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The critical behavior of the gauge-glass and the XY spin-glass models in three dimensions is
studied by analyzing their nonequilibrium aging dynamics. A new numerical method, which relies
on the calculation of the two-time correlation and integrated response functions, is used to determine
both the critical temperature and the nonequilibrium scaling exponents, both for spin and chiral
degrees of freedom. First, the ferromagnetic XY model is studied to validate this nonequilibirum
aging method (NAM), since for this nondisordered system we can compare with known results
obtained with standard equilibrium and nonequilibrium techniques. When applied to the case of
the gauge-glass model, we show that the NAM allows us to obtain precise and reliable values of its
critical quantities, improving previous estimates. The XY spin-glass model with both Gaussian and
bimodal bond distributions, is analyzed in more detail. The spin and the chiral two-time correlation
and integrated response functions are calculated in our simulations. The results obtained mainly
for Gaussian and, to a lesser extent, for bimodal interactions, support the existence of a spin-chiral
decoupling scenario, where the chiral order occurs at a finite temperature while the spin degrees of
freedom order at very low or zero temperature.

PACS numbers: 75.10.Nr,64.60.Ht,68.35.Rh,74.25.-q

I. INTRODUCTION

Critical phenomena in disordered and frustrated sys-
tems such as spin glasses are one of the hardest problems
in the statistical mechanics theory. Extensive numerical
simulations of the three-dimensional (3D) Ising spin-glass
model1,2 for example, have confirmed that this system
undergoes a transition at a finite critical temperature,
but the nature of this phase transition is still under dis-
cussion. More controversial is the case of those models
with XY-type spins. While early studies of 3D XY spin
glasses indicated the existence of a transition at very low
or zero temperature,3,4 subsequent numerical simulations
reveal other possible scenarios.

In 3D XY spin-glass models, two kinds of symmetries
can be broken because the Hamiltonian is invariant un-
der both, the usual continuous “spin” O(2) symmetry
associated to a global rotation, and the “chiral” sym-
metry associated to the reflection of XY spins about
an arbitrary direction. Following the seminal work of
Villain,5 some works have shown the possibility that the
spin order and the chiral order occur at different critical
temperatures, which is known as the “spin-chiral decou-
pling” scenario.6–8 Nevertheless, other numerical simula-
tion studies suggest the existence of a single finite crit-
ical temperature at which both symmetries are simul-
taneously broken.9–15 Recently, an even more complex
scenario has been proposed, in which the lower critical
dimension of the model could be close or equal to three,
and then the finite-temperature phase transition should

be removed by fluctuations.16 In this case only a marginal
behavior for low temperature and large sizes should be
expected. For a recent review interested readers can refer
to Ref. 17.

In all these studies, extensive equilibrium and nonequi-
librium simulations were performed to solve this intricate
subject. The lack of a consensus is probably due to the
hardness of the problem. Recently, a new nonequilib-
rium aging method (NAM) was proposed to analyze such
situations.18 Calculating the correlation and the inte-
grated response functions for different temperatures and
waiting times, it is possible to determine both the critical
temperature and the nonequilibrium scaling exponents.
Using this very sensitive technique, it has been possible
to corroborate that the universality class of the equilib-
rium phase transition in 3D Ising spin glasses does not
depend on the exact form of the bond distribution.19

With the aid of the nonequilibrium aging method pro-
posed in Ref. 18, in this work we study the equilib-
rium critical behavior of three different 3D XY systems:
the classical ferromagnetic XY model, the gauge-glass
model20 and, in more detail, the XY spin-glass model
with both Gaussian and bimodal bond distributions. The
first two systems of this class are mainly analyzed to show
that the NAM numerical technique is useful to locate the
critical point of either an ordered or a disordered model
with XY-type spins. Nevertheless, for the gauge-glass
model, we report precise values of both the critical tem-
perature and the nonequilibrium exponents, improving
previous estimates. On the other hand, for the XY spin-
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glass models, our results strongly support the existence
of a spin- chiral decoupling scenario where the chiral or-
der occurs at finite temperature while the spins order at
very low or zero temperature.
The paper is organized as follows. In Sec. II, we

present the nonequilibrium aging method and the simu-
lation scheme. Then, in Sec. III we analyze the classical
ferromagnetic XY and the gauge-glass models. Section
IV is devoted to the study of the XY spin-glass system
with both Gaussian and bimodal distributions of bonds.
Finally, in Sec. V we discuss our results.

II. THE NONEQUILIBRIUM AGING METHOD

AND SIMULATION SCHEME

Numerical nonequilibrium relaxation methods are fre-
quently used to analyze equilibrium phase transitions.21

The simplest protocol consists in preparing the system
at time t = 0, in a fully-ordered state and then the dy-
namics is simulated with a standard Monte Carlo algo-
rithm. The critical temperature Tc is estimated as the
temperature at which, in the asymptotic regime, the or-
der parameter follows a power-law dependence in time.
This method is appropriate to study a wide variety of sys-
tems, since the slow dynamics present in disordered and
frustrated systems favors the application of such nonequi-
librium technique. However, due mainly to the fact that
different observables seem to decay by a power law in a
relatively wide interval of temperatures, it is not possible
to determine an accurate value of Tc with these meth-
ods. Additional scaling analysis of the order parameter
or susceptibility has been used to improve the resolution
of these methods.22–24 In addition, recently it has been
proposed a new technique based on the divergence of the
relaxation time approaching the critical point.25

The nonequilibrium aging method (NAM) proposed
in Ref.18 is a general technique that allows us to over-
come these difficulties. First, a typical protocol is used
which consists on a quench at t = 0 from a disordered
state (T → ∞) to a low temperature T . From this ini-
tial condition, the system is simulated by a Model A
dynamics,26,27 in this case a standard Glauber dynamics.
Then, a given autocorrelation function C(t, tw) and its
associated integrated autoresponse function ̺(t, tw) (or
merely the correlation and the integrated response func-
tions), which depend on both, the waiting time tw when
the measurement begins and a given time t > tw, are cal-
culated for different temperatures and different values of
tw. Later, for each set of curves of a given T , a data col-
lapse analysis is performed based on the following scaling
relations for the correlation function

C(t, tw) = tw
−bfC(t/tw), (1)

and for the integrated response function

̺(t, tw) = tw
−af̺(t/tw), (2)

where b and a are two nonequilibrium exponents, and
fC/̺ are two different scaling functions.28,29 Relations (1)
and (2) are expected to be correct only at the critical
point with b = a and for tw ≪ t − tw.

30,31 The best
data collapse, and therefore the best candidate values
for b and a at a given T , is obtained by minimizing the
sum of squared differences between all pairs of curves
within a given range of times (see details in the follow-
ing). Then, to identify Tc, simply we chose the tempera-
ture for which the condition b = a is fulfilled. Note that,
for temperatures above or below Tc, the method provides
only pseudo-exponents because other scaling relations, or
a separation of the correlation and the response functions
in their corresponding stationary and aging terms,32 are
required. Throughout this work, we will use the NAM
to determine the critical temperature and the nonequi-
librium exponents for the different XY models.
For systems of N XY-type spins, the spin correlation

function is defined as

C(t, tw) =
1

N

[〈

N
∑

i=1

Si(t) · Si(tw)

〉

0

]

=
1

N

[〈

N
∑

i=1

cos (θi(t)− θi(tw))

〉

0

]

, (3)

where the sum runs over the sites of the lattice, Si =
(cos θi, sin θi) are classical two-dimensional spins of unit
length, θi are angular variables, 〈...〉0 indicates an aver-
age over different thermal histories (different initial con-
figurations and realizations of the thermal noise) and [...]
represents an average over different disordered samples.
On the other hand, adding to the Hamiltonian of the
system, H, a perturbation of the form

Hp = −
N
∑

i=1

hi · Si, (4)

where hi is a local external field, and switching on this
perturbation only for times t < tw, it is possible to cal-
culate a (reduced) spin integrated (thermoremanent) re-
sponse function as28

ρ(t, tw) =
T

N

[

N
∑

i=1

∂〈cos θi(t)〉h
∂hx,i

∣

∣

∣

∣

∣

h=0

+
∂〈sin θi(t)〉h

∂hy,i

∣

∣

∣

∣

∣

h=0

]

,

(5)
where now 〈...〉h indicates an average over thermal histo-
ries of the perturbed system.
At thermodynamic equilibrium, both the correlation

(3) and the integrated response (4), depend on τ = t− tw
and are related through the fluctuation-dissipation theo-
rem (FDT)

ρ(t− tw) = C(t− tw). (6)

For a nonequilibrium process, however, the FDT is not
fulfilled. Nevertheless, it has been proposed that a gen-
eralized quasi-fluctuation-dissipation theorem (QFDT)33
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of the form

∂ρ(t, tw)

∂tw
= X(t, tw)

∂C(t, tw)

∂tw
, (7)

where X(t, tw) is the fluctuation-dissipation ratio, must
be obeyed by any physical model. For short times (τ ≪
tw), a system is in the quasi-equilibrium regime (X ≈ 1)
and therefore a parametric plot of ρ vs. C should show
a straight line of slope 1. On the other hand, for long
times (tw ≪ τ) we can write28

ρ(t, tw) = X∞C(t, tw), (8)

where

X∞ = lim
tw→∞

lim
t→∞

X(t, tw). (9)

In a critical quench, it is expected that the spin corre-
lation (3) and the spin integrated response (5) follow,
respectively, the scaling relations (1) and (2).
For the XY spin-glass systems, we can also define the

local chirality of each square plaquette α by7

κα =
1

2
√
2

∑

(i,j)∈α

sgn(Jij) sin(θi − θj), (10)

where the sum runs over the four bonds of strength Jij
surrounding the plaquette α in a clockwise direction.
Then, the chiral correlation can be written as

Cκ(t, tw) =
1

3N

[〈

∑

α

κα(t)κα(tw)

〉

0

]

. (11)

Here the sum is taken over all the 3N plaquettes. To cal-
culate a response function we need to add to the Hamil-
tonian a different perturbation

Hpκ = −
∑

α

fακα, (12)

where fα is a fictitious external field which couples to the
chirality κα. Then, the corresponding (reduced) chiral
integrated (thermoremanent) response function is given
by

ρκ(t, tw) =
T

3N





∑

α

∂〈κα〉f
∂fα

∣

∣

∣

∣

∣

f=0



 . (13)

In this equation, 〈...〉f indicates an average over thermal
histories when the system is perturbed by (12). At equi-
librium the FDT relation is satisfied

ρκ(t− tw) = Cκ(t− tw), (14)

but far away from this condition, it is expected that in
the quasi-equilibrium regime the FDT still works while
for long times (tw ≪ τ) a QFDT holds,

ρκ(t, tw) = X
κ∞Cκ(t, tw). (15)

As before, in a critical quench the chiral functions (11)
and (13) should follow, respectively, the scaling relations
(1) and (2). To avoid confusion, we will denominate the
corresponding nonequilibrium exponents as bκ and aκ,
reserving b and a for the spin function (3) and (5).

In this work, instead of performing additional simula-
tions with applied fields of small strength, the integrated
response functions (5) and (13) were calculated for in-
finitesimal perturbations using the algorithm proposed in
Refs. 34 and 35. This technique permits us to determine
the two correlation functions and the two response func-
tions in a single simulation of the unperturbed system.
Thus, we can obtain reliable values of both exponents b
and a (or bκ and aκ), making possible the realization of
this nonequilibrium aging method. Further details of this
algorithm are given in the Appendix.

For the Monte Carlo simulation we have used a stan-
dard scheme, where local changes in the phases θi → θ′i
are accepted with a probability given by the Glauber rate

ω(θi → θ′i) =
exp (−β∆H)

1 + exp (−β∆H)
. (16)

Here β is the inverse temperature and ∆H is the energy
difference corresponding to the proposed phase change.
Typically, in equilibrium simulations, the acceptance
window for θ′i is chosen less than 2π and dependent on
temperature in order to optimize the updating procedure.
Since we are interested in studying a nonequilibrium pro-
cess, for local phase changes we will use the full 2π ac-
ceptance angle window for the new phases θ′i, following
the criterion used in Ref. 36 and 37. This is done in order
to avoid the possibility that a limited acceptance angle
might introduce an artificial temperature dependence in
the relaxation. In all cases, cubic lattices of linear size
L = 50 with full periodic boundary conditions were sim-
ulated and the disorder average was performed over 104

different samples for each temperature (for the ferromag-
netic XY model, a nondisordered system, we have carried
out 104 independent thermal histories).

III. XY MODELS WITH SPIN SYMMETRY

BREAKING

In this section we study the critical behavior of the
classical ferromagnetic XY and the gauge-glass models.
These systems are known to have a single phase transi-
tion where the spin U(1) symmetry is broken. We first
study the well-known 3D ferromagnetic XY model in or-
der to validate the NAM, showing that this technique
works well in a nondisordered system, allowing us to ob-
tain a good estimate of the dynamical exponent z. After-
wards, we study the disordered gauge-glass model, show-
ing that the NAM can give a precise estimate of its crit-
ical temperature and dynamical coefficients.
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A. Ferromagnetic XY model

In order to validate the NAM, we study the critical
behavior of the 3D ferromagnetic XY model. The Hamil-
tonian of this system is given by

HXY = −
∑

(i,j)

Si · Sj , (17)

where the sum runs over all nearest-neighbor pairs (i, j)
on a cubic lattice of N = L3 spins. In terms of the
angular variables θi, the Hamiltonian can be written as

HXY = −
∑

(i,j)

cos(θi − θj). (18)

The critical behavior of this model is well known.
From high-precision Monte Carlo simulations it has
been possible to estimate the critical temperature Tc =
2.20167(10)38 and the critical exponent η = 0.0381(2).39

There are also some less accurate estimates of the criti-
cal dynamic exponent as being zc ≈ 2,40 obtained using
relaxation dynamics with periodic boundary conditions
(the result was found to depend on the boundary condi-
tion in the work cited above).
We start verifying that the behavior described by

Eqs.(1) and (2) for a critical point, is followed by
this model at the known critical temperature Tc =
2.20167(10).38 Figures 1 (a) and (b) show, respectively,
the data collapse of the spin correlation (taken as tbwC)
and the spin integrated response functions (taken as tawρ),
for waiting times tw = 25, 50, 100, 200, 400 and 800 at
T = 2.20167 ≈ Tc, plotted as function of the variable
x = τ/tw = t/tw− 1. For each set, to obtain a good data
collapse it is necessary to minimize the sum of squared
differences between all pairs of curves within a range
[x0, xm], with xm the maximum value of x calculated.
The starting x0 is chosen as large as possible so that
the scaling region (x ≫ 1) can be reached, but at the
same time not so large as to have an interval of length
xm − x0 with enough data points to have a significant
statistics. Furthermore, data collapses with a varying
number n of curves with different waiting times tw are at-
tempted. The number n means to have considered in the
data collapse the n largest values of tw available (ranging
from n = 6 for tw = 25, 50, 100, 200, 400, 800 to n = 2 for
tw = 400, 800). Small n gives more weight to the large tw
data but at the expense of poorer statistics for the data
collapse. Varying x0 and n we obtain several pairs of ex-
ponents b and a. We then compare the b and a obtained
using different x0 and n, taking the ones with the small-
est x0 and the the largest n, such that when increasing
x0 or decreasing n from this point, the exponent values
do not change appreciably.
To obtain the data collapses shown in Figs. 1 (a) and

(b) it was enough to choose x0 = 0.5 and to take the
tw-curves with tw = 100− 800 (i.e., n = 4). Then, with
the minimum squares method the exponents values b =
0.5225 and a = 0.5195 were obtained. At the critical
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FIG. 1. (Color online) Ferromagnetic XY model. Panels (a)
and (b) show, respectively, the data collapse with b = a =
0.521 of the spin correlation and the spin integrated response
at T = 2.20167 for different tw as indicated. Insets show the
corresponding curves as function of t/tw. (c) FDT plot. Inset
shows the plot of ρ/C vs. tbwC and the value of X∞ ≈ 0.43.

temperature Tc, we should have a = b, and indeed the
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FIG. 2. (Color online) The values of the exponents b and a vs.
T , obtained with the NAM for the ferromagnetic XY model.

values of a and b obtained are very close. Since we are
considering the data at a temperature equal to the best
known estimate of Tc, we use a common mean value of
c = (b+ a)/2 = 0.521 to collapse simultaneously the sets
of curves shown in Figs. 1 (a) and (b). In Fig. 1 (c)
we show the corresponding “FDT plot”, where tawρ vs.
tbwC are plotted. As mentioned in the previous section,
for times such that τ ≪ tw, the system is in the quasi-
equilibrium regime and X ≈ 1. This behavior is observed
in Fig. 1 (c) where for large values of C and ρ, the slope
in the FDT plot tends to 1. On the other hand, for times
τ ≫ tw the QFDT holds and the slope near to the origin
is equal to X∞. From (8) and (9) we see that

X∞ = lim
tw→∞

lim
t→∞

ρ

C
. (19)

The inset in Fig. 1(c) shows that this ratio tends to
X∞ ≈ 0.43. This same value was obtained in Ref. 41
where the nonequilibrium dynamics of the XY model was
extensively studied.
Now, we follow in its full extent the procedure of

the NAM described in Sec. II, analyzing the behav-
ior of correlations and response functions in a range of
temperatures. We simulate the system for six temper-
atures between T = 2.1 and 2.25, and waiting times
tw = 25, 50, 100, 200, 400 and 800. Figure 2 shows the
exponents b and a vs. T , obtained fitting Eqs.(1) and (2)
using the same parameters as above: x0 = 0.5 and curves
with tw = 100− 800 (n = 4). We see that the a(T ) data
and the b(T ) data cross at approximately the above used
Tc, where the condition b = a should be fulfilled. This
confirms that the NAM introduced in Sec. II is reliable.
Moreover, if the data collapse were performed for larger
ranges of x, for example starting from x0 = 0, a good
value of the critical temperature but bad values for the
exponents b and a are obtained.
Alternatively, one can quantify the goodness of the

power-law collapses by calculating the sum of squared

differences between all pairs of curves, ∆2.18 A plot of
this quantity as a function of T has a a well-defined min-
imum at Tc, since, as showed above, the correlation and
the integrated response functions display a power-law be-
havior in a very narrow range of T around Tc. A very
similar behavior was shown in the Fig. 1(d) in Ref. 18
for the two-dimensional ferromagnetic Ising model. In
disordered systems (as the cases that will be discussed
in the following sections) the dynamical correlation and
response functions can be fitted with reasonably good
power-law decays within a relatively wide interval of tem-
peratures and studying quantities such as ∆2 is not useful
in practice. On the other hand, the coincidence of b = a
is a stronger requirement than a minimum in ∆2, giv-
ing a better evidence for the existence of a critical point,
which we find more useful in disordered systems.
Next, to calculate suitable error bars for the critical

temperature and the common exponent c, which is a rea-
sonable estimate of the nonequilibrium critical exponent
b (or a), we consider the dispersion of the coordinate
values of the crossing point calculated for different “ac-
ceptable” data collapses (those for which the parameter
x0 is greater than but close to 0.5). In this way we ob-
tain the estimates Tc = 2.20(1) and b = 0.52(1). Note
that this critical temperature is compatible with the more
precise value Tc = 2.20167(10).38 The exponent b can be
related with the critical dynamical exponent zc from the
relation28

b =
(d− 2 + η)

zc
. (20)

Using the known result η = 0.0381(2), and the calculated
b, we obtain zc = 2.00(2), which is in good agreement
with the numerical results of Ref. 40 and with epsilon
expansion calculations of zc for model A dynamics,26,27

that give zc = 2.022 for this model.
Our analysis of the ferromagnetic XY model corrob-

orates that the NAM works well. However, as a proce-
dure to obtain the critical temperature Tc, this method is
not competitive when compared to the standard equilib-
rium and nonequilibrium techniques21 for nondisordered
systems, since the error bars in Tc calculated here are
comparatively very large. Nevertheless, as we shall see
in the next subsection, the NAM will allow us to calcu-
late reliable values of the critical quantities for disordered
systems.

B. Gauge-glass model

The 3D gauge-glass (GG) model20,42,43 is a paradig-
matic model for the vortex glass phase transition in
superconductors.44,45 Its Hamiltonian is given by

HGG = −
∑

(i,j)

cos(θi − θj −Aij), (21)

expression that is similar to the ferromagnetic Hamilto-
nian (17), but with additional quenched random variables
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x0 = 1 and the range tw = 800 − 6400 (n = 4) as indicated.
The inset shows the dependence of the exponent c with the
quantity n, for different values of x0 at T = 0.45.

Ai,j which are drawn from a uniform distribution in the
[0, 2π] interval under the constraint Aij = −Aji. We sim-
ulate the GG system for seven temperatures between T =
0.42 and 0.48, and waiting times tw = 50, 100, 200, 400,
800, 1600, 3200 and 6400.
Figure 3 shows the curves of b and a vs. T , which

were obtained by choosing x0 = 1 and the range tw =
800 − 6400 (n = 4). We see that that the condition
b = a is fulfilled as a contact point of the a(T ) curve
with the b(T ) curve at T ≈ 0.45. This is different from
the previous case where the condition b(Tc) = a(Tc) was
found as a crossing point of the two curves. This seems
to be a common feature of disordered systems: a similar
behavior was observed in the Ising spin glasses, where the
exponent curves do not cross but coincide at a contact
point at Tc.

18 Analyzing different values of x0 between
0.5 and 6, and different ranges of tw up to tw = 800−6400
(i.e. from n = 8 to 4), we obtain a very stable contact
point close to 0.45 and for this reason we regard this
temperature as the critical one, Tc = 0.450(3). As before,
to calculate a suitable error bar we have considered the
dispersion of the contact point for different “acceptable”
data collapses.
Unlike the behavior observed for the ferromagnetic

model, we find that the contact point tends to move
towards lower values of b and a, when we plot curves
a(T ), b(T ) obtained from fits with increasing x0 or by
removing progressively the curves with smaller tw (de-
creasing n). This is shown in the inset of Fig. 3 where
we plot c = (a+ b)/2 at T = 0.45 for different values of
x0 and n. Then, even when we find clear evidence that
there is a critical point (the condition b = a is fulfilled in
each of these cases), the value of the exponent b = a is
not fully converged for the time scales considered. To ob-
tain a value for this exponent, we consider that the best
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FIG. 4. (Color online) GG model. Panels (a) and (b) show,
respectively, the data collapse with b = a = 0.07 of the spin
correlation and the spin integrated response at T = 0.45 for
different tw as indicated. Both insets show the corresponding
curves as function of t/tw. (c) FDT plot. Inset shows the plot
of ρ/C vs. tbwC and the estimated value of X∞ ≈ 0.095.

estimate corresponds to the fits that are more weighted
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at the largest time scales t and tw; i.e., the limit value of c
when increasing x0 and decreasing n. With this method-
ology we estimate c = 0.070(4) from the data plotted in
the inset of Fig. 3.
Figures 4 (a) and (b) show the curves of the spin cor-

relation and the spin integrated response, where a value
of b = a = 0.07 was used to collapse simultaneously both
sets of curves. In addition, Fig. 4(c) shows the corre-
sponding FDT plot. As before, we observe that for short
times the system is in the quasi-equilibrium regime and
X ≈ 1, but for long times the FDT is violated and the
slope near to the origin is equal to X∞ ≈ 0.095.
The 3D GG model has been widely studied by nu-

merical techniques. In an early equilibrium simulation
study, Reger et al.42 found Tc = 0.45(5) and later, us-
ing the most efficient exchange Monte Carlo algorithm,
Olson and Young46 estimated Tc = 0.47(3). More re-
cently, using a variety of numerical methods Katzgraber
and Campbell36 obtained Tc = 0.46(1), the same value
reported by Alba and Vicari47 from Monte Carlo sim-
ulations and finite-size scaling analyses. Note that our
estimation of the critical temperature, Tc = 0.450(3), is
compatible with these values and is a bit more precise.
On the other hand, our estimation of the nonequilib-

rium exponent c = 0.070(4), is close to but slightly larger
than the value of b reported by us in a previous work,48

b = 0.06(1). However, in Ref. 48 the b exponent was
calculated differently by fitting the correlation function
for short times with a power law, a method very im-
precise. Finally, in this work we have determined that
X∞ ≈ 0.095, but in Ref. 48 was reported a larger value
of X∞ ≈ 0.12. This difference is clearly attributed to the
improved statistics in this work: in the cited reference av-
erages were carried out over only 60 samples, while here
104 different realizations of disorder were used for each
temperature.

IV. XY SPIN-GLASS MODELS

The 3D XY spin-glass model is a paradigmatic model
for disorder and frustrated magnetic materials with an
easy-plane-type anisotropy.49–55 Another experimental
realization of this system are granular cuprate super-
conductors consisting of a network of sub-micron-size
superconducting grains randomly connected through π-
Josephson junctions.56–60

The Hamiltonian of the 3D XY spin-glass model is

HXY glass = −
∑

(i,j)

Jij cos(θi − θj), (22)

where as before the sum runs over all nearest-neighbor
pairs (i, j) on a cubic lattice. The quenched random
bonds Ji,j are drawn from a distribution with mean zero
and variance one. We present a detailed analysis with
both, Gaussian and bimodal ±J bond distributions. For
clarity, we name XYG and XYB the XY spin-glass mod-
els with a Gaussian and a bimodal ±J (with J = 1)
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FIG. 5. (Color online) The curves of the exponents b and a
vs. T , obtained for the XYG model. As indicated, a range of
tw = 200−1600 and different values of x0 were used. Straight
arrow indicate how the curves change with increasing x0. The
inset shows the dependence of the exponents b and a whit n,
for different values of x0 at T = 0.3.

bond distributions, respectively. Spin and chiral observ-
ables (correlation and integrated response functions) are
calculated for several temperatures in a wide range, and
for waiting times tw = 50, 100, 200, 400, 800, and 1600.
As mentioned in the Introduction, different scenarios

have been proposed to explain the critical behavior of the
3D XY spin-glass model. As an attempt to clarify this
controversy, we first study the XYG model analyzing the
spin correlation and integrated response functions, and
the same chiral quantities. Next, a similar analysis is
performed for the XYB model.

A. XY spin-glass model with Gaussian bond

distribution

For the XYG model we have studied a temperature
range between T = 0.2 and 0.4. Figure 5 shows several
sets of curves of the exponents b and a corresponding
to the spin degrees of freedom as a function of T . The
curves shown were obtained fitting with different values
of x0 and with the waiting times tw = 200−1600 (n = 4).
We clearly see in the plot that b(T ) 6= a(T ), implying the
absence of a critical point for the spin degrees of freedom.
Data fitted using different ranges of x (by changing x0)
show an important dispersion in the values obtained for
b(T ) and a(T ), as is displayed in Fig. 5. Such a dispersion
with x0 means that the assumed power law fit of Eqs.(1)
and (2) is not actually followed in these cases.
However, we see that at T = 0.3 the dispersion of

the pseudo-exponents with x0 is minimal and both the
curves b(T, x0) and the curves a(T, x0) have a crossing
point in terms of x0 at this temperature. This effect is
more clear for the correlation exponent b, implying that
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FIG. 6. (Color online) XYG model. Panels (a) and (b) show,
respectively, the data collapse of the spin correlation and the
spin integrated response functions at T = 0.3 for different tw
as indicated. Collapses were obtained using b = 0.073 and
a = −0.028. Both insets show the corresponding curves as
function of t/tw.

a power-law scaling relation (1) is nearly followed in this
case. In the inset of Fig. 5, we analyze in detail the
dependence of the pseudo-exponents with x0 and with
different ranges of tw (parameter n) at T = 0.3. We see
that b is nearly independent of x0 and weakly dependent
on n. Extrapolating to the smallest n, we determine
that it tends to b = 0.073(3). In the case of the pseudo-
exponent a we see that it has more fluctuations with x0

and that it depends more strongly on n, extrapolating to
a negative value of a = −0.028(5).

In agreement with this previous analysis, Figs. 6
(a) and (b) show good data collapses of the correlation
and the integrated response functions for, respectively,
b = 0.073 and a = −0.028. However, we need to use a
negative value for a to obtain the scaling of Eq.(2). If all
waiting times are considered (n = 6), the inset in Fig.
5 shows that a ≈ 0. Note in the inset of Fig. 6 (b)
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FIG. 7. (Color online) The curves of the exponents bκ and aκ

vs. T , obtained for the XYG model. As indicated, a range of
tw = 400−1600 and different values of x0 were used. Straight
arrow indicate how the curves change with increasing x0.

that the curves of the response function do not depend
appreciably on tw. Even when the behavior of b at this
temperature implies a power law dependence of the two-
times correlation function as given by Eq.(1), the fact
that clearly b 6= a means that, according to our method,
this temperature can not be regarded as a critical one.
We now turn to analyze the chiral quantities for the

XYG model. Figure 7 shows several sets of curves of bκ
and aκ vs. T , which were obtained by choosing different
values of x0 and the ranges tw = 400− 1600 (n = 3). In
this case we see that there is a contact point of the two
sets of curves around at T = 0.37 where bκ ≈ aκ showing
the existence of a possible critical point. However, we
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FIG. 8. (Color online) XYG model. The dependence of the
exponents bκ and aκ whit n for different values of x0 as indi-
cated, at (a) T = 0.36 and (b) T = 0.37.
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FIG. 9. (Color online) XYG model. Panels (a) and (b) show,
respectively, the data collapse with bκ = aκ = 0.19 of the chi-
ral correlation and the chiral integrated response at T = 0.37
for different tw as indicated. Both insets show the correspond-
ing curves as function of t/tw. (c) FDT plot. Inset shows the
plot of ρ/C vs. tbwC and the estimated value of X∞ ≈ 0.14.
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FIG. 10. (Color online) XYG model. Panels (a) and (b)
show, respectively, the data collapse of the spin correlation
and the spin integrated response at T = 0.37 for different tw
as indicated. Collapses were obtained using b = 0.137 and
a = 0.035. The insets show zooms of both set of curves.

fluctuations with x0 at T = 0.37. The situation becomes
more clear when we consider the exponent values for dif-
ferent sets of tw, as shown in Figs. 8 (a) and (b) for,
respectively, T = 0.36 and 0.37. Extrapolating, we see
that for long waiting times, the condition bκ = aκ can be
fulfilled at a temperature close to T = 0.37. This implies
that a phase transition involving the chiral degrees of
freedom occurs at Tc = 0.37(1), with a common nonequi-
librium exponent cκ = 0.19(1). To further confirm this
finding, in Figs. 9 (a) and (b) we show the curves of the
chiral correlation and the chiral integrated response at
T = 0.37, where a value of bκ = aκ = 0.19 was used to
collapse simultaneously both sets of curves. In addition,
Fig. 9 (c) shows the corresponding FDT plot and how for
long times the FDT is violated with X∞ ≈ 0.14 . Note
that this is not the best way to collapse the whole data
set: in particular, in Fig. 9 (b), we should have used
aκ = 0.12, which is the corresponding exponent value for
n = 6 [see Fig. 8 (b)]. Instead, we have used a common
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FIG. 11. (Color online) The same plot as Fig. 5 but for the
XYB model.

value obtained extrapolating to smallest n. This allows
to accomplish a collapsed FDT plot. If data for longer
waiting times were possible to obtain, we expect that the
collapse in Fig. 9 (b) could be improved.

On the other hand, the correlation and integrated re-
sponse functions of the spin degrees of freedom have
large fluctuations in both pseudo-exponent curves around
T = 0.37 in Fig. 5. Figures 10 (a) and (b) show an at-
tempt to collapse the correlation and the integrated re-
sponse functions at this temperature using, respectively,
b = 0.137 and a = 0.035 (two different values obtained
for n = 4 and x0 = 1). Analyzing the insets, which show
zooms of both figures, we observe that the curves with
different tw cross and then it is not possible to achieve a
better data collapse by choosing another set of exponent
values. In fact, according to Fig. 5, the best data col-
lapses for different values of x0, result in very different
pairs of values of b and a. Conversely, at T = 0.3, where
the a and b pseudo-exponents of the spin degrees of free-
dom have minimum fluctuations, we see in Fig. 7 that
aκ and bκ have fluctuations in their value when vary-
ing x0. Also, for this temperature, abnormal collapses
(where both sets of curves cross for any pair of exponent
values) are obtained for both the chiral correlation and
the chiral integrated response functions. All these anal-
yses show that the spin and chiral degrees of freedom
behave differently in the XYG, at least in what regards
to their nonequilibrium dynamics.

B. XY spin-glass model with bimodal bond

distribution

We carried out for the XYB model a similar analysis
as before, but now for temperatures between T = 0.25
and 0.54. We begin analyzing the spin quantities. Figure
11 shows several sets of curves of b and a vs. T , which
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FIG. 12. (Color online) The same plot as Fig. 6 but for the
XYB model at T = 0.35 with b = 0.064 and a = −0.028.

were obtained by choosing different values of x0 and the
ranges tw = 200 − 1600. Again, we do not observe a
temperature where the condition b = a is fulfilled, but
there is a point for the curves of b (and a) at T = 0.35
where their fluctuations with x0 is minimal. The inset
in Fig. 11 shows that, by extrapolating to the smallest
n, two very different values of b = 0.064(2) and a =
−0.028(3) are obtained.

Since b 6= a, the temperature T = 0.35 can not be re-
garded as corresponding to a critical point. Figures 12 (a)
and (b) show the best data collapses of the correlation
and the integrated response functions at T = 0.35 ob-
tained using, respectively, b = 0.064 and a = −0.028 < 0.
The same behavior as found before for the XYG model
at T = 0.3 [see Figs. 6 (a) and (b)]. Then, we also
conclude that for the XYB model there is not a critical
point for the spin degrees of freedom within the range of
temperatures studied.

Next, we present the results obtained for the chiral
quantities. Figure 13 shows several sets of curves of bκ
and aκ vs. T , which were obtained by choosing different



11

0.25 0.30 0.35 0.40 0.45 0.50
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

T = 0.47

  b
κ
      a

κ

  x
0
 = 1

  x
0
 = 2

  x
0
 = 3

  x
0
 = 4

  x
0
 = 5

  x
0
 = 6

 

 
T

       XYB
t
w
= 400 - 1600

FIG. 13. (Color online) The same plot as Fig. 7 but for the
XYB model.

values of x0 and the ranges tw = 400− 1600 (n = 3). We
do not see, as in the previous case of the XYG, a point
where bκ ≈ aκ. However, in the range 0.45 < T < 0.48
the curves of bκ have small fluctuations with x0 and
curves with different x0 intersect at a temperature within
this range. The corresponding curves for aκ also intersect
for different x0 in this region but with important fluctu-
ations. We analyze in detail the behavior of the obtained
pseudo-exponent values for different sets of tw, as shown
in Figs. 14 (a)-(d), for temperatures between T = 0.45
and 0.48. From these data, we conclude that the calcu-
lation of the pseudo-exponents needs larger tw to fully
converge in this range of temperatures. Comparing the
behavior at different T , it is possible to infer that the con-
dition bκ = aκ could be fulfilled at a temperature close to
T = 0.47. Extrapolating for the smallest n, we estimate
that possibly there is a critical point for the chiral de-
grees of freedom at Tc = 0.47(1) with cκ = 0.18(2). Even
when the evidence for the existence of a critical point is
very weak as compared with the same case in the XYG,
we note that the obtained chiral nonequilibrium expo-
nents cκ agree within the error bars for both spin-glass
models. Figures 15 (a) and (b) show the curves of the
chiral correlation and the chiral integrated response at
T = 0.47, where a value of bκ = aκ = 0.18 was used to
collapse simultaneously both sets of curves. Figure 15 (c)
shows the corresponding FDT plot and the violation of
FDT with X∞ ≈ 0.14.

On the other hand, in Fig. 11 we observe at T = 0.47
large fluctuations in the pseudo-exponent curves for the
spin degrees of freedom. For this temperature the spin
correlation and the spin response functions present ab-
normal data collapses similar to that shown previously for
the XYG model in Figs. 10 (a) and (b). In addition, at
the temperature T = 0.35, where the pseudo-exponents
b(T ) and a(T ) have minimum fluctuations, the corre-
sponding curves bκ(T ) and aκ(T ) are very dependent on
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FIG. 14. (Color online) The same plot as Fig. 8 but for the
XYB model at (a) T = 0.45, (b) T = 0.46, (c) T = 0.47 and
(d) T = 0.48.

x0 and also abnormal data collapses are obtained when
attempted in this case. As before for the XYG model,
we conclude that spin and chiral degrees of freedom show
different behavior in their nonequilibrium dynamics.

V. DISCUSSION AND CONCLUSIONS

In this work we have studied the equilibrium criti-
cal behavior of different three-dimensional XY models,
by using a standard Monte Carlo scheme and a sim-
ple nonequilibrium method.18 This technique relies on
the calculation of the correlation and the integrated re-
sponse functions at different temperatures and waiting
times. Performing a data collapse analysis based on the
scaling relations (1) and (2), it is possible to determine
the critical temperature and the nonequilibrium scaling
exponents.
First, we studied the well-known 3D ferromagnetic XY
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FIG. 15. (Color online) The same plots as Figs. 9 but for the
XYB model at T = 0.47 and bκ = aκ = 0.18.

model to validate the nonequilibrium method when mod-
els with XY-type spins are simulated. The results show
that the numerical technique works well in such nondis-
ordered system but, as expected, this is not competitive
when compared to the standard equilibrium and nonequi-

librium methods to obtain Tc. In spite of this, we are able
to obtain a good estimate of the critical dynamical ex-
ponent zc, that improves previous reported calculations.
We also studied the disordered 3D gauge-glass model. As
discussed above, we determined a critical temperature of
Tc = 0.450(3) which is in good agreement with the values
reported in the literature but more precise. The nonequi-
librium exponent c = 0.070(4), however, is a little larger
than the value of b = 0.06(1) reported by us in a previous
work48 using a more imprecise method (see above).

We have performed a more comprehensive study of the
3D XYG and XYB spin-glass models. We find that the
spin and chiral degrees of freedom behave very differently
in their relaxation dynamics in a wide range of temper-
atures. When comparing their corresponding correlation
and response functions we find that spin and chiralities
show different behaviors at different temperatures. Re-
garding the spin degrees of freedom, for the two spin-glass
models (XYG and XYB) and in a wide range of temper-
atures, we find no evidence for the existence of a critical
point. Nevertheless at T = 0.3 for the XYG model and at
T = 0.35 for the XYB model, where b 6= a, the spin cor-
relation and the spin integrated response functions show
good data collapses to a power-law dependence (but, we
remark, the corresponding chiral quantities do not show
power-law dependences at that T ). Regarding the chiral
degrees of freedom, for the XYG model we determined
that there is a critical point at Tc = 0.37(1) with the com-
mon nonequilibrium exponent cκ = 0.19(1). However, in
the case of the XYB model, the evidence for a chiral crit-
ical point is very weak, and curves with longer waiting
times are necessary to clarify this issue (as it is evident
from Fig. 13). We infer from our data the possibility of
a critical point at Tc = 0.47(1) with cκ = 0.18(2). Nev-
ertheless, assuming that this estimated Tc is correct, we
should note that the exponent values of cκ agree within
the error bars in both models, suggesting that the uni-
versality class does not depend on the bond distribution
form.

As we discussed in the Introduction, some simulation
studies found evidence in favor of a single finite criti-
cal temperature at which both symmetries simultane-
ously are broken. Specifically for the 3D XYG model,
from equilibrium simulations and by analyzing the spin
and the chiral correlations lengths, Lee and Young13

found that this occurs at Tc = 0.34(2) with the corre-
lation exponent ν = 1.2(2). Also by studying the dy-
namical behavior of resistivity, Granato11 reports Tc =
0.335(15), zc = 4.5(3) and ν = 1.2(2), but found that
the data are consistent with a phase transition in the
range Tc ∼ 0.25 − 0.35. More recently, Chen15 has ob-
tained similar parameters, Tc = 0.33(2), zc = 4.0(1) and
ν = 1.4(1), by large-scale simulations performed with a
resistive shunted-junction dynamics. On the other hand,
for the 3D XYB model Granato12 reports Tc = 0.39(2),
zc = 4.4(3) and ν = 1.2(2), but again found that the
data is consistent with a phase transition in the range
Tc ∼ 0.3 − 0.45. In this context, we remark that our
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findings for both spin-glass models indicate higher values
of the critical temperatures (beyond, of course, of the
different scenario found by us).
Within this same single-transition picture, Yamamoto

et al.14 using a nonequilibrium method, report for the 3D
XYB model that both transitions occur simultaneously
within a short range of temperatures, Tc ∼ 0.45 − 0.47,
and that the critical dynamic exponent is zc ≈ 6 and
the exponent η is close to zero. In this case the critical
temperature is very close to the value obtained by us.
Meanwhile, Pixley and Young16 have proposed a more
complex scenario in which the lower critical dimension
could be close or equal to three, and then the finite-
temperature phase transition should be removed by fluc-
tuations. They report, however, that for the 3D XYG
model, the crossing temperature for the spin and the chi-
ral correlations lengths moves towards T ≃ 0.3 when lat-
tices of size up to L = 24 are considered. Note that near
this temperature, we found good data collapses of power-
law scalings for dynamical correlation and response func-
tions, but since b 6= a in this case, we do not associate
this temperature to a critical point.
The possibility of a spin-chiral decoupling scenario has

been suggested in the literature mainly in the framework
of equilibrium simulations. In chronological order, Kawa-
mura and Li7 found that the chiral critical temperature
for the 3D XYB model is Tc ≈ 0.39, zc = 7.40(10),
ν = 1.2(2), and η = 0.15(20). On the other hand,
very recently, Obuchi and Kawamura8 carried out large-
scale Monte Carlo simulations of the 3D XYG model.
There, they report two sets of critical parameters: for
the spin-glass transition Tc = 0.275+0.013

−0.052, ν = 1.22+0.26
−0.06

and η = −0.54+0.24
−0.52, and for the chiral-glass transition

Tc = 0.313+0.013
−0.018, ν = 1.36+0.15

−0.37 and η = 0.26+0.29
−0.26. Note

that, although our findings agree in some sense with these
works because we found strong evidence in favor of a de-
coupling scenario, the critical temperatures reported by
us are very different.
Another possible scenario is that there is no phase

transition for neither the spin nor the chiral degrees of
freedom (as recently discussed by Pixley and Young16)
while, as found here, spins and chiralities relax slowly
with different dynamical behaviors at different tempera-
tures. This may explain the several discrepancies found
in the literature both regarding the coupling/decoupling
issue as well as the value of the critical temperatures,
since differences in equilibration algorithms, system sizes
and/or data analysis may lead to different conclusions in
such a case. However, our results for the waiting times
and system size (L = 50) considered support, at least for
the XYG model, the existence of a chiral critical point
at a finite temperature while the spins order at very low
or zero temperature.
Finally, we remark the importance and simplicity of

the method that we have used in this work. In a nonequi-
librium simulation, many quantities (including the cor-
relation and the integrated response functions) display
power-law decays in a range of temperatures close to the

critical one. For disordered and frustrated systems, this
range is very wide and then the standard methods fail to
determine correctly the value of Tc.

18 Here, the sensitiv-
ity of the nonequilibrium aging method is improved by
requiring b = a, a condition which is expected to be ful-
filled in a normal continuous-phase transition.30,31 This
makes the method useful for studying a broad range of
systems with very slow dynamics.
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Appendix

Following the Refs. 34, 35, and 61, here we show how
to calculate the integrated response to an infinitesimal
external field.
For a lattice site i, let us consider an arbitrary lo-

cal scalar observable Ai. In a Monte Carlo dynam-
ics (discrete-time Markov chain) the mean value of this
quantity at time t is given by

〈Ai(t)〉0 =
∑

k

Ak
i (t)Q

k
0 (t

′ → t)P
(

Ck
t′ , t

′
)

, (A.1)

where the sum runs over all possible trajectories k which
occur between times t′ and t, Qk

0 (t
′ → t) is the prob-

ability of these trajectories in the unperturbed dynam-
ics, Ck

t′ is the configuration of the system at time t′ for
each trajectory, Ak

i (t) is the value of the observable at
time t in trajectory k and P

(

Ck
t′ , t

′
)

is the probability

of that at time t′ the system is in the configuration Ck
t′

(note that here the capital letter C does not represent
the correlation function, but the configuration of the sys-
tem). If at time s a trial configuration qks is attempted
(Ck

s → qks ) with acceptance rate ωk
s , then for the tra-

jectory k the transition probability in the unperturbed
system, W0

(

Ck
s → Ck

s+1

)

, is

W0

(

Ck
s → Ck

s+1

)

= δCk

s+1
,qk

s

ωk
s + δCk

s+1
,Ck

s

(

1− ωk
s

)

,

(A.2)
where δ is the delta Kronecker function. In terms of (A.2)
the probability Qk

0 can be written as

Qk
0 (t

′ → t) =

t−1
∏

s=t′

W0

(

Ck
s → Ck

s+1

)

. (A.3)

On the other hand, if a local perturbation (coupled to
the observable Ai) of strength hi is on between times t1
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and t2, then the mean value of Ai will be

〈Ai(t)〉h =
∑

k

Ak
i (t)Q

k
0 (t

′ → t1)Q
k
h (t1 → t2)

×Qk
0 (t2 → t)P

(

Ck
t′ , t

′
)

, (A.4)

where now

Qk
h (t1 → t2) =

t2−1
∏

s=t1

Wh

(

Ck
s → Ck

s+1

)

, (A.5)

and Wh

(

Ck
s → Ck

s+1

)

is the probability of transition in
the perturbed simulation. To calculate the integrated
response, we need to derive the mean value in (A.4) with
respect to hi

∂〈Ai(t)〉h
∂hi

=
∑

k

Ak
i (t)Q

k
0 (t

′ → t1)
∂Qk

h (t1 → t2)

∂hi

×Qk
0 (t2 → t)P

(

Ck
t′ , t

′
)

, (A.6)

where

∂Qk
h (t1 → t2)

∂hi
= Qk

h (t1 → t2)

t2−1
∑

s=t1

∂ ln
[

Wh

(

Ck
s → Ck

s+1

)]

∂hi
.

(A.7)
In the limit hi → 0 we define the function

Rk
i (t1 → t2) =

t2−1
∑

s=t1

∂ ln
[

Wh

(

Ck
s → Ck

s+1

)]

∂hi

∣

∣

∣

∣

∣

h=0

, (A.8)

and therefore (A.6) can be written as

∂〈Ai(t)〉h
∂hi

∣

∣

∣

∣

∣

h=0

=
∑

k

Ak
i (t)R

k
i (t1 → t2)Q

k
0 (t

′ → t)P
(

Ck
t′ , t

′
)

= 〈Ai(t)Ri (t1 → t2)〉0. (A.9)

Particularly for a thermoremanent process, one chooses
t′ = t1 = 0 and t2 = tw. Finally, the reduced integrated
response for a N -site system can be calculated by

ρA(t, tw) =
T

N

N
∑

i=1

∂〈Ai(t)〉h
∂hi

∣

∣

∣

∣

∣

h=0

=
T

N

N
∑

i=1

〈Ai(t)Ri (0 → tw)〉0. (A.10)

Note that for a single spin dynamics, the derivative with
respect to hi in (A.8) is nonzero only when, in the tran-
sition Ck

s → Ck
s+1, the configurational change involve the

site i. It is important to stress that the mean values in
(A.10) are calculated in an unperturbed simulation.

Thus, by adding to the Hamiltonian the perturbation
term (4), it is easy to show that the reduced integrated

response (5) can be calculated by means of the expression

ρ(t, tw) =
T

N

N
∑

i=1

〈cos (θi(t))Rx,i (0 → tw)〉0

+〈sin (θi(t))Ry,i (0 → tw)〉0,(A.11)
where

Rk
x/y,i (0 → tw) =

tw−1
∑

s=0

∂ ln
[

Wh

(

Ck
s → Ck

s+1

)]

∂hx/y,i

∣

∣

∣

∣

∣

h=0

.

(A.12)
In the Monte Carlo simulation, when a local change ∆θi
is attempted, the initial and final phases are, respectively,
φ1 = θki (s) and φ2 = θki (s) + ∆θi. If the change is ac-
cepted with the Glauber rate (16), then the s-th terms
in (A.12) are

∂ ln [Wh]

∂hx,i

∣

∣

∣

∣

∣

h=0

= β [cos (φ2)− cos (φ1)] (1− ω) (A.13)

and

∂ ln [Wh]

∂hy,i

∣

∣

∣

∣

∣

h=0

= β [sin (φ2)− sin (φ1)] (1 − ω). (A.14)

On the other hand, if the change is rejected, θki (s+ 1) =
θki (s) and the corresponding terms are

∂ ln [Wh]

∂hx,i

∣

∣

∣

∣

∣

h=0

= β [cos (φ1)− cos (φ2)]ω (A.15)

and

∂ ln [Wh]

∂hy,i

∣

∣

∣

∣

∣

h=0

= β [sin (φ1)− sin (φ2)]ω. (A.16)

In a similar way, by adding to the Hamiltonian the
perturbation term (12), the reduced chiral integrated re-
sponse (13) can be calculated by means of

ρκ(t, tw) =
T

3N

∑

α

〈κα(t)Rα (0 → tw)〉0, (A.17)

where

Rα (0 → tw) =

tw−1
∑

s=0

∂ ln
[

Wf

(

Ck
s → Ck

s+1

)]

∂fα

∣

∣

∣

∣

∣

f=0

.

(A.18)
Again, for a chirality change of ∆κα the initial and final
chiralities are, respectively, κ1 = κk

α(s) and κ2 = κk
α(s)+

∆κα. If the change is accepted then the s-th term in
(A.18) is

∂ ln
[

Wf

(

Ck
s → Ck

s+1

)]

∂fα

∣

∣

∣

∣

∣

f=0

= ∆κα(1− ω), (A.19)

but if the change is rejected, κk
α(s + 1) = κk

α(s) and the
corresponding term is

∂ ln
[

Wf

(

Ck
s → Ck

s+1

)]

∂fα

∣

∣

∣

∣

∣

f=0

= −∆καω. (A.20)
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18 F. Romá, Phys. Rev. B 82, 212402 (2010).
19 Equilibrium simulations in Ref.2 also leads to this conclu-

sion. However, but using other nonequilibirum methods, it
has been reported that the universality class depends on
the exact form of the interaction distribution function. See
for example references in Ref. 18.

20 D. A. Huse and H. S. Seung, Phys. Rev. B 42, 1059 (1990).
21 Y. Ozeki and N. Ito, J. Phys. A: Math. Theor. 40, R149

(2007).
22 Y. Ozeki and N. Ito, Phys. Rev. B 64, 024416 (2001).
23 L. W. Bernardi, S. Prakash, and I. A. Campbell, Phys.

Rev. Lett. 77, 2798 (1996).
24 T. Nakamura, S. Endoh, and T. Yamamoto, J. Phys. A:

Math. Gen. 36, 10895 (2003).
25 E. Lippiello and A. Sarracino, Europhys. Lett. 90, 60001

(2010).
26 P. C. Hohenberg and B. Halperin, Rev. Mod. Phys. 49,

435 (1977).
27 R. Folk and G. Moser, J. Phys. A: Math. Gen. 39, R207

(2006).
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