements of the magnetic ions from their equilibrium
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' the $* = 1 subspace the field goes frosi—occ) = —Z to

2
05 ¢(c0) = T. Therefore, the expression fof; is

0.25 F |

1 1
Mp = %W’(X = la)) + 1 (3)
As the bosonized version of the Hamiltonidi is not exactly
05 * - * solvable for general displacemenfswe resort to a semiclas-
s o & sical solution in order to calculate the mean value of thel fiel
in the corresponding subspace and compare with the DMRG
FIG. 1. (Color online) Collective excitation obtained by [RG results. Th'is‘)lu'ﬂgn can be obtained by adding an elastic
in a finite lattice of N, — 99 sites, in the absence of frustration €Nergy terms: 5~ 67 to the Hamiltonian and treating in
(8 = 0). The soliton, represented H;) (circles), was tuned by the adiabatic approximatic¥:t® The classical solutions for
selectingd; in a given configuration (squares). The parameters aréhe continuous fields ar@xz) = dp tanh(x/¢) and¢(x) =
§ = 1,00 = 0.3. We also show the cumulative magnetization up to arcsin [tanh(z/¢)]. With the inclusion of an elastic energy
a given site (diamonds). The bosonization result for thigmitade term’(so andg depend on the values of the microscopic param-
is represented by the solid line. etersk and.J; . In the previous DMRG calculation we chose
0; with arbitrarydg andg, i.e. not subject to fulfilling an adia-
. . . . . batic equation. In the spirit of a semi-classical quaniré?
positions, and>\_ IS t_he spin-attice coupling parameter. Al- we assume the following ansatz for the mean value of the
Fhough fru.st.ranon is not necessary to present our ideas, W <onic field: (#) = ¢s(x) = arcsin[tanh(z/€")], where
'.””.OSUCG Itin order to compare it W't.h the well-known MG the subindexs refers to a solitonic pattern. In Fiflwe show
limit= to achieve a better understanding of the process. 891 fitting to the numerical results using the analytical egpre

with th_e intention of promoting a sort of quantum_topologl- sion, for which we obtain a good agreement wjth= 1.773.
cal soliton, we break the lattice symmetry to manipulate the

nearest neighbor magnetic interaction. From the studies of

models with spin-phonon coupling it is known that, when

phonons are treated adiabatically, the stable patter@fm [1l. QUENCH AND TIME EVOLUTION OF THE SOLITON

the S* = 1/2 sector is the one called the static lattice soliton,
. i i .

given by(s.i - (_1).150 tfrmh(.T[f)' The do”.‘a'” wallis cen- We now turn off the spin-lattice coupling and study the dy-

tered at site, and its width is given by, which produceslan namics of this magnetic excitation, which will be conducted

interpolation between two dimerized patterns. TWfe= =

; . : . 2 by a homogeneous Heisenberg Hamiltontéh= H[d; = 0].
magnetic sohtpn generated by this Iattlge arrangemens.m.a Once the quantum soliton is constructed, the time-dependen
centered at sité;, and the number of sites involved within 5\, (--DMRG) algorithm enables us to evolve in time un-
the wall is co_ntrolled_ by th? parametegrand_éo. In Fig.[Mwe der this new homogeneous HamiltoniAs a gapless phase
show the lattice configuration generated with the set ofipara is stable for0 < 3 < B. — 0.245, we analyze different
eters{s = 0,0 = 0'3’§ = 1}, together with the associated nq4 solitons in this zone where the bosonization analysis
Spin pattern given bys.i ) Wh'(?h was obtained from EqI) is valid. In Fig.[2, we show the dynamics of two witness
using DMRG in a lattice of sizeV, = 99, where the odd ;<o which are defined by = 0,50 = 0.3,6 — 1} and
number of sites is to set the total magnetizatios tdVe use {8=0.24,8)=0.3,£ =3}. One car,1 oObser\}e,that the excita-
open boundary conditions keeping= 300 states, enough to tions behave in a subtle way. In both cases, the time evalutio

. . s
?‘Ssr‘]”e the accuracx}vwnh a trrl],lncatlon e;rohr of 0.@6'0 ) shows how the original soliton evolves in such a way that, at a
In the worst case. We see that most of the spins arrange I§'iven time, two spin clouds are observed, each of them carry-
localized singlet clusters, producing zero local magiaditn. ing (5) = i- Remarkably, these right and left modes are quite

lHowsver, in thﬁ center of tgf %ham yvhzre the bon%s \'/r\]/terpoétable: as observed in F{g, these modes barely disperse as
ate between the two possible dimerized staé) # 0. We time evolves. We will return to this interpretation later.

also show the cumulative magnetization up to a givenkite These left and right excitations travel at a velocity which

which is defined ad/; = 3°;_, (S7). A clear solitonic pro- agrees very well with the spin wave velocity of the low energy
file can be observed in this quantity. Let us now resort to theycitations of the homogeneous chain. This can be seen.in Fig
bosonization technique to analyze thg parameter. In this 3 py comparing the evolution of the maximum ) with
representation, the-component of the spin is connected to a he spin wave velocity, = T predicted by the Bethe ansatz

bosonic field(x) by=? for the one dimensional homogeneous Heisenberg éfain,
1 (—1)i and the renormalized, = 7 (1 — 1.1253) calculated in Ref.
S7 = 2—8x¢(:17 =ia) + cos[2¢(xz = ia)], (2) using exact diagonalization in small chains.

g Let us analyze the origin of this behavior by studying the
whereaq is the lattice constant and is a short range cutoff time evolution in the bosonization language. The Hamil-
in the bosonization procedure. The quantitf; is obtained tonian H’ in the bosonic representation corresponds to a
by integration of the previous equation up to a paoint Be-  (1+1) free bosonic field theory, up to marginally irrelevant
ing oscillatory at the lattice level, the last term vanishés  operatord? These marginal operators vanish @t= 3.
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FIG. 2. (Color online) Time evolution o(foF; in the collective excitation obtained by DMIgG with and withdrustration for the two witness
cases, (ap = 0,00 = 0.3, = 1 andg = 0.24, 5 = 0.3,£ = 3. In (a), the black line corresponds to the slope in the tipeee diagram
of the spin velocityv; = % obtained by the Bethe ansatz for a homogeneous Heisenbairg ¢h (b), the black line shows the spin velocity
renormalized by the frustration. In both cases one obseheesplitting of the soliton into two chiral modes.

The time evolution of the mean value @f is given by tum soliton states, such thgt) (|R)) is a state propagating
(P, 1)) = (e"Htpp(x)et't) 4 (emH'tp, (z)etH't) =  tothe left (right). The system retains the memory of the ini-
3 [ps(x — vst) + ¢s(z + vst)]. To obtain the previous ex- tial state, but the original soliton state evolves into tvnral
pression, we have taken into account that, in the initigksta states as the time evolution is carried out with a Hamiltonia
the field¢ is splitinto its left and right parte = 1 (¢, + ¢r) ~ Whose leftand right modes are independent. However, the ele
originating from the left and right fermions in the bosoniza mentary excitations of the uniform Heisenberg model are not

tion procedure. For a time-independent stéte;) = (¢,) =  these type of solitons, notably the dynamical states preser
¢5(*) as in the initial situation discussed above. On the othefoherence and disperse quite slowly.
hand, the time evolution af;, is independent of that af , It is worth remarking that working with an odd number of

and it is given by a simple shift int to the left and to the sites is not a necessary condition for these results. An even

right, respectively. In Figd we show the cumulative mag- number of sites will sustain a pair of soliton and antisalito
netization for different times copared to the DMRG results.

We used the fitted value to the static solution §rin ¢g,

as shown for thed = 0 case in Figlll A similar procedure 0.5
gives¢’ = 2.781 for the 8 = 0.24 case. We also fix; to the
spin-wave velocity of the homogeneous chains as previously
discussed. We observe a fairly good comparison between the _
DMRG and bosonization results, especially wheis near

the critical values,... This is due to the reduction of the finite-

size effect in the latter case: as the evolution of the regplt
excitations is slower as increases, they do not reach the edge 0.0
of the chain for the last tim&,= 20, obtained in our calcula- 0.5
tion. The improved fitting between both results could also be
due to the fact that the marginal irrelevant term negleated i
the bosonized Hamiltonian could play some role in the short-
distance correlations which, nonetheless, vanishés.afAs

in the numerical results, we see that the original solitoesdo
not propagate in a particular direction but the state splits
two counterpropagating modes as a consequence of the chi- 0.0
ral symmetry of the Hamiltonian. As this pattern arises as a 1
sum of two topological protected excitations, one on thhtrig
sector and one on the left sector of the theory, we can assume

N . G. 3. (Color online) Time evolution of the cumulative magjn
that the global excitation is also protected and remains Sta, 110N as given by DMRG (symbols) and bosonization (soliés)

ble with .the time eVOlgtiorl' Th? jumP iy indipates that in the (a) non frustrated and (b) frustratesl £ 0.24) cases. The
each chiral mode carriggs*) = ;. This can be interpreted opserved jump td/; = 1/4 as time evolves, signals the quantum

as a superpositiof|L) + |R))/v/2 of two S* = 1/2 quan- interference of left and right soliton states.
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excitations. For long enough separation between them in or-
der to prevent interaction effects, the conclusion remties

same, so that each soliton will split into two left and right 12 o 0.5
modes as time evolves. 04
[P L . 10 B .
One wonders if in the limiting case of a soliton of zero
width, i.e., at the MG pointf=1/2), such mechanism could 8 | 1 °3
come into effect. o 0.2
E6 - 8
= 0.1
4 - -
IV. SOLITON OF ZERO WIDTH: A FREE SPIN 00
2r TH -01
The MG point is a good scenario to create such localized 0 1 02
excitation, and as it has an exact eigensolution built of sin 1 41
glets, we analyze the case in order to compare our numeri- Space

cal calculations with the variational approach of Réf. 6. To . ] ) .
recreate this situation we use = 0 and 8 = 1/2 in Eq. FIG. 4. (Color online) Time evolution ofS;) for the free spin on

; lattice of 41 sites at the MG poirit = 1/2. The solid lines cor-
g{)é arEj Sﬁft to ierg ;I;eweeﬁlc h?’?]ge?egarme;ig&?smnZC#ZS r?ce)spond to the maximum group velocity according to the tianal
=l = (Ns +1)/ . Y, v = dispersion relation obtained from REf. 6.
spin at the center of the lattice, separating two MG domains

| o oo ¢ oo o) With singlets|e—s) = %HT@ —|41)]. Since

the physics we want to describe is localized, we choose a Ia}- . : :
. . ) ; s generated which has been characterized by x-ray scgjteri
tice of Ny = 41 in the S* = % subspace without worrying 9 y y

bout the ed fact measurement®. For not too strong a magnetic field above
aboutthe edge efiects. . . H¢, the magnetic chains realize our initial state because the
In Fig.@we show the time evolution gfS?) once the uni-

. . : ) solitons are far apart. Then, the field should be turned off
form zigzag Heisenberg model is restored, from which we cal g the temperature raised abdlg.. The system should

appreciate two things. First, we have appropriate agreémen,, e in the uniform phase and the magnetism should be
with the v_ariational approac§1where elementary excitations described by a homogeneous Heisenberg Hamiltonian, which
are descrlbed .by’(k) — 26[1. +COS(2k>]Z The slope of thg will conduct the time evolution as well. Another possible re
solid lines in Figd agrees with the maximum group velocity i ation is in recent experiments of ultracold atoms texbp
that results from the variational dispersion relation. We a ;' .« qimensional optical lattice. Recently, the bosoe

not aware of other numerical calculations showing this & th pulsive Hubbard model has been successfuII),/ accompfdhed

literature. Secondly, we have qualitative agreement with t to study the dynamics of spin excitations on a ferromagnetic

effective Hamiltonian description proposed in Ref. 19 fue t background. On the other hand, the fermionic version has

dynamlgs of a free spin hppplng betw_egq next nearest Neiglieen realized? and once the limitations related to the temper-
bors. It is easy to appreciate that the initial free spin cedu

ature are overcome, it is expected that the antiferromagnet

its module at the center site with the time evolution, tranS'Heisenberg model can be simulated by tuning the Feshbach
ferring its spin component to the next nearest neighbor. Th?esonances for large on-site repulsion

spin uses the mechanism of exchange mediate8 by avoid
breaking the dimers, which would result in a loss of magnetic
energy. Different from the mechanism previously described

in which we found a separation into chiral modes, here the VI. CONCLUSIONS
time evolution of(S?) shows the expected dispersion of the
original individual excitation moving in a singlet sea. Tihe We described a mechanism based on the preparation of a

tial excitation cannot remain hlgh'y localized becausehef t soliton, which after a quench of the interaction drives I}’ES
uncertainty principle. As the quasiparticle is localizadeal  tem to the formation of a state composed of two counterprop-
space, it involves a broad range of momenta in the reciproca|gating components as times evolves, producing two-well de
space, in which case the excitation spreads very quickly.  fined spin clouds in the chain, each of them with total magne-
tization (S#) = 1/4. This state can be interpreted as a quan-
tum superposition of left and right movirff = 1/2 quantum
V. POSSIBLE EXPERIMENTAL REALIZATIONS soliton states that are protected by the chiral separafitieo
Hamiltonian. Remarkably, they remain stable as time ewlve
Two experimental realizations of the previous mechanisnshowing a very slow dispersion. We propose a recipe to ob-
are envisaged. One is on spin-Peierls materials such aain these states, consisting of an initial preparationtopa-
CuGeQ (Ref.[7) or TIQX (X = CI,Br).8 At low temper-  logical protected excitation by a modulation of the excheng
atures, below a critical valuésp, these materials undergo a couplings, followed by a quench of the interactions, getaera
magneto structural transition in which the lattice dimesiz ing new left and right solitonic states that will evolve img
and a spin gap opens in the magnetic spectrum. Applying through a Hamiltonian whose left and right modes are inde-
magnetic field larger than the critical ofi&, a soliton lattice  pendent. On the other hand, the situation for the MG point is



different. As the initial excitation is local in real spads,dis-

tribution in momentum space is very broad, leading to a rapid

dispersion of the excitation as time evolves. The most ahtur
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