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Abstract. We study the occurrence of symmetry breakings, at zero and finite

temperatures, in the J1 −J3 antiferromagnetic Heisenberg model on the square lattice

using Schwinger boson mean field theory. For spin- 1
2
the ground state breaks always

the SU(2) symmetry with a continuous quasi-critical transition at J3/J1 ∼ 0.38,

from Néel to spiral long range order, although local spin fluctuations considerations

suggest an intermediate disordered regime around 0.35 . J3/J1 . 0.5, in qualitative

agreement with recent numerical results. At low temperatures we find a Z2 broken

symmetry region with short range spiral order characterized by an Ising-like nematic

order parameter that compares qualitatively well with classical Monte Carlo results.

At intermediate temperatures the phase diagram shows regions with collinear short

range orders: for J3/J1 < 1 Néel (π, π) correlations and for J3/J1 > 1 a novel phase

consisting of four decoupled third neighbour sublattices with Néel (π, π) correlations

in each one. We conclude that the effect of quantum and thermal fluctuations is to

favour collinear correlations even in the strongly frustrated regime.
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1. Introduction

The study of unconventional phases represents a central topic of strongly correlated

electron systems. In frustrated quantum antiferromagnets (AF) the interest is mainly

focused on the possible stabilization of two dimensional (2D) quantum spin liquids

[1, 2, 3] that preserve all the microscopic symmetries of the Hamiltonian. In fact, in

the last years, there have been a great interest in the classification of different types

of quantum spin liquids based on the projective symmetry group [4, 5, 6]. However,

the concrete detection of such spin liquids on realistic quantum spin models seems

to be still a delicate issue [3, 7, 8, 9, 10]. The source of this classification are the

mean field wave functions based on the bosonic and fermionic representations for the

spin operator, originally used in the context of large N theories [11, 12]. The bosonic

representation (Schwinger bosons) has the advantage of describing magnetically ordered

states [13, 14, 15] –which are known in several cases– while quantum spin liquids states

can be described by both, bosonic and fermionic representations [9, 10, 15].

Another route for the search of unconventional phases due to magnetic frustration

has been the study of finite temperature transitions involving the rupture of non-trivial

discrete degrees of freedom. This kind of transitions have been extensively investigated

in the context of the frustrated J1−J2 Heisenberg model [2, 16, 17]. Here the magnetic

phase breaks the discrete lattice rotation symmetry from Z4 to Z2 with an associated

Ising variable that gives a measure of the (0, π) and (π, 0) magnetic correlations [18]

while rotational symmetry is unbroken, as dictated by Mermin-Wagner theorem [19].

Several analytical [18, 20] and numerical [21] studies in the J1−J2 model have confirmed

the occurrence of a finite temperature transition to a Z2 broken symmetry phase that

belongs to the Ising universality class. Less explored, instead, has been the occurrence

of such transition in the J1 − J3 model where, in contrast to the original case, the

spin correlations are of spiral type [15, 22, 23]. Classically, for J3/J1 > 1/4, there are

two degenerate incommensurate spiral ground states, Q = (Q,Q) and (Q,−Q), that

are connected by a global rotation followed by a reflexion about y. Then, the global

symmetry of the classical ground state is O(3)×Z2. Classical Monte Carlo calculations

[24] predicts that a Z2 broken symmetry phase described by an Ising nematic order

parameter (see below) survives within the finite temperatures range (see inset of figure

6), being the transition also of the Ising universality class. On the other hand, at

zero temperature, numerical studies for S = 1
2
predict the existence of an intermediate

disordered regime in the range 0.4 . J3/J1 . 0.8 with, probably, short range order

(SRO) plaquette and spiral regimes between long range (LRO) Néel and spiral phases

[25, 26, 27]; while for the special case J3/J1 ≃ 0.5 there is evidence of an homogeneous

spin liquid state [28].

In order to complement the classical Monte Carlo results and to make contact

with the zero temperature quantum regime, it is important to investigate the interplay

between quantum and thermal fluctuation at low temperatures within a confiable theory.

In this sense, it has been shown that the Schwinger boson mean field (SBMF) approach
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based on the two singlet bond operators scheme [20, 29, 30, 31] works very well for several

frustrated models. In particular, for the triangular AF, we have recently shown that

the zero temperature energy spectrum [32] and the low temperature thermodynamics

properties [33] predicted by numerical methods are correctly reproduced. In addition

this mean field scheme provides a qualitative good description of the finite temperature

Ising transition in the J1 − J2 model [20].

Motivated by these results, in the present article, we investigate the occurrence

of both, the zero temperature SU(2) broken symmetry ground state and the finite

temperature Z2 broken symmetry transition in the frustrated J1−J3 Heisenberg model,

using the Schwinger boson mean filed theory. For the zero temperature quantum

phase diagram (figure 2) we show that the two singlet scheme of the SBMF takes

correctly into account the effect of frustration J3/J1 within the collinear phases leading

to qualitative and quantitative differences with respect to previous calculations based

on a one singlet scheme [15]. Although for S = 1
2
the SU(2) symmetry is always

broken with a continuous quasi-critical transition at J3/J1 ∼ 0.38, from Néel to spiral

long range order (figure 3), local spin fluctuations considerations allow us to estimate

a disordered regime 0.35 . J3/J1 . 0.5 between Néel and spiral states in qualitative

agreement with recent numerical results [27]. As soon as temperature increases the finite

temperature phase diagram (figure 6) shows a Z2 broken symmetry phase characterized

by finite Ising nematic order with the rotational invariance restored. The behavior of

the critical temperature Tc with frustration, signalled by the vanishing of the nematic

order parameter, compares quite well with classical Monte Carlo predictions [24]. As

temperature is further increased two different temperature effects –before reaching the

paramagnetic phase– are observed: for J3/J1 < 1 short range Néel (π, π) correlations

are favored while for J3/J1 > 1 there is an intermediate novel phase –we have named

it (π, π)4– characterized by four decoupled third neighbour sublattices with AF short

range correlations each one.

2. The Schwinger boson approach within the two singlet scheme

The AF Heisenberg model on the square lattice with first J1 and third J3 neighbours

interaction is defined as

Ĥ = J1

∑

<ij>

Ŝi· Ŝj + J3

∑

<ik>

Ŝi· Ŝk, (1)

where < ij > and < ik > denotes first and third neighbours, respectively, on the square

lattice. In using the Schwinger boson representation for the spin operators [12],

Ŝi =
1

2
b
†
i ~σ bi, (2)

with b
†
i = (b†i↑; b

†
i↓) a spinor composed by the bosonic spin-1

2
operators b†i↑ and b†i↓ and

~σ = (σx, σy, σz) the Pauli matrices, the condition of 2S boson per site

b†i↑bi↑ + b†i↓bi↓ = 2S (3)
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must be satisfied in order to guarantee the physical Hilbert space. After replacing (2)

in the spin-spin interaction terms of (1) they can be written in the following two singlet

bond operator scheme

Ŝi · Ŝj =: B̂†
ijB̂ij : −Â†

ijÂij , (4)

with i and j representing either first or third neighbour sites, and the singlet bond

operators Âij and B̂ij are defined as

Â†
ij =

1

2

∑

σ

σb†iσb
†
jσ̄, B̂†

ij =
1

2

∑

σ

b†iσbjσ. (5)

We call them singlets because they are rotationally invariant under SU(2)

transformations of the spinor b†
i = (b†i↑; b

†
i↓). The biquadratic terms of (4) are related to

the spin operators as

Â†
ijÂij =

1

4
(Ŝi − Ŝj)

2 − S

2
(6)

: B̂†
ijB̂ij : =

1

4
(Ŝi + Ŝj)

2 − S

2
.

Then, after a mean field decoupling of the above expressions, the mean value of

the operators Â†
ij and B̂†

ij can be immediately associated to antiferromagnetic and

ferromagnetic correlations between sites i and j, respectively. Using the identity

: B̂†
ijB̂ij : +Â†

ijÂij = S2 it is possible to write down the spin interaction (4) in terms

of either singlet operators, B̂ij or Âij , and study independently pure ferromagnetic or

antiferromagnetic phases, respectively [11]. For frustrated systems, where quantum

disordered phases are expected, there are two schemes of calculation: one takes

advantage of the above identity and uses only Âij operators [15] while the other one

keeps both, B̂ij and Âij operators [29]. In principle both schemes are equivalent but at

the mean field level the two singlet bond scheme has shown to be quite more accurate to

describe the magnetically ordered regions of several frustrated models [29, 30, 32, 33].

More recently, this scheme has been used to explore the possible existence of completely

symmetric [5, 34] and weakly symmetric –chiral– spin liquid states [6] within the context

of the projective symmetry group. Therefore, the two singlet scheme seems to be a more

proper and versatile framework to investigate ordered and spin liquid phases in a unified

way.

2.1. The mean field decoupling

Performing the standard procedure [29], the spin-spin interaction (4) is replaced in the

Hamiltonian (1) along with the introduction of a Lagrange multiplier λ so as to fulfill

on average the constraint (3). After a mean field decoupling, with Aij = 〈Âij〉 = 〈Â†
ij〉

and Bij = 〈B̂ij〉 = 〈B̂†
ij〉, and Fourier transforming the Schwinger bosons to k-space the

quadratic mean field Hamiltonian results
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ĤMF =
∑

k

[(γB
k + λ)(b†k↑bk↑ + b†−k↓b−k↓) + (7)

+ iγA
k b

†
k↑b

†
−k↓ − iγA

k bk↑b−k↓]− EMF − 2SλNs

where

EMF =
Ns

2

∑

δ

Jδ[B
2
δ −A2

δ ]

and

γB
k =

1

2

∑

δ

JδBδ cosk · δ, γA
k =

1

2

∑

δ

JδAδ sink · δ,

with the sums going over all the vectors δ connecting the first and the third neighbours,

Ns is number of sites and where real mean field parameters satisfying the relations

Bδ = B−δ and Aδ = −A−δ has been assumed. The mean field Hamiltonian (7) can be

diagonalized by applying a Bogoliubov transformation

bk↑ = ukαk↑ − vkα
†
−k↓

bk↓ = ukαk↓ + vkα
†
−k↑, (8)

with uk = [1
2
(1 +

(γB
k
+λ)

ωk
)]

1

2 and vk = i sig(γA
k )[

1
2
(−1 +

(γB
k
+λ)

ωk
)]

1

2 the Bogoliubov

coefficients, resulting

ĤMF =
∑

k

ωk

[

α†
k↑αk↑ + α†

−k↓α−k↓

]

+ EMF (9)

with the same free spinon dispersion relation for the up and down flavours

ωk =
√

(γB
k + λ)2 − (γA

k )
2. (10)

The mean field free energy is given by

F = EMF + T
∑

kσ

ln
(

1− e−βωkσ
)

, (11)

and the self-consistent equations for the mean field parameters, Aδ, Bδ and λ yield

Aδ =
1

2Ns

∑

k

γA
k

ωk

(1 + 2nk) sin k · δ, (12a)

Bδ =
1

2Ns

∑

k

γB
k + λ

ωk

(1 + 2nk) cosk · δ, (12b)

S +
1

2
=

1

2Ns

∑

k

γB
k + λ

ωk

(1 + 2nk) , (12c)

with nk = (eβωk−1)−1 the bosonic occupation number. The rotationally invariant nature

of the SBMFT allows to study magnetically disordered phases at finite temperatures in

agreement with the Mermin-Wagner theorem [19]. This is manifested in the temperature
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dependent gapped spinon dispersion ωk, once the self consistent equations (12) are

solved, preventing the appearance of infrared divergences in the theory. Nonetheless, as

temperature decreases the magnetic structure factor, S(k) =
∑

R eik.R〈Ŝ0·ŜR〉, develops
a maximum at Q = 2kmin with kmin the minimum of the relation dispersion ωk [12].

For T → 0, the leading order of this maximum is related to the squared magnetization

and ωkmin
as S(Q) = 1

2Ns

(γB

kmin
+λ)2

ω2

kmin

= Ns

2
m2. In the next section it is shown how the

rupture of the SU(2) symmetry is described in the zero temperature limit.

2.2. The treatment of SU(2) broken symmetry in a spiral ground state

The occurrence of the SU(2) broken symmetry ground state at T = 0 is related to the

condensation of the Schwinger bosons [13, 14]. To clarify this point it is instructive

to focus on the ground state wave function of a finite size Ns system. Even with

semiclassical mean field solutions the ground state is magnetically disordered with a

finite size gap dispersion that behaves as ω
±

Q

2

∼ 1
Ns

. The positiveness of ωk for all k

guarantees the diagonalization of (7), implying a zero spinons occupation number in the

magnetic ground state. Using the requirement that αkσ|gs〉 = 0, it can be easily shown

that the ground state is a singlet with the following Jastrow form,

|gs〉 = e
∑

k fkb
†
k↑b

†
−k↓|0〉b, (13)

where fk = −vk/uk and |0〉b is the vacuum of Schwinger bosons b. In the thermodynamic

limit ω
±

Q

2

→ 0 and f
±

Q

2

→ 1, meaning that the ground state develops an infinite

accumulation of spin up and down bosons at k = ±Q

2
. Then, the ground state can be

splitted as

|gs〉 = |φc〉|gs′〉,
where |φc〉 represents the condensed part, and

|gs′〉 = e
∑

k6=±Q/2 fkb
†
k↑

b†
−k↓ |0〉b

is the non-condensed, or normal, part of the ground state [14]. Given that the starting

point (13) is a singlet, the appearance of the condensate must be related to the rupture

of the SU(2) symmetry. Physically, this can be thought by considering the hypothetic

process of switching on a modulated magnetic field h with pitch Q, then taking the

thermodynamic limit Ns → ∞, and finally making the limit h → 0 [13, 12]. For

instance, a coherent state

|φc〉 = e

√
Nsm

2

(

b†
Q
2

↑
+b†

−
Q
2

↑
+ib†

Q
2

↓
−ib†

−
Q
2

↓

)

|0〉b (14)

thus selected gives a quantum spiral state with magnetization m and spiral pitch Q

lying in the x− z plane. In fact, the mean value of the spin operator in this state yields

〈gs|Ŝx
i |gs〉; = m sin(Q · ri) 〈gs|Ŝy

i |gs〉 = 0 〈gs|Ŝz
i |gs〉 = m cos(Q · ri);
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while the local magnetization m and the condensate of bosons are related by

〈φc|bk↑|φc〉 =
(

Nsm

2

)
1

2

(δ
k,Q

2

+ δ
k,−Q

2

) (15)

〈φc|bk↓|φc〉 = i

(

Nsm

2

)
1

2

(δ
k,−Q

2

− δ
k,Q

2

),

which in real space implies a mean value of the spinors of the form

(〈φc|bi↑|φc〉
〈φc|bi↓|φc〉

)

=
√
2m

(

cos Q · ri
2

sin Q · ri
2

)

.

Replacing these values in (5) it is obtained the semiclassical expressions for the mean

field parameters

Aδ = 〈φc|Â†
δ|φc〉 = m sin

Q · δ
2

, Bδ = 〈φc|B̂†
δ |φc〉 = m cos

Q · δ
2

(16)

which are consistent with the real nature of the mean field parameters assumed above.

This procedure can be performed for a quantum spiral state with magnetization lying

in y − z plane. In this case the same semiclassical forms (16) are recovered but with

〈φc|Â†
δ|φc〉 imaginary pure. It is interesting to note that both mean field solutions are

related by a global gauge transformation biσ → eiθbiσ with θ = −π/4. On the other

hand, complex values of the mean field parameters Aδ and Bδ can be related to the

existence of non coplanar magnetic or chiral spin liquid states which will be not studied

in the present work. For a detailed study of the complex solutions see ref. [6].

Using (16), the semiclassical magnetic structures are related to the mean field

parameters in the following way (see figure 1): a) for Néel Q = (π, π) order,

A1x = A1y = A1 6= 0 and B1x = B1y = B1 = 0, while A3x = A3y = A3 = 0

and B3x = B3y = B3 6= 0; b) for spiral Q = (Q,Q) order, A1x = A1y = A1 6= 0,

B1x = B1y = B1 6= 0, A3x = A3y = A3 6= 0 and B3x = B3y = B3 6= 0. We have found

that this parameter structure is the same for the LRO and SRO cases, regardless of

the quantum or thermal nature of the fluctuations. It is worth to stress that for a Néel

phase frustration J3 is taken into account through the parameter B3, whereas for the one

operator scheme of decoupling there is no mean field parameter sensitive to frustration

since A3 = 0 (its physical consequence is clearly reflected in the local magnetization, see

figure 3).

To study SU(2) broken symmetry states, the self consistent equations (12) must be

re-calculated taking into account explicitly the condensate (14) in the thermodynamic

limit. The new set of self consistent equations results

Aδ = m sin
Q · δ
2

+

∫

k

γA
k

ωk

sink · δ dk (17a)

Bδ = m cos
Q · δ
2

+

∫

k

γB
k + λ

ωk

cosk · δ dk (17b)
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(Q,Q)

B  

B

B

(π,π)

1

1 AA
3

3

B
1

A
1 A  1 1

A
  3

3
B

  

A  B  3 3

Figure 1. Mean field parameter structure corresponding to Néel (π, π) and spiral

(Q,Q) correlations for the J1 − J3 model. Only the non vanishing parameters are

indicated in each case.

S +
1

2
= m+

∫

k

γB
k + λ

ωk

dk. (17c)

In addition to the parameters Aδ, Bδ, and λ, the magnetization m enters as a new

self-consistent parameter. From a comparison with (12) it follows that the condensate

components of (17) correspond to the separate treatment of the singular modes k = ±Q

2

of the relation dispersion ωk whereas the sums of (12) are transformed into integrals, as

usually presented in the literature [13]. On the other hand, the magnon excitations of

the quantum spiral state is obtained by computing the dynamical magnetic structure

factor [11, 12]. Here the spectrum of the S†
k excitations is composed by a pair-spinon

continuum with the lowest energy process consisting of destroying one Schwinger boson

b±Q

2
↓ from the condensate and creating another one b†

k±
Q

2
↑
in the normal fluid part [32].

Given that ω±Q

2

= 0, the energy cost of such a spin-1 excitation with momentum k is

ω
k±

Q

2

.

The relation dispersion of the spin-1 excitation in the large S limit results

ω
k±

Q

2

= S
√

[Jk − JQ][Jk±Q − JQ], (18)

where (16) has been replaced in the shifted spinon dispersion ω
k±

Q

2

, λ=−SJQ and

Jk =
∑

δ Jδe
ik.δ. The two possible relation dispersions, ω

k+Q

2

and ω
k−

Q

2

, do not coincide

with the semiclassical linear spin wave (LSW) expression

ωLSW
k = S

√

[Jk − JQ][(Jk+Q + Jk+Q)/2− JQ]. (19)

In fact, to recover the conventional spin wave result singlet and triplet mean field

parameters must be introduced [14]. Nonetheless both, (18) and (19), have the same

zero energy star modes k = (0, 0), (±Q,±Q), (±Q,∓Q) [14]. For a given spiral order
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(Q,Q) it is expected only three zero Goldstone modes related to the complete rupture

of the SO(3) symmetry; whereas the spurious zero modes (±Q,∓Q) reflect the lattice

symmetry in the spectrum. For example, the spiral (Q,Q) is related to the spirals

(Q,−Q) and (−Q,Q) by a global rotation combined with a reflexion about y and x,

respectively [24]. In the quantum S = 1
2
case, however, after the iterative procedure, the

SBMF dispersion recovers the correct Goldstone mode structure at k = (0, 0), (±Q,±Q)

for spiral antiferromagnets; whereas in the spin wave theory the remotion of the spurious

zero modes requires to go beyond the harmonic approximation [35]. Regarding the

functional form of the physical dispersion one could take the minimum of {ω
k+Q

2

, ω
k−

Q

2

}
as the lowest energy excitation for each k. Nonetheless, we have recently shown that for

the 120◦ Néel order of the spin-1
2
triangular antiferromagnet it is possible to recover the

correct relation dispersion –found with series expansions [36] and LSW plus 1
S
corrections

[37]– by a proper reconstruction based on the shifted spinon dispersions parts of ω
k±

Q

2

that concentrate the greater spectral weight of the dynamical structure factor [32]. It is

worth to stress that at the mean field level the two spinons building up the magnon-like

excitation are free but, after corrections to the SBMF, it is expected low energy tightly

bound pairs of spinons merging from the continuum [33].

3. Results

3.1. Zero temperature quantum phase diagram

To obtain the zero temperature quantum phase diagram of the J1 − J3 model for ar-

bitrary S we have computed numerically the self consistent equations (17) as follows.

Using (16), a classical structure –A0
δ, B

0
δ . m0 = S, and Q0– is replaced in the spinon

relation dispersion (10), in order to get the value of λ0 that makes the spinon dispersion

gapless, (γB0

±Q0/2+λ0)2 = |γA0

±Q0/2|2. From (17c) it is obtained m0 and then A0
δ, B

0
δ ,Q

0, λ0

and m0 are plugged in (17a) and (17b) to obtain the new parameters A1
δ, B

1
δ . Noting

that the new minimum kmin of ωk is related to the new spiral pitch as Q(1) = 2kmin,

the iteration is continued until the process converges. Depending on the quantum fluc-

tuation strength, which can be measured by the value of S, there are solutions with

Néel and spiral correlations but with m = 0. We have called these solutions short range

order SRO (π, π) and SRO (Q,Q), respectively.

In figure 2 is shown the phase diagram predicted by the SBMF for all spin and several

frustration values:

Long range order regimes. For S = ∞ it is recovered the classical continuous transitions

at J3/J1 = 0.25 between LRO Néel and LRO spiral phases [22]. As S is decreased there

is an enhancement of the stability of the Néel phase accompanied by a similar reduction

of the stability of the spiral phase. This behavior was predicted some time ago using

symmetry arguments [23]. At the transition line of this regime (solid line) the magnetic



Broken discrete and continuous symmetries in 2D spiral antiferromagnets 10

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
J3/J1

0

2

4

6

8

10

12

1/
S

Neel Spiral

SRO
( π , π ) ( π/2

 , π/2
 )( Q , Q )

SRO SRO

LRO
( Q , Q )( π , π )

LRO

Figure 2. Magnetic phase diagram for the J1 − J3 model predicted by the SBMF.

Solid lines represent continuous or second order transitions. Thin lines denote disorder

lines between different SRO regimes. The hatched area is a metastable Néel region and

the dotted line indicates the S = 1/2 case. The dashed horizontal line corresponds to

the SBMF prediction within the one singlet decoupling for the Néel phase (see text).

wave vector change continuously from (π, π) to incommensurate spiral orders as frustra-

tion is increased. For spin values S & 1
2
there is a metastable Néel region characterized

by a reentrance shown in the hatched area of figure 2. This behavior is characteristic

of the non trivial interplay between frustration and quantum fluctuations taken into ac-

count by the two singlet operator scheme. In particular it has been already found with

the same approximation in related models like the J1 − J2 or the J2 = 2J3 line of the

J1 − J2 − J3 models on the square [20, 38, 29] and on the honeycomb [39, 40] lattice. If

the one singlet operator scheme is applied the solid line delimiting the LRO Néel phase

should be replaced by the dashed horizontal line of figure 2, missing completely the

effect of frustration for the Néel phase [15, 42]. The reason of this artefact has already

been discussed in Sec. 2.2. For spin values S . 0.5, the continuous transition turns out

a second order transition between LRO and SRO states.

Short range order regimes. The study of the phase diagram for the non physical S < 1
2

is interesting as one can get an insight of the possible quantum effects beyond the mean

field approximation for the physical case (S = 1
2
). In these regimes successive SRO tran-

sitions take place across the disorder lines [41](thin lines), (π, π) ↔ (Q,Q) ↔ (π
2
, π
2
), as

frustration is varied. Here the mean field solutions can be related to the large N limit

solutions, κ = 2S
N
, where spinons are exactly free only for κ = 0. Inclusion of finite N

fluctuations may change drastically the nature of the ground state and the excitations.

In this sense, effective gauge field theories predict that a commensurate SRO ground

state is unstable toward a valence bond solid order with confined spinons while in the

incommensurate SRO case a Z2 spin liquid state with deconfined spinons is stabilized
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[15]. This physical picture, of course, is beyond the scope of the mean field approxi-

mation whose main weakness resides in the relaxation of the local constraint. For the

regime S → 0 we have found that the two thin lines, separating SRO (π, π) and (π
2
, π
2
)

states, converge into one line (not shown in figure 2) at about J3/J1 ∼ 1. For J3/J1 < 1

(J3/J1 > 1) only A1x = A1y = A1 6= 0 (A3x = A3y = A3 6= 0) survives, respectively.

These states that only form singlet bonds Aδ along the links of largest Jδ coincides with

a family of solutions coined greedy bosons, found within the context of the large N the-

ory for κ → 0 [43]. Furthermore, this kind of solutions are in agreement with the upper

bounds for the mean filed parameters, |Aij| ≤ 2S + 1
2
and |Bij| ≤ S, recently pointed

out in [6]. On the other hand, it is noticeable the ample room of stability for the SRO

(π, π) phase. In fact, the extended line transition between LRO spirals and SRO Néel

(π, π) phases, about 0.4 . J3/J1 . 0.65, implies a tendency of quantum fluctuations to

form commensurate magnetic correlations which in turn will favour valence bond solid

states [15]. Based on our previous works [30], we can safely estimate that Gaussian

fluctuations will increase the stability of the SRO (π, π) and SRO (Q,Q) pushing the

LRO (π, π) and (Q,Q) phases toward higher values of S, and thus opening an interme-

diate disordered window with probably a valence bond solid or a Z2 spin liquid character.

0.0 0.2 0.4 0.6 0.8 1.0
J3/J1

0.0

0.1

0.2

0.3

0.4

0.5

m

0.0 0.3 0.6 0.9
0.5

1.0

QNeel

Spiral

Figure 3. Local magnetization m as a function of frustration for the case S = 1

2
.

The solid line is for the two singlet operators scheme and the dashed line is for the

one singlet operator scheme. In both schemes the transition point occurs at the value

(J3/J1)c ∼ 0.38. Inset: Q value, in units of π, of the magnetic wave vector (Q,Q)

versus frustration.

Spin S = 1
2
case. These results are particularly interesting due to the further comparison

with the available numerical studies. In figure 3 is plotted the local magnetization

versus frustration for S = 1
2
. There is a continuous transition from Néel to spiral phases

that turns out quasi-critical at (J3/J1)c ∼ 0.38 with a quite small local magnetization

m ∼ 0.015. In the same figure 3 is shown in dashed line the prediction of the one
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singlet operator Âij scheme. Although the transition occurs at the same point, the

approximation fails to describe the frustration effects for the Néel phase as discussed

above for the 1
S
phase diagram (figure 2). In the inset of figure 3 is shown the continuous

variation of the magnetic wave vector Q with frustration (solid line) where a strong

quantum renormalization with respect to the classical value [22] (dotted line) is observed.

For spiral phases, both scheme of decoupling, one and two singlet operators, predict the

same value of Q (solid line). Regarding the numerical studies for S = 1
2
, they predict

the existence of an intermediate disordered regime in the range 0.4 . J3/J1 . 0.8

with, probably, SRO plaquette and SRO spiral regimes between LRO Néel and LRO

spiral phases [25, 26, 27]; while for the special case J3/J1 ≃ 0.5 there is evidence of an

homogeneous spin liquid state [28]. From our previous works [30], we again estimate that

corrections to the mean field will open a disordered window with SRO (π, π) correlations

around the critical value (J3/J1)c ∼ 0.38. By noting that the mean field on site spin

fluctuations < Ŝ2
i >= 3

8
2S(2S+2) do not coincide with the expected value S(S+1), one

can choose S in order to adjust the correct local spin fluctuations [6]. This procedure

gives a spin value S∗ = 1
2
(
√
3−1) ∼ 0.366 that, from inspection of figure 2 at 1

S∗ ∼ 2.73,

implies a SRO Néel region within the range 0.35 . J3/J1 . 0.5. Since these states have a

tendency to form valence bond solid states [15] we conclude that a reasonable agreement

with numerical results [27] will be found. However, to recover the homogeneous spin

liquid state found at J3/J1 = 0.5 one should improve the calculation, for example,

implementing the local constraint exactly. Recent variational Monte Carlo studies based

on SBMF ansatz [9] predict a Z2 spin liquid state in the disordered regime of the J1−J2

model, even in the absence of spiral SRO [15]. Therefore, in agreement with [28], we

also expect the probable realization of a Z2 spin liquid in the disordered region of the

J1−J3 model. Recently, similar features have been found using the same approximation

for the phase diagram of the J1 − J2 model on the honeycomb lattice [44].

3.2. Finite temperature phase diagram

The finite temperature phase diagram is obtained by solving the self consistent equations

(12) with the mean field parameters Aδ, Bδ, and λ. Here, in agreement with the Mermin-

Wagner theorem, the magnetization m gives always zero. This rotational invariant

solutions correspond to the renormalized classical regime with an exponential decay

of the spin-spin correlation functions [45]. In particular, we are mainly interested in

the SRO spiral phases since at finite temperature they break the discrete Z2 symmetry

relating the (Q,Q) and (Q,−Q) phases. In fact, classical Monte Carlo results [24] predict

a Z2 broken symmetry phase that belongs to the Ising universality class characterized

by the nematic order parameter

σ = 〈Ŝ1 · Ŝ3 − Ŝ2 · Ŝ4〉, (20)

where the numbers denotes the sites of a single square plaquette ordered in the cyclic

form (1, 2, 3, 4) [24]. Besides of giving a measure of spiral correlations –it vanishes for
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Néel correlations– it is easy to see that the order parameter σ assumes opposite signs for

(Q,Q) and (Q,−Q) correlations. To compute σ within the SBMF theory it is enough

to resort to (4), whence σ is written in terms of second neighbours correlations as

σ = B2
13 − A2

13 −B2
24 + A2

24. (21)

Although the mean field parameters are the A’s and B’s to first and third neighbours, it

is possible to calculate B13, B24, A13, and A24 by solving first the self consistent equations

(12) and then compute (12a) and (12b) with the vector δ connecting second neighbours

(1, 1) and (1,−1). On the other hand, by plugging in the semiclassical expressions (16)

the order parameter results

σ = −2S2 sinQx. sinQy,

where the sign difference between (Q,Q) and (Q,−Q) states is evident, as expected.
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Figure 4. Mean field and nematic order parameters versus temperature for several

frustration values. (a) J3/J1 = 0.3, (b) J3/J1 = 0.6, (c) J3/J1 = 1 and (d) J3/J1 = 1.8

Depending on the frustration value we have found different regimes as temperature is

increased from the zero temperature ground states. In figure 4(a) is shown the temper-

ature dependence of the non zero parameters A1 and B3 corresponding to a Néel phase

at J3/J1 = 0.3. The parameters decrease monotonously giving rise to a SRO Néel phase

until T ∼ 0.45. Beyond this temperature the SBMF gives a perfect paramagnet with

all the mean field parameters equal to zero. Starting from a spiral ground state two

different temperature behaviour are observed. On one hand, for 0.38 < J3/J1 < 1, the

phase with SRO spiral phase undergoes a transition to SRO Néel phase as temperature

increases, since fluctuations above a collinear SRO can minimize more efficiently the free

energy. This behavior, already observed in related models [46], is shown in figure 4(b)

for J3/J1 = 0.6. Here the spiral correlations signalled by σ 6= 0 persist until T ∼ 0.3,
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while for higher temperatures SRO Néel correlations are stabilized –A1, B3 6= 0– until

the value T ∼ 0.45 is reached. On the other hand, for J3/J1 > 1, before reaching the

paramagnetic phase there is again an intermediate collinear phase that we have named

(π, π)4 because it is composed by four decoupled third neighbours sublattices with SRO

Néel correlations each one (see figure 5). In this way the free energy can be more effi-

ciently minimized since thermal fluctuations above such a decoupled collinear AF SRO

between third neigbours optimize both, internal energy and entropy. This is shown in

figure 4(d) for J3/J1 = 1.8 where only the AF mean field parameter A3 survives along

with a weaker ferromagnetic correlations between fifth neighbours B5 (not shown in the

figure), and so forth, within the range 0.7 < T < 0.8. In figure 4(c) is shown the special

case J3/J1 = 1 where there is a direct transition from a SRO spiral phase to a perfect

paramagnet at around T = 0.45.

Figure 5. Schematic magnetic structure corresponding to the (π, π)4 phase composed

by four decoupled third neighbours sublattices with Néel correlations each one.

The jumps of A1 and A3 found at this temperature (figures 4) are due to the

difficulty to solve numerically the constraint equation around T = 0.45. Actually, on

approaching from high temperatures, it can be shown analytically that in certain limits

A1 and A3 go continuously to zero [20]. In this regime all mean field parameters are

zero and the constraint (12c) implies

ωk = λ = T ln(1 +
1

S
). (22)

Then, assuming that in the limit J1 >> J3 the first mean field parameter that switches

on is A1 with its semiclassical form, the equation (12a) yields

1

J1

=
1

2N

∑

k

(sin2 kx + sin ky sin kx)

ωk

(1 + 2nk). (23)

Replacing (22) and carrying on the two dimensional integral of (23) it is obtained the

critical temperature



Broken discrete and continuous symmetries in 2D spiral antiferromagnets 15

T ∗
1 =

J1

2

(1
2
+ S)

ln(1 + 1
S
)
.

For S = 1
2
this temperature, T ∗

1 ≃ 0.45, coincides with the horizontal boundary between

the paramagnetic and the SRO Néel phase (J3/J1 < 1) of the finite temperature phase

diagram (figure 6) found numerically. A similar procedure can be done for A3 in the

limit J3 >> J1, giving the critical temperature

T ∗
3 ∼ J3

2

(1
2
+ S)

ln(1 + 1
S
)
.

Again, for S = 1
2
, gives a linear behavior T ∗

3 ∼ 0.45J3 that agrees with the boundary

between the paramagnetic and the (π, π)4 regime of the finite temperature phase diagram

(figure 6). On the other hand, the boundary of the Z2 broken symmetry regime has

been numerically identified with the temperature Tc where the nematic order parameter

σ goes to zero. In the inset of figure 6 is shown the qualitative good agreement for the

critical temperature Tc of the Z2 broken symmetry phase, as a function of frustration,

predicted by classical Monte Carlo and SBMF theory. Given that the SBMF recovers the

classical result in large S limit, the slight shift to the right of Tc with respect to classical

MC results can be interpreted as the quantum effect for the S = 1
2
case. Actually, we

expect an even marked shift once correction above the SBMF are computed.
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Figure 6. Finite temperature phase diagram for the S = 1

2
case of the J1−J3 model.

Inset: critical temperature Tc for the Z2 broken symmetry phase versus frustration

predicted by classical Monte Carlo [24] (dots) and SBMF (solid line).

4. Concluding remarks

We have investigated the rupture of the discrete and continuous symmetries in the

frustrated J1 − J3 Heisenberg model using Schwinger boson mean field theory. We have



Broken discrete and continuous symmetries in 2D spiral antiferromagnets 16

studied in detail both, the SU(2) broken symmetry which have been explicitly related

to the condensate part of the ground state wave function and the Z2 broken symmetry

related to the rupture of the discrete degeneracy of the (Q,Q) and (Q,−Q) phases.

By comparing with the already existent results, we have shown that the two singlet

bond operator scheme of the SBMF give confiable results for the zero temperature

quantum phase diagram. In particular, this scheme describes correctly the expected

effects of frustration in the collinear phase [23] that are not captured by the one singlet

scheme used in the literature [15]. For S = 1
2
, local spin fluctuations considerations

allows us to infer a disordered regime 0.35 . J3/J1 . 0.5 that qualitatively agrees

with recent numerical results [27]. Regarding the finite temperature regime, we have

found a Z2 broken symmetry phase characterized by the nematic order parameter σ with

the rotational invariance restored. The behavior of the critical temperature Tc versus

frustration agrees qualitatively well with classical Monte Carlo results [24]. Based on

these classical MC results, it has been suggested the possible realization of a Z2 spin

liquid with nematic order in the limit T → 0 between the Néel and spiral phases [24].

It should be noticed, however, that in principle there is no connection between the Z2

global symmetry of the Ising-like nematic order parameter σ and the Z2 gauge theory

of the spin liquid phase. In the context of the low energy effective field theory the Z2

gauge symmetry corresponds to the Z2 gauge invariance of some spinor fields, analog to

the Schwinger boson spinors, that results from a particular parametrization of the spiral

order [7, 47]. In the present microscopic SBMF the nature of the studied quantum and

finite temperature solutions are of the same kind –with a finite Ising-like nematic order;

consequently it is important to remark that, if exists, the non trivial properties of the

Z2 spin liquid state will appear, for instance, by solving the hard core local constraint

exactly. Nonetheless, at present, its implementation within the variational Monte Carlo

shows severe limitations allowing to study system sizes up to 6× 6 [9, 10, 48]. Another

interesting result is the general tendency of thermal fluctuations to stabilize collinear

correlations. In particular, we have found transitions from spiral SRO to collinear

Néel SRO before reaching the paramagnetic phase: for J3/J1 < 1 short range Néel

(π, π) correlations are favored while for J3/J1 > 1 there is an intermediate phase (π, π)4
characterized by four decoupled third neighbours sublattices with SRO Néel correlations

each one. Classical Monte Carlo are called for the study of the (π, π)4 phase.

We have shown that the Schwinger boson mean field theory is a simple and versatile

tool that, once adequately implemented, is able to recover the main features of frustrated

Heisenberg models such as static, dynamic and finite temperature properties. It would

be interesting to extend the study to doped frustrated antiferromagnets within the

context of the t − J model [49] where it is known that spiral fluctuations change

drastically the hole spectral functions [50]. Furthermore, the two singlet bond operator

scheme used in the present work can be properly extended to the study of anisotropic

frustrated models. In particular, for the XXZ model on the triangular lattice we have

found [51] that the SBMF recovers the dispersion relation predicted by the spin wave

plus 1/S corrections [37].



Broken discrete and continuous symmetries in 2D spiral antiferromagnets 17

Acknowledgments

We thank L Capriotti for sending us his Monte Carlo results. This work was supported

by CONICET under grant PIP2009 Nro 1948.

References

[1] Anderson P W 1987 Science 235 1196

[2] Misguich G and Lhuillier C 2005 Two-dimensional quantum antiferromagnets Frustrated Spin

Systems, ed Diep H T (World Scientific) pp 229-306 chapter 5

[3] Balents L 2010 Nature 464 199

[4] Wen X G 2002 Phys. Rev. B 65 165113

[5] Wang F and Vishwanath A 2006 Phys. Rev. B 74 174423

[6] Messio L, Lhuillier C, and Misguich G 2013 Phys. Rev. B 87 125127

[7] Powell B J and McKenzie R H 2011 Rep. Prog. Phys. 74 056501

[8] Jiang H C Yao H and Balents L 2012 Phys. Rev. B 86 024424

[9] Li T, Becca F, Hu W and Sorella S 2012 Phys. Rev. B 86 075111

[10] Hu W J, Becca F, Parola A and Sorella S 2013 Phys. Rev. B 88 060402(R)

[11] Arovas D P and Auerbach A 1988 Phys. Rev. B 38 316; Auerbach A and Arovas D P 1988 Phys.

Rev. Lett. 61 617

[12] Auerbach A Interacting Electrons and Quantum Magnetism 1994, Springer-Verlag

[13] Sarker S, Jayaprakash C, Krishnamurthy H R and Ma M 1989 Phys. Rev. B 40 5028

[14] Chandra P, Coleman P and Larkin A I 1990 J. Phys. Condens. Matter 2 7933

[15] Read N and Sachdev S 1991 Phys. Rev. Lett. 66 1773; Sachdev S and Read N 1991 Int. J. Mod.

Phys.B 5 219

[16] Chandra P and Doucot B 1988 Phys. Rev. B 38 9335

[17] Richter J and Schulenburg J 2010 Eur. Phys. J. B 73, 117 and references therein

[18] Chandra P, Coleman P and Larkin A I 1990 Phys. Rev. Lett. 64 88

[19] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133

[20] Flint R and Coleman P 2008 Phys. Rev. B 79 014424

[21] Weber C, Capriotti L, Misguich G, Becca F, Elhajal1 M and Mila F 2003 Phys. Rev. Lett. 91

177202; Capriotti L, Fubini A, Roscilde T and Tognetti V 2004 Phys. Rev. Lett. 92 157202

[22] Locher P 1990 Phys. Rev. B 41 2537

[23] Ferrer J 1993 Phys. Rev. B 47 8769

[24] Capriotti L and Sachdev S 2004 Phys. Rev. Lett. 93 257206

[25] Leung P W and Lam N W 1996 Phys. Rev. B 53 2213
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