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ABSTRACT
In the first paper of this series we used the N-body method to build a dozen cuspy (γ �
1) triaxial models of stellar systems, and we showed that they were highly stable over time
intervals of the order of a Hubble time, even though they had very large fractions of chaotic
orbits (more than 85 per cent in some cases). The models were grouped in four sets, each
one comprising models morphologically resembling E2, E3, E4 and E5 galaxies, respectively.
The three models within each set, although different, had the same global properties and were
statistically equivalent. In the present paper we use frequency analysis to classify the regular
orbits of those models. The bulk of those orbits are short-axis tubes, with a significant fraction
of long-axis tubes (LATs) in the E2 models that decreases in the E3 and E4 models to become
negligibly small in the E5 models. Most of the LATs in the E2 and E3 models are outer LATs,
but the situation reverses in the E4 and E5 models where the few LATs are mainly inner LATs.
As could be expected for cuspy models, most of the boxes are resonant orbits, i.e. boxlets.
Nevertheless, only the (x, y) fishes of models E3 and E4 amount to about 10 per cent of the
regular orbits, with most of the fractions of the other boxlets being of the order of 1 per cent
or less.

Key words: methods: numerical – galaxies: elliptical and lenticular, cD – galaxies: kinematics
and dynamics.

1 IN T RO D U C T I O N

The observational evidence, both statistical (Ryden 1996) and on
individual galaxies (Statler et al. 2004), indicates that at least some
elliptical galaxies are triaxial and not merely rotationally symmet-
ric. Besides, their surface brightness increases towards the centre,
forming a cusp (Crane et al. 1993; Moller, Stiavelli & Zeilinger
1995) that reveals a mass concentration, and perhaps the presence
of a black hole, there. Thus, the need of triaxial and cuspy models
to represent elliptical galaxies seems to be warranted.

Triaxial models of stellar systems with smooth cores harbour four
major families of regular orbits: boxes, short-axis tubes (SATs) and
inner and outer long-axis tubes (ILATs and OLATs, respectively);
see e.g. de Zeeuw (1985) or Statler (1987). Significant resonant orbit
families, called boxlets, were found in the singular logarithmic po-
tential (Binney 1982; Miralda-Escudé & Schwarzschild 1989) and,
in general, they tend to replace the box orbits in models with central
cusps. Although chaotic orbits were originally thought to make only
a minor contribution to the orbital content of triaxial models, they
were later recognized to arise naturally in those models, especially
in cuspy ones (Kandrup & Siopis 2003).

� E-mail: jcmuzzio@fcaglp.unlp.edu.ar

In a recent paper (Zorzi & Muzzio 2012, hereafter Paper I) we
have presented self-consistent models of cuspy triaxial stellar sys-
tems obtained using the N-body method. The models are morpho-
logically similar to elliptical galaxies of Hubble types E2–E5, with
de Vaucouleurs density profiles. We showed that they were very
stable over time intervals of the order of one Hubble time, even
though they contained extremely high fractions of chaotic orbits
(higher than 85 per cent in half of the models). Thus, the usual idea
that the regular orbits provide the backbone of stellar systems is in
doubt for these models. In the present paper we use frequency anal-
ysis techniques to classify the regular orbits found in our previous
investigation, in order to determine which kinds of regular orbits
are present in the models of Paper I and in which proportions they
appear.

In the next section we describe the models and the classification
technique. Section 3 presents our results, and Section 4 summarizes
our conclusions.

2 M O D E L S A N D T E C H N I QU E S

2.1 The models

A detailed explanation of how the models were built is given in
Paper I. Briefly, the recipe of Aguilar & Merritt (1990) was used,
randomly creating a spherical distribution of 106 particles with a
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Table 1. Orbital classification results.

Model Total Chaotic BBL SAT ILAT OLAT
(per cent) (per cent) (per cent) (per cent) (per cent)

E2a 1113 0.54 ± 0.22 9.88 ± 0.89 54.72 ± 1.49 3.14 ± 0.52 31.72 ± 1.39
E2b 1057 0.28 ± 0.16 7.66 ± 0.82 51.66 ± 1.54 3.69 ± 0.58 36.71 ± 1.48
E2c 1101 0.54 ± 0.22 6.63 ± 0.75 59.58 ± 1.48 2.27 ± 0.45 30.97 ± 1.39

E3a 696 6.03 ± 0.90 20.26 ± 1.52 57.76 ± 1.87 7.04 ± 0.97 8.91 ± 1.08
E3b 687 3.20 ± 0.67 23.00 ± 1.61 53.86 ± 1.90 6.84 ± 0.96 13.10 ± 1.29
E3c 520 4.04 ± 0.86 25.58 ± 1.91 53.85 ± 2.18 6.54 ± 1.08 10.00 ± 1.32

E4a 594 2.02 ± 0.58 32.15 ± 1.92 59.76 ± 2.01 5.05 ± 0.90 1.01 ± 0.41
E4b 576 2.78 ± 0.68 31.42 ± 1.93 60.24 ± 2.04 4.69 ± 0.88 0.87 ± 0.39
E4c 575 2.09 ± 0.60 26.78 ± 1.85 66.43 ± 1.97 4.00 ± 0.82 0.70 ± 0.35

E5a 984 0.41 ± 0.20 8.03 ± 0.87 91.06 ± 0.91 0.51 ± 0.23 0.00 ± 0.00
E5b 1047 1.15 ± 0.33 6.21 ± 0.75 92.17 ± 0.83 0.48 ± 0.21 0.00 ± 0.00
E5c 949 0.84 ± 0.30 4.32 ± 0.66 94.10 ± 0.76 0.63 ± 0.26 0.11 ± 0.11

Table 2. Orbital classification results per energy bin.

Model Energy bin a b/a c/a Total Chaotic BBL SAT ILAT OLAT
(per cent) (per cent) (per cent) (per cent) (per cent) (per cent)

E2 0–20 0.068 0.754 0.601 578 0.00 ± 0.00 14.53 ± 1.47 74.39 ± 1.82 10.90 ± 1.30 0.17 ± 0.17
20–40 0.151 0.795 0.704 325 0.00 ± 0.00 15.38 ± 2.00 78.15 ± 2.29 3.38 ± 1.00 3.08 ± 0.96
40–60 0.251 0.853 0.799 455 0.00 ± 0.00 7.91 ± 1.27 55.16 ± 2.33 0.88 ± 0.44 36.04 ± 2.25
60–80 0.512 0.891 0.847 704 0.00 ± 0.00 4.69 ± 0.80 51.56 ± 1.88 0.57 ± 0.28 43.18 ± 1.87
80–100 1.145 0.945 0.930 1209 1.24 ± 0.32 5.05 ± 0.63 42.43 ± 1.42 1.41 ± 0.34 49.88 ± 1.44

E3 0–20 0.064 0.725 0.570 454 0.00 ± 0.00 11.89 ± 1.52 78.19 ± 1.94 9.91 ± 1.40 0.00 ± 0.00
20–40 0.151 0.711 0.557 223 0.00 ± 0.00 27.80 ± 3.00 69.51 ± 3.08 1.79 ± 0.89 0.90 ± 0.63
40–60 0.234 0.800 0.671 191 0.00 ± 0.00 22.51 ± 3.02 69.11 ± 3.34 2-09 ± 1.04 6.28 ± 1.76
60–80 0.515 0.819 0.707 301 0.00 ± 0.00 19.60 ± 2.29 61.46 ± 2.81 2.33 ± 0.87 16.61 ± 2.15
80–100 2.449 0.850 0.813 734 11.58 ± 1.18 29.16 ± 1.68 30.65 ± 1.70 9.54 ± 1.08 19.07 ± 1.45

E4 0–20 0.056 0.736 0.582 421 0.00 ± 0.00 18.53 ± 1.89 69.36 ± 2.25 12.11 ± 1.59 0.00 ± 0.00
20–40 0.135 0.694 0.504 256 0.00 ± 0.00 28.12 ± 2.81 69.92 ± 2.87 1.56 ± 0.78 0.39 ± 0.39
40–60 0.218 0.750 0.557 297 0.00 ± 0.00 27.95 ± 2.60 69.70 ± 2.67 2.36 ± 0.88 0.00 ± 0.00
60–80 0.383 0.780 0.595 409 0.00 ± 0.00 21.27 ± 2.02 76.53 ± 2.10 0.98 ± 0.49 1.22 ± 0.54
80–100 2.557 0.789 0.701 362 11.05 ± 1.65 56.91 ± 2.60 25.69 ± 2.30 3.87 ± 1.01 2.49 ± 0.82

E5 0–20 0.051 0.839 0.579 676 0.00 ± 0.00 5.03 ± 0.84 92.75 ± 1.00 2.07 ± 0.55 0.15 ± 0.15
20–40 0.124 0.811 0.497 602 0.00 ± 0.00 2.49 ± 0.64 97.18 ± 0.68 0.33 ± 0.23 0.00 ± 0.00
40–60 0.216 0.807 0.501 483 0.00 ± 0.00 5.59 ± 1.05 94.41 ± 1.05 0.00 ± 0.00 0.00 ± 0.00
60–80 0.358 0.808 0.512 537 0.00 ± 0.00 6.52 ± 1.07 93.48 ± 1.07 0.00 ± 0.00 0.00 ± 0.00
80–100 0.993 0.899 0.573 682 3.52 ± 0.71 10.85 ± 1.19 85.63 ± 1.34 0.00 ± 0.00 0.00 ± 0.00

density distribution inversely proportional to the distance to the cen-
tre and a Gaussian velocity distribution, and following its collapse
with the code of Hernquist & Ostriker (1992); the resulting triaxial
system is a consequence of the radial orbit instability. The gravita-
tional constant, G, the radius of the sphere and the total mass are
all set equal to 1. The models were rotated to have the major, inter-
mediate and minor axes of their moment of inertia tensor aligned
with the x, y and z coordinate axes, respectively (hereafter the corre-
sponding velocity components are dubbed u, v and w, respectively).
Particles with energies close to, or larger than, zero were eliminated
and the models were allowed to relax to make sure they had reached
equilibrium. Tables 1 and 2 of Paper I give the main properties of
the models and, in particular, crossing times (Tcr) are of the order of
0.5 time units (t.u.); the Hubble time was found to be of the order of
100 t.u., or about 200Tcr. The major, intermediate and minor axes of
the models (a, b and c, respectively) were obtained from the mean
square values of the x, y and z coordinates, respectively, taking the
20, 40, . . . , 100 per cent most tightly bound particles. The major
semi-axes and the semi-axes ratios change with the orbital energy

limit and are given in table 2 of Paper I. The Hubble type was es-
timated from the c/a ratio of the 80 most tightly bound particles,
but it should be noticed that triaxiality (T = (a2 − b2)/(a2 − c2)),
given in table 1 of Paper I, goes from about 0.73 (i.e. not too far
from being prolate) for the E2 models to about 0.47 (i.e. close to
maximum triaxiality) for the E5 ones. To aid the reader, we give the
a, b/a and c/a values also in Table 2 of the present paper but, in this
case, the results for the three models of each group were bunched
together and they were computed in energy bins, instead of groups
of the 20, 40, . . . , 100 per cent most bounded particles as in Paper
I. The density distributions follow the de Vaucouleurs law and all
the models are cuspy, with central densities proportional to r−γ and
γ � 1. The 12 models are divided in four groups, E2, E3, E4 and
E5, named after the elliptical galaxy classes that correspond to their
axial ratios. Three models (a, b and c) were created for each group
using different seed numbers for the random number generator, so
that they are statistically equivalent; in fact, as shown in Paper I, the
macroscopic properties of the three models in each group turned
out to be essentially the same.
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We showed in Paper I that all the models are highly stable over
time intervals of the order of a Hubble time. Their orbital structure
is dominated by chaotic orbits, with regular orbits amounting to
little more than 20 per cent in models E2 and E5 and to less than
15 per cent in models E3 and E4.

2.2 Frequency analysis and regular orbit classification

As in our previous papers (Muzzio 2006; Aquilano et al. 2007;
Muzzio, Navone & Zorzi 2009), the modified Fourier transform
code of Sidlichovský & Nesvorný (1997) (a copy can be obtained at
www.boulder.swri.edu/~davidn) was used for the frequency anal-
ysis. In Paper I the positions and velocities of about 5000 bodies
were randomly selected from each model and adopted as initial
conditions for the computation of the Lyapunov exponents, which
allowed us to separate the regular from the chaotic orbits. For the
9899 orbits deemed there as regular, we adopted here those same
initial positions and velocities to compute the corresponding orbits
and we obtained the fundamental frequencies for each coordinate,
Fx, Fy and Fz, performing the frequency analysis on the complex
variables x + iu, y + iv and z + iw, respectively; these were derived
from 8192 points equally spaced in time obtained integrating the
regular orbits over 300 radial periods. In this way, as indicated by
Muzzio (2006), frequencies can be obtained with a precision bet-
ter than 10−9 for isolated lines; nevertheless, the precision is much
lower when there are nearby lines and the practical limit of 2 ×
10−4 for the precision, adopted in our previous works, is also used
here.

The orbits were then classified as boxes and boxlets (BBLs),
SATs, ILATs and OLATs using the method of Kalapotharakos &
Voglis (2005), with the improvements introduced by Muzzio (2006),
Aquilano et al. (2007) and Muzzio et al. (2009). The original method
took the frequency of the largest amplitude component in each co-
ordinate as the fundamental frequency for that coordinate but, as
shown by Binney & Spergel (1982) and Muzzio (2006), respec-
tively, the libration of some orbits and the extreme elongation of
others make necessary to adopt other frequencies as the fundamen-
tal ones, so that some of the improvements deal with those cases.
Furthermore, Aquilano et al. (2007) showed that one has to take into
account the energy of the orbit, in addition to the Fx/Fz ratio used
by Kalapotharakos & Voglis (2005), to separate ILATs from OLATs
and that is another improvement of the original method. Finally, we
searched for resonances among the fundamental frequencies of the
BBLs in order to separate the boxes from the boxlets.

3 R E S U LT S A N D A NA LY S I S

Of the 9899 orbits regarded as regular in Paper I, 180 yielded anoma-
lous values of their fundamental frequencies, i.e. frequencies that
did not obey that Fx ≤ Fy ≤ Fz or whose Fy/Fz or Fx/Fz ratios placed
them at odd locations on the frequency map. Visual inspection of
their spectra showed that most of them were typical of chaotic or-
bits, with lines of similar frequencies and amplitudes. We checked
that possibility obtaining the finite time Lyapunov characteristic
numbers (FT-LCNs, see Paper I for details) of those orbits using an
integration time of 100 000 t.u., i.e. 10 times longer than that used
in Paper I. The limiting value to separate regular from chaotic orbits
with the longer integration time was found to be 0.00020 (t.u.)−1,
while in Paper I it was 0.00180 (t.u.)−1. Of the 180 suspicious orbits,
164 turned out to be actually chaotic and were eliminated from the
subsequent analysis. Plots of the remaining 16 orbits showed them
to be normal tubes, but most had highly elongated orbits so that, as

indicated by Muzzio (2006), their fundamental frequencies should
not be taken as those corresponding to the largest amplitude. In fact,
relaxing the condition that allows us to adopt a frequency different
from that of largest amplitude as the fundamental frequency, let our
classification code to automatically select the right frequencies, but
this procedure is risky and may spoil the classification of other or-
bits, so that we preferred to select the fundamental frequencies for
those few orbits from visual inspection of their frequency spectra.

Fig. 1 presents the frequency maps for each group and, within
each panel, different symbols are used for each one of the three
statistically equivalent models. The plots are bound by the Fx/Fz =
Fy/Fz correlation, corresponding to the SATs, and the Fy/Fz =
1 correlation, corresponding to the LATs. Besides, several other
correlations, corresponding to different boxlets, are evident on the
plots. Within each panel there is generally good agreement among
the results from the different models within each group. To aid the
reader, the main resonances that stand out in Fig. 1 are identified in
Fig. 2.

Except for the 16 orbits mentioned before, whose fundamental
frequencies were obtained from visual inspection of their spectra,
all the others were automatically classified by our code. LATs were
segregated into ILATs and OLATs using Fx/Fz versus orbital energy
plots, as explained by Aquilano et al. (2007). Table 1 summarizes
the classification results. It gives, for each model, the total number
of regular orbits found in Paper I, and the percentages of them that
turned out to be chaotic with the longer integration interval, and that
were classified as BBLs, SATs, ILATs and OLATs; the statistical
errors have been estimated from the binomial distribution, as in our
previous papers.

Table 2 presents the results of the classification for the or-
bits grouped in orbital energy bins and, since the numbers are
small, the results of the three models of each group have been
bunched together. The first column gives the group and the sec-
ond one gives the energy range of the bin; columns three through
five give the major semi-axis and the semi-axes ratios correspond-
ing to the bin; the other columns are as in Table 1 except that
the rows correspond to the energy bins rather that to the different
models.

Although we had found before (Muzzio et al. 2009) that some
orbits deemed to be regular from their FT-LCNs turned out to be
chaotic during the orbital classification, the percentages shown in
Tables 1 and 2 are worrisome. As a check, for all the 576 orbits
of model E4b classified as regular in Paper I, we obtained the FT-
LCNs using the 10 times longer interval. For 172 orbits the new
FT-LCNs turned out to be larger than the new limiting value of
0.00020 (t.u.)−1, i.e. they should be regarded as chaotic. Neverthe-
less, only 33 of those had FT-LCNs larger than the limiting value
of 0.00180 (t.u.)−1 of Paper I. In other words, only 5.73 ± 0.31 per
cent of the ‘regular’ orbits of Paper I turned out to be sticky orbits
that actually had FT-LCNs larger than the limit adopted there. In
addition, another 24.13 ± 0.18 per cent were weakly chaotic orbits
whose FT-LCNs were simply below the detection limit used in Pa-
per I. Considering this result, the percentages of chaotic orbits of
Table 1 are not very high, in all likelihood because they were found
rather accidentally from oddities of the frequency analysis, but one
should remember that they are just the tip of the iceberg and that any
sample of regular obits obtained using chaos indicators, such as the
FT-LCNs, is bound to include a substantial amount of chaotic orbits
as well. Fortunately, at least in our case, most of these are weakly
chaotic orbits whose behaviour is not too different from that of reg-
ular orbits (Kalapotharakos & Voglis 2005), with sticky orbits that
might exhibit a wilder behaviour being a minority only. The bulk
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Figure 1. Frequency maps for models E2 (top left), E3 (top right), E4 (bottom left) and E5 (bottom right). Please note that the horizontal scale is different for
each model.

Figure 2. Main resonances in the frequency maps.

of the sticky orbits (26 of them) were concentrated in the highest
20 per cent energy bin, while the numbers of weakly chaotic orbits
raised steadily from the lowest (seven orbits) through the highest
(56 orbits) energy bins.

Since the BBLs include both true boxes and resonant boxes
(boxlets), it is important to segregate ones from the others. Thus,
we searched for resonances obeying the relationship

lFx + mFy + nFz = 0, (1)

with l, m and n integers not all equal to zero. Since our computed
frequencies are not exact, the above relationship can be fulfilled only
approximately, and it is rather risky to search for resonances that
involve very large integers, because the chance of finding spurious
resonances is large. Therefore, we performed two searches, one
limiting the integers to values smaller than or equal to 5, and another
one rising that limit to 10. Since the numbers of the different kinds
of resonant orbits are small, we bunched together the three different
models of each group and the results are presented in Table 3 as
percentages of the total number of regular orbits. These results can
be compared with those in the equivalent tables from Aquilano
et al. (2007) and Muzzio et al. (2009). The first line gives the
percentage of BBLs and the second one the percentage of those
that have no resonances in the search performed with integers up
to 5, i.e. those that can be regarded as boxes at that level of the
search. The following lines give the percentages of orbits which
obey one single resonance and that have a percentage larger than
1 per cent in, at least, one model; those with smaller percentages
were bunched together in the line labelled ‘Other’. The line before
the last one gives the percentages of orbits that obey two resonances
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Table 3. Percentages of boxes and boxlets.

Type E2 E3 E4 E5
(per cent) (per cent) (per cent) (per cent)

BBL 8.07 ± 0.48 22.70 ± 0.96 30.14 ± 1.10 6.21 ± 0.44
Boxes (≤5) 0.79 ± 0.16 3.89 ± 0.44 2.98 ± 0.41 0.23 ± 0.09
(1, −2, 1) 0.15 ± 0.07 0.16 ± 0.09 0.46 ± 0.16 1.07 ± 0.19
(2, 0, −1) 0.00 ± 0.00 0.26 ± 0.12 3.09 ± 0.41 1.71 ± 0.24
(2, 1, −2) 0.00 ± 0.00 2.31 ± 0.34 3.78 ± 0.46 0.40 ± 0.12
(3, −2, 0) 0.76 ± 0.15 8.57 ± 0.64 10.43 ± 0.73 0.64 ± 0.15
(3, −1, −1) 3.15 ± 0.31 1.26 ± 0.26 1.09 ± 0.25 0.27 ± 0.09
(3, −3, 1) 0.03 ± 0.03 0.47 ± 0.16 0.86 ± 0.22 0.00 ± 0.00
(4, −3, 0) 1.47 ± 0.21 0.32 ± 0.13 0.23 ± 0.11 0.13 ± 0.07
(5, −3, 0) 0.00 ± 0.00 0.16 ± 0.09 0.97 ± 0.24 0.00 ± 0.00
(5, −2, −1) 0.00 ± 0.00 1.05 ± 0.23 0.69 ± 0.20 0.13 ± 0.07
Other (≤5) 1.22 ± 0.19 1.84 ± 0.31 2.69 ± 0.39 0.81 ± 0.16
Two resonances (≤5) 0.49 ± 0.12 2.42 ± 0.35 2.87 ± 0.40 0.81 ± 0.16

Boxes (≤10) 0.21 ± 0.08 1.58 ± 0.29 1.03 ± 0.24 0.07 ± 0.05

and the last line gives the percentages of those orbits for which no
resonance was found in the search with integer numbers up to 10.
No resonant orbits with percentages larger than 1 per cent were
found for integer numbers larger than 5. Notice that the resonances
found here are the same found by Muzzio et al. (2009), except for
the addition here of the (1, −2, 1) resonance which barely made it
to Table 3 because its percentage is 1.07 in model E5.

As an example, Fig. 3 presents the x–y and x–z projections of
orbit 1848 from model E4a, which corresponds to the resonance
(3, −2, 0) type called fish.

4 C O N C L U S I O N S

An interesting result from Paper I is that the different models in each
group gave essentially the same results. The results of Table 1 show
the same for the percentages of the different kinds of orbits: with
very few exceptions (e.g. the percentages of OLATs in models E2b
and E2c) the differences among models of the same group fall within
the 3σ level. Because of the small numbers involved, it is difficult
to say if the same happens for the percentages of resonant orbits,
because in order to obtain the results of Table 3 the three different
models of each group had to be bunched together. Nevertheless, at
least the plots in Fig. 1 do not show obvious discrepancies among
the distributions of symbols that correspond to the different models.

The analysis of the present results should be done bearing in mind
that all these models are dominated by chaotic orbits and that the
regular orbits investigated here are just a minor component of the
orbital content: about 22 per cent of all the orbits in models E2 and
E5 and only about 13 per cent of the same in models E3 and E4.
Thus, it is difficult to accept here the usual view that regular orbits
provide the framework for these models and chaotic orbits just help
to fill in the gaps, actually it seems to be the other way round.

The most abundant regular orbits turn out to be the SATs, in good
agreement with the trend shown by a comparison of the results of
Aquilano et al. (2007) and of Muzzio et al. (2009): the fractions of
SATs increase several folds when going from non-cuspy to similar
cuspy models. The percentages of SATs found here are even larger
than those of the cuspy models of Muzzio et al. (2009), probably
because the present models maintain the γ � 1 slope down to their
innermost regions (see fig. 3 of Paper I), while the models of Muzzio
et al. (2009) show some tendency to flatten near the centre of the
systems. The increase of the fractions of SATs as one goes from the
E2 towards the E5 models is in agreement with similar trends found

Figure 3. Projections on the x–z (top) and x–y (bottom) planes of resonant
orbit 1848 from model E4a. The orbit obeys a (3, −2, 0) resonance, i.e. it is
a fish.

by Aquilano et al. (2007) and Muzzio et al. (2009), respectively, for
non-cuspy and cuspy models.

The large fractions of OLATs in the E2 models are probably due
to the fact that those models have axial ratios b/a � c/a in their
outer regions, as shown in Table 2. For the other models, where the
differences between the b/a and c/a ratios are larger, the fractions
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of both ILATs and OLATs are very small, indeed. Similar trends
were found by Aquilano et al. (2007) for non-cuspy models and by
Muzzio et al. (2009) for cuspy ones.

The segregation of the orbits in energy bins shown in Table 2
reveals some interesting details, and one should bear in mind that
orbital periods change enormously with energy, the orbits in the
lowest energy bin having periods of the order of several tenths of
t.u. and those in the highest of the order of several tens of t.u., i.e. a
two orders of magnitude difference. The concentration of the newly
detected chaotic orbits in the highest energy bin may thus be in part
consequence of the use of a fixed time interval to compute the FT-
LCNs in Paper I, and of a fixed number of periods to compute the
orbital frequencies in the present paper. Nevertheless the fact that,
in the sample of regular orbits from Paper I, those detected here as
chaotic using a longer integration interval also show preference for
the higher energy bins, shows that the effect is also in part real. In
the case of sticky orbits, the effect is easy to understand because for
the highest energy bins a fixed integration interval would involve
less ‘periods’ of the chaotic orbit when it is behaving more or less
regularly and, thus, less chance to detect its truly chaotic nature.
For the weakly chaotic orbits, instead, there is no obvious selection
effect and they are probably more abundant at high energies.

BBL orbits (recall that the bulk of them are not boxes, but boxlets)
show a tendency to occupy the higher energy bins as we go from
the E2 to the E5 models. Even though they represented less than
one-third of the regular orbits in all the models (and in some of
them much less than that), they are more than half of the regular
orbits of the highest energy bin in models E4, and are almost as
numerous as the SATs in the same bin of models E3. SATs, in turn,
are less numerous in the highest energy bin but, except for the two
mentioned cases, clearly dominate in all energy bins, as they do
for all the energies taken together. As could be expected, OLATs
tend to concentrate in the higher energy bins and they manage to
outnumber the SATs in the highest energy bin of the E2 models. The
opposite is true of the ILATs, but the tendency is less pronounced,
and they are even fairly abundant in the highest energy bin of the
models E2 where, as already indicated, those systems are close to
being rotationally symmetric.

Most of the BBLs turn out to be resonant orbits. As could be
expected from cuspy models, the fractions of boxes are very small
and clearly diminish even further when the search for resonances is
extended to larger integer numbers; it is worth recalling, however,
that the bulk of the resonant orbits have resonances with integers
not larger than 5. The (x, y) fishes, resonances (3, −2, 0), are the
most important boxlets in models E3 and E4, in agreement with the

results of Muzzio et al. (2009), but they are much less abundant in
models E2 and E5 and, in fact, neither boxes nor boxlets seem to
be of much relevance to models E2 and E5. Despite the differences
between the fractions found here and those of Muzzio et al. (2009), it
should be emphasized that the resonances whose fractions are larger
than 1 per cent are essentially the same in both investigations: only
resonance (1, −2, 1) was added here and it only exceeds 1 per cent
in model E5.
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