
Geometrical confinement effects in layered mesoscopic vortex-matter

N. R. Cejas Bolecek,1 M. I. Dolz,2 A. Kolton,3 H. Pastoriza,1 C. J. van

der Beek,4 M. Konczykowski,4 M. Menghini,5 G. Nieva,1 and Y. Fasano1

1Low Temperature Division, Centro Atómico Bariloche, CNEA, Argentina
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We study geometrical confinement effects in Bi2Sr2CaCu2O8+δ mesoscopic vortex-matter with
edge-to-surface ratio of 7 − 12 %. Samples have in-plane square and circular edges, 30µm widths,
and ∼ 2µm thickness. Direct vortex imaging reveals the compact planes of the structure align with
the sample edge by introducing topological defects. The defects density is larger for circular than
for square edges. Molecular dynamics simulations suggest this density is not an out-of-equilibrium
property but rather determined by the geometrical confinement.

PACS numbers:

I. INTRODUCTION

Understanding the confinement effects introduced by
sample geometry is crucial for characterizing the static
and dynamic properties of mesoscopic vortex mat-
ter. This subject was actively investigated for low-
temperature superconductors with dimensions compa-
rable or smaller than coherence length or penetration
depth, λ1–6. Mesoscopic vortex matter in these materi-
als have structural properties strongly influenced by the
geometry of the specimens3, in contrast with results in
macroscopic samples for several compounds7–10. Con-
finement effects are in competition with inter-vortex in-
teraction that increases with field and temperature. Ma-
terials with an important electronic anisotropy such as
layered high-Tc’s have quite a large value of λ and then
inter-vortex interactions become more relevant.

Due to the technical difficulties for fabricating micron-
sized samples of layered high-Tc’s complex oxides, there
are few works in the literature investigating the ef-
fect of confinement in vortex matter nucleated in these
materials11. In this work we study this issue in the
paradigmatic Bi2Sr2CaCu2O8+δ compound that presents
a rich vortex phase diagram governed by thermal fluctu-
ations and extremely anisotropic magnetic properties. In
this compound, the phase diagram of macroscopic as well
as mesoscopic21 vortex matter is dominated by a first-
order transition12,13 between a solid phase at low tem-
peratures and a liquid14 or decoupled gas15,16 of pancake
vortices at high temperatures. The vortex solid phase of
macroscopic samples presents quasi long-range positional
order17.

Here we report on the structural properties of the
mesoscopic vortex solid nucleated in Bi2Sr2CaCu2O8+δ

at low fields and with single-vortex resolution. We study
both, experimentally and with simulations, the effect
of confinement and inter-vortex interactions for samples
with square and circular edges experimental.

II. METHODS

We engineered micron-sized superconducting samples
from bulk Bi2Sr2CaCu2O8+δ crystals (Tc = 89 K). We
fabricated circular and square samples with typical di-
mensions of 30µm by means of optical lithography and
subsequent physical ion-milling of the negative of the
samples18. Freestanding 2µm thick disks and cuboids are
obtained after cleaving the towers resulting from milling.

We directly imaged the solid vortex phase with single-
vortex resolution by means of magnetic decoration exper-
iments performed at 4.2 K after field-cooling19. In these
experiments the evaporated magnetic nanoparticles land
in the sample surface at the places where the gradient of
local inductance is maximum, therefore decorating the
vortex positions. The imaged structure corresponds to
the vortex solid frozen at the temperature at which pin-
ning sets in, Tfreez ∼ Tirr

7, of the order of 90 − 87 K for
the low-fields studied here20. Decreasing the sample size
down to microns does not significantly affect the value of
Tirr

21.
We also performed molecular dynamics simulations

of two-dimensional vortex matter in order to emulate
the experimentally-observed vortex matter structural
properties22. We studied the case of 30µm diameter
disks and focused on the density of topological defects
when varying the simulation cooling-rate.

III. RESULTS AND DISCUSSION

Figure 1 shows snapshots of the mesoscopic vor-
tex structure nucleated in the disk and cuboid
Bi2Sr2CaCu2O8+δ samples after field-cooling down to
4.2 K at applied fields of 20 and 40 Oe. The local in-
duction calculated as the number of vortices times the
flux quantum yields B ∼ 0.75H, a reduction due to de-
magnetizing effects (aspect ratio of the disks and cuboids
of ∼ 15). The direction of the compact planes of the
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vortex structure in micron-sized specimens is affected by
the confinement effect introduced by the edges of the
samples, particularly in the case of the outer shells of
vortices. This finding is in contrast to observations in
macroscopic samples7. The alignment is more evident in
the Delaunay triangulations of Fig. 2, a well known ge-
ometrical algorithm that determines the first-neighbors
for every vortex in the structure17. First-neighbors vor-
tices are bounded with lines and non-sixfold coordinated
ones are highlighted in grey. In the case of the cuboid
samples, irrespective of the vortex density (447 vs. 1092),
one of the compact planes of the structure is parallel to
the sample edge. For the disks, only a few outer shells of
vortices mimic the sample edges, the number depending
inversely with the vortex density. Towards the center of
the sample, a rather ordered vortex crystallite is formed
with the compact planes having no register with the sam-
ple edges. The transition between the orientation of the
outer and inner shells is done via the plastic deformations
entailed by topological defects.

For the vortex structure studied here these topological
defects are generally disclinations, namely vortices with
five or seven first-neighbors, and pairs of them or screw-
dislocations associated to an extra plane of vortices. For
example, isolated dislocations are observed in the mid-
dle of the vortex structure nucleated in the cuboid at an

Figure 1: Magnetic decoration images of the mesoscopic
vortex matter nucleated in field-cooling processes in micron-
sized Bi2Sr2CaCu2O8+δ samples. (a) Disk with 30µm di-
ameter and (b) cuboid with 30µm sides length, all samples
with 2µm thickness. Magnetic decorations were performed at
4.2 K and at applied fields of 20 (left panel) and 40 Oe (right
panel). The scale-bar corresponds to 10µm.

applied field of 40 Oe. The density of non-sixfold coordi-
nated vortices, ρdef , strongly depends on the local induc-
tion. In the case of macroscopic Bi2Sr2CaCu2O8+δ vor-
tex matter, ρdef decreases exponentially up to 20 Gauss
and then saturates around 2% as shown in Fig. 3 (a).
This is due to the enhancement of inter-vortex interac-
tion on increasing field. This magnitude follows the same
B-evolution for mesoscopic vortex matter but is at least
50% larger than for bulk samples. In addition, ρdef is al-
ways larger in disks than in cuboids for roughly the same
vortex density. This can be explained by considering that
aligning a compact plane of vortices with the edges of a
cuboid does not imply to change the orientational order
of the structure whereas in order to do so in a disk the
vortex planes have to bend.

In the case of macroscopic samples, it has been proved
that the structure observed by means of field-cooling dec-
orations at 4.2 K, and therefore its ρdef , is quite close
to the equilibrium17. The possibility of the increase on
the ρdef on decreasing the system size being an out-of-
equilibrium phenomena can not be discarded. There-
fore we performed molecular dynamics simulations of the
mesoscopic vortex matter nucleated in a 30µm disk with
a density of 15 Gauss in order to test this possibility. In
particular, we performed tests on the dependence of ρdef
with the cooling rate, inversely proportional to the time
allowed to the system to relax. First, we performed sim-
ulations in a macroscopic sample in order to find the
pinning magnitude that has to be considered in order to
reproduce the observed ρdef . Then we used this magni-

Figure 2: Delaunay triangulations of the mesoscopic vor-
tex matter shown in Fig. 1. Disclinations are highlighted in
gray; sixfold(non-sixfold)-coordinated vortices are indicated
in blue(red). The scale-bar corresponds to 10µm.
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tude of pinning to perform simulations in micron-sized
samples. The results of ρdef as a function of the cooling
rate, see Fig. 3 (b), indicate that the observed experimen-
tal values correspond to the case of large relaxation times.
Therefore, we can ascertain that the amount of topolog-
ical defects observed in the experiments in micron-sized
samples is not an out-of-equilibrium feature and that the
observed structure is quite close to the equilibrium.

Having this certainty in mind, we tried to estimate
the geometrical confinement energy induced by the sam-
ple edges. In the case of bulk samples, the mean value of
the inter-vortex interaction energy distribution is slightly
shifted upward with respect to the value for a perfect
Abrikosov lattice with the same vortex density10. Since
after a field-cooling process vortices are close to equilib-
rium, this shifting can only be accounted by the effect of
bulk pinning10. This can be expressed, by unit length,
as < εint >

b −εAbr = εbp, where b stands for the bulk
sample and < εint > is the mean value of a distribution
of inter-vortex interaction energies, εAbr the value of the
inter-vortex interaction energy in a perfect Abrikosov lat-
tice (a delta-function), and εp the pinning energy. In the
case of mesoscopic vortex matter, an extra term enters
into the energy-balance, namely the confinement energy
εconf and therefore < εint >

meso −εAbr = εmeso
p + εconf ,

where meso means for the case of mesoscopic vortex mat-
ter and the energies are noted similarly as in the pre-
vious case. Therefore, one can have access to an es-
timation of the confinement energy in mesoscopic vor-
tex matter just by assuming that the pinning magni-
tude is the same irrespective of the sample size, and then
εconf =< εint >

meso − < εint >
b.

The inter-vortex interaction energy per unit length de-
pends on the inter-vortex distances rij , and for a vor-
tex i has a value εiint =

∑
j 2ε0K0(rij/λ), with the sum

over neighbor-vortices j, ε0 ∝ λ2 the vortex line ten-

Figure 3: Density of topological defects (non-
sixfold coordinated vortices) in mesoscopic and macroscopic
Bi2Sr2CaCu2O8+δ vortex matter. (a) Experimental data as a
function of applied field for the mesoscopic vortex structures
nucleated in the 30µm disk and cuboid, and macroscopic vor-
tex matter. (b) Results from molecular dynamics simulations
as a function of the simulations relaxation time in the case of
a 30µm disk and B = 15 Gauss.

sion, and K0 the zeroth-order modified Bessel function.
In real cases this magnitude is spatially inhomogeneous
due to the elastic and plastic deformations of the struc-
ture, and therefore there is a distribution of εiint with
an almost-Gaussian shape10. Only in the case of an
ideal Abrikosov lattice this magnitude is space invari-
ant and its distribution is a delta function. We have
performed inter-vortex energy-distribution calculations
in vortex structures observed by magnetic decoration in
the macroscopic samples from which were engineered the
disks and cuboids. We also performed the same calcu-
lations in the mesoscopic vortex matter nucleated in the
disks and cuboids at both applied fields. Irrespective of
the field, the mean values of < εint >

meso are always
larger than in the case of macroscopic vortex matter,
what can be reasonably ascribed to the extra deforma-
tions introduced by the larger amount of topological de-
fects nucleated in the micron-sized samples. In accor-
dance with this reasoning, the < εint >

meso value is al-
ways larger for the structure nucleated in the disks than
in the cuboids by a 6-9% on increasing field. Therefore
the estimated confinement energy is in the case of disks
equal to 1 ± 0.1 × 10−8 erg/cm∼ 0.13ε0, larger than in
the case of cuboids, 0.8± 0.1× 10−8 erg/cm∼ 0.11ε0.

IV. CONCLUSIONS

The edges of the samples do produce a geometrical con-
finement effect in mesoscopic vortex matter that is put in
evidence by the orientation of the outer shells of vortices
with compact planes parallel to the edges what produces
a concomitant increase of the density of topological de-
fects. By means of molecular dynamics simulations we
show that the density of defects found experimentally is
not an out-of-equilibrium feature but rather the effect in-
troduced by geometrical confinement. By means of differ-
ences in the mean value of the inter-vortex interaction of
the mesoscopic and macroscopic vortex structures we are
able to quantify the confinement energy per unit length.
We find that is just 0.11− 0.13 ε0, the larger value in the
case of disks than cuboid geometries.
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