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Generation of chiral solitons in antiferromagnetic chains by a quantum quench

Barbara Bravo,1 Ariel Dobry,1 Diego Mastrogiuseppe,2,3 and Claudio Gazza1
1Facultad de Ciencias Exactas Ingenierı́a and Agrimensura,

Universidad Nacional de Rosario and Instituto de Fı́sica Rosario, Bv. 27 de Febrero 210 bis, 2000 Rosario, Argentina.
2Department of Physics and Astronomy, and Nanoscale and Quantum Phenomena Institute,

Ohio University, Athens, Ohio 45701–2979
3Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany

(Dated: November 15, 2013)

We analyze the time evolution of a magnetic excitation in a spin- 1
2

antiferromagnetic Heisenberg chain after
a quantum quench. By a proper modulation of the magnetic exchange coupling, we prepare a static soliton
of total spin 1

2
as an initial spin state. Using bosonization and a numericaltime dependent density matrix

renormalization group algorithm, we show that the initial excitation evolves to a state composed of two counter-
propagating chiral states, which interfere to yield〈Sz〉 = 1

4
for each mode. We find that these dynamically

generated states remain considerably stable as time evolution is carried out. We propose spin-Peierls materials
and ultracold-atom systems as suitable experimental scenarios in which to conduct and observe this mechanism.

PACS numbers: 75.10.Jm, 75.10.Pq, 03.75.Lm

I. INTRODUCTION

Thinking about classical nonlinear physics, solitons are pe-
culiar solutions which can be characterized by constant ve-
locity and shape. Recently, Wöllert and Honecker1 pursuing
the understanding of the extension of the soliton concept to
the quantum regime, chose the easy-axis ferromagneticXXZ
model as the scenario in which to analyze how a localized
quantum wave packet evolves in time. They have shown that
besides the quantum mechanical delocalization due to the un-
certainty principle, they are in qualitative agreement with its
classical counterpart. Following this objective of deciphering
the quantum soliton term, we tackle an alternative problem in
which we study the time evolution of a one-dimensional topo-
logical quantum soliton after a quench.

The study of nonequilibrium phenomena in one-
dimensional systems has become a very active area of
research in recent years due to new advances in the ex-
periments wih ultracold atoms in optical lattices,2 and the
latest studies on thermalization after quantum quenches.3,4

With these ideas in mind, we propose a frustratedJ1-J2
spin-12 antiferromagnetic Heisenberg chain as a suitable
framework in which to conduct the analysis. It is know
that this model undergoes a phase transition from a quasi-
long-range ordered ground state to a product of localized
singlets clusters as a function of the next-nearest neighbor
parameter. Moreover, this Hamiltonian has an exact ground
state at the Majumdar-Ghosh (MG) pointJ1 = 2J2,5 and
a variational approach describes the elementary excitations
adequately.6 More specifically, in this work we propose a
fine-tuned magnetic soliton as the initial pattern which will
be evolved in time after a quantum quench of the model
parameters. In order to create this initial spin-1

2 excitation, we
choose a one-dimensional chain with spin-phonon coupling
as a witness case, which is realized in quasi-one dimensional
spin-Peierls systems such as CuGeO3 (Ref. 7) and TiOX
(X = Cl,Br).8 An alternative approach would be to prepare
the initial excitation and conduct the time evolution in a setup
of ultracold atoms in an optical lattice.

Once the initial soliton is prepared, we follow the dynamics
of this excitation on the uniform zig-zag Heisenberg chain,
driven by a quench of the spin-phonon coupling. We ob-
serve that, in the gapless phase of the model, the initial soli-
ton evolves into two counterpropagating modes, indicatinga
quantum superposition of left- and right- moving components
of the original soliton. As time evolves, the excitation re-
mains quite stable despite the quantum-mechanical spreading.
On the other hand, for a highly localized soliton generated in
the MG point, the excitation shows quick spreading with time
evolution.

We select the density matrix renormalization group
(DMRG)9 and bosonization10 as the numerical and analytical
techniques to conduct our study. There are plenty of exam-
ples in the literature showing that both methods are convenient
for giving a reliable description of spin chain systems, partic-
ularly, when the coupling to the lattice is also considered.11

Among different DMRG options,12 we use the algorithm in-
troduced by Manmanaet al,4 that allows us to perform non
equilibrium simulations for systems with interactions beyond
the nearest neighbors. It is worth mentioning that related stud-
ies were done on spin transport, even at finite temperature.13

II. THE MODEL AND STRATEGY TO GENERATE
EXCITED STATES

In order to generate a soliton-like topological excitation,
we introduce a one dimensional antiferromagnetic Heisenberg
Hamiltonian with first and second neighbor interactions and
spin-lattice coupling, which reads

H =
∑

i

[1 + δi]Si · Si+1 + βSi−1 · Si+1. (1)

Si is a spin-1/2 operator for theith lattice site, and we have
setJ1 = 1 as the energy scale, such thatβ = J2/J1 is the
second neighbor exchange coupling;δi = λ(ui+1 − ui)/J1
is the dimensionless bond length variation, whereui are the
displacements of the magnetic ions from their equilibrium
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FIG. 1. (Color online) Collective excitation obtained by DMRG
in a finite lattice ofNs = 99 sites, in the absence of frustration
(β = 0). The soliton, represented by〈Sz

i 〉 (circles), was tuned by
selectingδi in a given configuration (squares). The parameters are
ξ = 1, δ0 = 0.3. We also show the cumulative magnetization up to
a given site (diamonds). The bosonization result for this magnitude
is represented by the solid line.

positions, andλ is the spin-lattice coupling parameter. Al-
though frustration is not necessary to present our ideas, we
introduce it in order to compare it with the well-known MG
limit5 to achieve a better understanding of the process. So,
with the intention of promoting a sort of quantum topologi-
cal soliton, we break the lattice symmetry to manipulate the
nearest neighbor magnetic interaction. From the studies of
models with spin-phonon coupling it is known that, when
phonons are treated adiabatically, the stable pattern forδi in
theSz = 1/2 sector is the one called the static lattice soliton,
given byδi = (−1)iδ0 tanh(

i−i0
ξ

). The domain wall is cen-
tered at sitei0 and its width is given byξ, which produces an
interpolation between two dimerized patterns. TheSz = 1

2
magnetic soliton generated by this lattice arrangement is also
centered at sitei0, and the number of sites involved within
the wall is controlled by the parametersξ andδ0. In Fig.1 we
show the lattice configuration generated with the set of param-
eters{β = 0, δ0 = 0.3, ξ = 1}, together with the associated
spin pattern given by〈Sz

i 〉, which was obtained from Eq. (1)
using DMRG in a lattice of sizeNs = 99, where the odd
number of sites is to set the total magnetization to1

2 . We use
open boundary conditions keepingm = 300 states, enough to
assure the accuracy, with a truncation error of orderO(10−9)
in the worst case. We see that most of the spins arrange in
localized singlet clusters, producing zero local magnetization.
However, in the center of the chain where the bonds interpo-
late between the two possible dimerized states,〈Sz

i 〉 6= 0. We
also show the cumulative magnetization up to a given siteI,
which is defined asMI =

∑I

i=1〈Sz
i 〉. A clear solitonic pro-

file can be observed in this quantity. Let us now resort to the
bosonization technique to analyze theMI parameter. In this
representation, thez-component of the spin is connected to a
bosonic fieldφ(x) by10

Sz
i =

1

2π
∂xφ(x = ia) +

(−1)i

πα
cos[2φ(x = ia)], (2)

wherea is the lattice constant andα is a short range cutoff
in the bosonization procedure. The quantityMI is obtained
by integration of the previous equation up to a pointX . Be-
ing oscillatory at the lattice level, the last term vanishes. In

theSz = 1
2 subspace the field goes fromφ(−∞) = −π

2 to
φ(∞) = π

2 . Therefore, the expression forMI is

MI =
1

2π
〈φ(X = Ia)〉+ 1

4
. (3)

As the bosonized version of the Hamiltonian (1) is not exactly
solvable for general displacementsδi, we resort to a semiclas-
sical solution in order to calculate the mean value of the field
in the corresponding subspace and compare with the DMRG
results. This solution can be obtained by adding an elastic
energy termK

2

∑
i δ

2
i to the Hamiltonian and treatingδi in

the adiabatic approximation.14,15 The classical solutions for
the continuous fields areδ(x) = δ0 tanh(x/ξ) andφ(x) =
arcsin [tanh(x/ξ)]. With the inclusion of an elastic energy
term,δ0 andξ depend on the values of the microscopic param-
etersK andJ1,2. In the previous DMRG calculation we chose
δi with arbitraryδ0 andξ, i.e. not subject to fulfilling an adia-
batic equation. In the spirit of a semi-classical quantization16

we assume the following ansatz for the mean value of the
bosonic field: 〈φ〉 ≡ φS(x) = arcsin [tanh(x/ξ′)], where
the subindexS refers to a solitonic pattern. In Fig.1 we show
a fitting to the numerical results using the analytical expres-
sion, for which we obtain a good agreement withξ′ = 1.773.

III. QUENCH AND TIME EVOLUTION OF THE SOLITON

We now turn off the spin-lattice coupling and study the dy-
namics of this magnetic excitation, which will be conducted
by a homogeneous Heisenberg HamiltonianH ′ ≡ H [δi = 0].
Once the quantum soliton is constructed, the time-dependent
DMRG (t-DMRG) algorithm enables us to evolve in time un-
der this new homogeneous Hamiltonian.17 As a gapless phase
is stable for0 ≤ β ≤ βc = 0.245, we analyze different
tuned solitons in this zone where the bosonization analysis
is valid. In Fig. 2, we show the dynamics of two witness
cases which are defined by{β = 0, δ0 = 0.3, ξ = 1} and
{β=0.24, δ0 =0.3, ξ=3}. One can observe that the excita-
tions behave in a subtle way. In both cases, the time evolution
shows how the original soliton evolves in such a way that, at a
given time, two spin clouds are observed, each of them carry-
ing 〈Sz〉= 1

4 . Remarkably, these right and left modes are quite
stable: as observed in Fig.2, these modes barely disperse as
time evolves. We will return to this interpretation later.

These left and right excitations travel at a velocity which
agrees very well with the spin wave velocity of the low energy
excitations of the homogeneous chain. This can be seen in Fig.
2 by comparing the evolution of the maximum of〈Sz

i 〉 with
the spin wave velocityvs = π

2 predicted by the Bethe ansatz
for the one dimensional homogeneous Heisenberg chain,10

and the renormalizedvs = π
2 (1 − 1.12β) calculated in Ref.

18 using exact diagonalization in small chains.
Let us analyze the origin of this behavior by studying the

time evolution in the bosonization language. The Hamil-
tonian H ′ in the bosonic representation corresponds to a
(1+1) free bosonic field theory, up to marginally irrelevant
operators.10 These marginal operators vanish atβ = βc.
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FIG. 2. (Color online) Time evolution of〈Sz

i 〉 in the collective excitation obtained by DMRG with and without frustration for the two witness
cases, (a)β = 0, δ0 = 0.3, ξ = 1 andβ = 0.24, δ0 = 0.3, ξ = 3. In (a), the black line corresponds to the slope in the time-space diagram
of the spin velocityvs = π

2
obtained by the Bethe ansatz for a homogeneous Heisenberg chain. In (b), the black line shows the spin velocity

renormalized by the frustration. In both cases one observesthe splitting of the soliton into two chiral modes.

The time evolution of the mean value ofφ is given by
〈φ(x, t)〉 = 〈e−iH′tφR(x)e

iH′t〉 + 〈e−iH′tφL(x)e
iH′t〉 =

1
2 [φS(x − vst) + φS(x+ vst)]. To obtain the previous ex-
pression, we have taken into account that, in the initial state,
the fieldφ is split into its left and right partsφ = 1

2 (φL +φR)
originating from the left and right fermions in the bosoniza-
tion procedure. For a time-independent state,〈φR〉 = 〈φL〉 =
φS(x)

2 as in the initial situation discussed above. On the other
hand, the time evolution ofφL is independent of that ofφR,
and it is given by a simple shift invt to the left and to the
right, respectively. In Fig.3 we show the cumulative mag-
netization for different times copared to the DMRG results.
We used the fitted value to the static solution forξ′ in φS ,
as shown for theβ = 0 case in Fig.1. A similar procedure
givesξ′ = 2.781 for theβ = 0.24 case. We also fixvs to the
spin-wave velocity of the homogeneous chains as previously
discussed. We observe a fairly good comparison between the
DMRG and bosonization results, especially whenβ is near
the critical valueβc. This is due to the reduction of the finite-
size effect in the latter case: as the evolution of the resulting
excitations is slower asβ increases, they do not reach the edge
of the chain for the last time,t = 20, obtained in our calcula-
tion. The improved fitting between both results could also be
due to the fact that the marginal irrelevant term neglected in
the bosonized Hamiltonian could play some role in the short-
distance correlations which, nonetheless, vanishes atβc. As
in the numerical results, we see that the original soliton does
not propagate in a particular direction but the state splitsinto
two counterpropagating modes as a consequence of the chi-
ral symmetry of the Hamiltonian. As this pattern arises as a
sum of two topological protected excitations, one on the right
sector and one on the left sector of the theory, we can assume
that the global excitation is also protected and remains sta-
ble with the time evolution. The jump inMI indicates that
each chiral mode carries〈Sz〉 = 1

4 . This can be interpreted
as a superposition(|L〉 + |R〉)/

√
2 of two Sz = 1/2 quan-

tum soliton states, such that|L〉 (|R〉) is a state propagating
to the left (right). The system retains the memory of the ini-
tial state, but the original soliton state evolves into two chiral
states as the time evolution is carried out with a Hamiltonian
whose left and right modes are independent. However, the ele-
mentary excitations of the uniform Heisenberg model are not
these type of solitons, notably the dynamical states preserve
coherence and disperse quite slowly.

It is worth remarking that working with an odd number of
sites is not a necessary condition for these results. An even
number of sites will sustain a pair of soliton and antisoliton
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FIG. 3. (Color online) Time evolution of the cumulative magneti-
zation as given by DMRG (symbols) and bosonization (solid lines)
in the (a) non frustrated and (b) frustrated (β = 0.24) cases. The
observed jump toMI = 1/4 as time evolves, signals the quantum
interference of left and right soliton states.
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excitations. For long enough separation between them in or-
der to prevent interaction effects, the conclusion remainsthe
same, so that each soliton will split into two left and right
modes as time evolves.

One wonders if in the limiting case of a soliton of zero
width, i.e., at the MG point (β=1/2), such mechanism could
come into effect.

IV. SOLITON OF ZERO WIDTH: A FREE SPIN

The MG point is a good scenario to create such localized
excitation, and as it has an exact eigensolution built of sin-
glets, we analyze the case in order to compare our numeri-
cal calculations with the variational approach of Ref. 6. To
recreate this situation we useδi = 0 and β = 1/2 in Eq.
(1), and set to zero the exchange parameters connecting to
site i = (Ns + 1)/2 as well. Thereby, we establish a free
spin at the center of the lattice, separating two MG domains
| 〉 with singlets| 〉= 1√

2
[|↑↓〉 − |↓↑〉]. Since

the physics we want to describe is localized, we choose a lat-
tice of Ns = 41 in the Sz = 1

2 subspace without worrying
about the edge effects.

In Fig. 4 we show the time evolution of〈Sz
i 〉 once the uni-

form zigzag Heisenberg model is restored, from which we can
appreciate two things. First, we have appropriate agreement
with the variational approach,6 where elementary excitations
are described byω(k) = 2β[ 54 + cos(2k)]. The slope of the
solid lines in Fig.4 agrees with the maximum group velocity
that results from the variational dispersion relation. We are
not aware of other numerical calculations showing this in the
literature. Secondly, we have qualitative agreement with the
effective Hamiltonian description proposed in Ref. 19 for the
dynamics of a free spin hopping between next nearest neigh-
bors. It is easy to appreciate that the initial free spin reduces
its module at the center site with the time evolution, trans-
ferring its spin component to the next nearest neighbor. The
spin uses the mechanism of exchange mediated byJ2 to avoid
breaking the dimers, which would result in a loss of magnetic
energy. Different from the mechanism previously described
in which we found a separation into chiral modes, here the
time evolution of〈Sz

i 〉 shows the expected dispersion of the
original individual excitation moving in a singlet sea. Theini-
tial excitation cannot remain highly localized because of the
uncertainty principle. As the quasiparticle is localized in real
space, it involves a broad range of momenta in the reciprocal
space, in which case the excitation spreads very quickly.

V. POSSIBLE EXPERIMENTAL REALIZATIONS

Two experimental realizations of the previous mechanism
are envisaged. One is on spin-Peierls materials such as
CuGeO3 (Ref. 7) or TiOX (X = Cl,Br).8 At low temper-
atures, below a critical valueTSP, these materials undergo a
magneto structural transition in which the lattice dimerizes
and a spin gap opens in the magnetic spectrum. Applying a
magnetic field larger than the critical oneHc, a soliton lattice
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FIG. 4. (Color online) Time evolution of〈Sz

i 〉 for the free spin on
a lattice of 41 sites at the MG pointβ = 1/2. The solid lines cor-
respond to the maximum group velocity according to the variational
dispersion relation obtained from Ref. 6.

is generated which has been characterized by x-ray scattering
measurements.20 For not too strong a magnetic field above
Hc, the magnetic chains realize our initial state because the
solitons are far apart. Then, the field should be turned off
and the temperature raised aboveTSP. The system should
now be in the uniform phase and the magnetism should be
described by a homogeneous Heisenberg Hamiltonian, which
will conduct the time evolution as well. Another possible re-
alization is in recent experiments of ultracold atoms trapped
in a one-dimensional optical lattice. Recently, the bosonic re-
pulsive Hubbard model has been successfully accomplished21

to study the dynamics of spin excitations on a ferromagnetic
background. On the other hand, the fermionic version has
been realized,22 and once the limitations related to the temper-
ature are overcome, it is expected that the antiferromagnetic
Heisenberg model can be simulated by tuning the Feshbach
resonances for large on-site repulsion.

VI. CONCLUSIONS

We described a mechanism based on the preparation of a
soliton, which after a quench of the interaction drives the sys-
tem to the formation of a state composed of two counterprop-
agating components as times evolves, producing two-well de-
fined spin clouds in the chain, each of them with total magne-
tization 〈Sz〉= 1/4. This state can be interpreted as a quan-
tum superposition of left and right movingSz = 1/2 quantum
soliton states that are protected by the chiral separation of the
Hamiltonian. Remarkably, they remain stable as time evolves,
showing a very slow dispersion. We propose a recipe to ob-
tain these states, consisting of an initial preparation of atopo-
logical protected excitation by a modulation of the exchange
couplings, followed by a quench of the interactions, generat-
ing new left and right solitonic states that will evolve in time
through a Hamiltonian whose left and right modes are inde-
pendent. On the other hand, the situation for the MG point is
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different. As the initial excitation is local in real space,its dis-
tribution in momentum space is very broad, leading to a rapid
dispersion of the excitation as time evolves. The most natural
candidates to observe those phenomena would be spin-Peierls
materials and ultracold atoms in optical lattices.
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Ann. Phys. (NY)326, 96 (2011); K. Hallberg, Adv. Phys.55, 477
(2006).

10 T. Giamarchi,Quantum Physics in One Dimension(Oxford Uni-
versity Press, UK, 2003).

11 T. Vekua, D.C. Cabra, A. Dobry, C. Gazza, and D. Poilblanc,
Phys. Rev. Lett.96, 117205 (2006); C.J. Gazza, A.O. Dobry, D.C.

Cabra, and T. Vekua, Phys. Rev. B75, 165104 (2007); D.C. Cabra,
C.J. Gazza, C.A. Lamas, H.D. Rosales,ibid 83, 224406 (2011); D.
Mastrogiuseppe, C. Gazza, and A. Dobry,ibid 83 134428 (2011).

12 A.E Feiguin and S.R. White, Phys. Rev. B72 020404(R) (2005);
A. Daley, C. Kollath, U. Schollwöck, and G. Vidal, J. Stat. Mech.
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