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Abstract 

On the basis of theoretical predictions and experimental results, an empirical method 

using upper bound equation of the rule of mixtures (ROM) is reported to predict the dielectric 

permittivity of barium titanate nanofibers. In addition, composites with low volume fraction 

of BaTiO3 fiber layers embedded in epoxy resin were prepared and characterized. The relative 

permittivities of composites with perpendicular and parallel configurations, with respect to the 

electrodes, were calculated by means of the ROM model. The predicted permittivities 

matched precisely the obtained experimental values. 

 

Keywords: Polymer-matrix composites (PMCs) (A), Ceramic fiber (A), Electrical properties 

(B), Analytical modeling (C). 
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Introduction 

Composites have been extensively studied for functional and structural applications. By 

integrating the advantages of two phases, composite materials can offer enhanced 

performances with respect to those of the individual components [1]. In the last decades, there 

has been a great interest in polymer matrix composites that combine polymers with 

ferroelectric ceramics of high dielectric permittivity. Generally, the performances of this kind 

of composite materials depend both on the properties of the matrix and on the filler 

characteristics, such as its nature, geometry, orientation and volume ratio [2] besides the 

interphase between them. The size and concentration of ceramic particles have a significant 

effect on the dielectric properties of composites. Indeed, when the amount of BaTiO3 particles 

reaches 75 vol%, the dielectric permittivity of nanocomposites may be increased [3]. 

However, defects such as voids and porosity tend to decrease the dielectric constant.The 

porosity of composites containing BaTiO3 microparticles decreases with the ceramic ratio up 

to 30%, then increases abruptly at 40%. The high porosity of the 40% BaTiO3/epoxy bulk 

composites leads to higher losses [4,5]. 

Several dielectric composites have been proposed by using BaTiO3 particles as filler and 

a thermoplastic [5-11]
 
or thermosetting [12,18] polymer as matrix. Composites can be 

prepared in many different ways, leading to a large variety of morphologies, which strongly 

influence the macroscopic behavior [19]. Recently, new polymer composites using 

electrospun BaTiO3 fibers have been reported with promising results [20-24]. Ceramic fibers 

are attractive because of the increased anisotropy, improved flexibility and strength over 

monolithic ceramics. For instance, the potential of nanostructured composites that include 

BaTiO3 fibers in their compositions has been demonstrated by applications in miniaturized 

electronic devices and sensors [21,23,25]. Concerning different device configuration 
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possibilities, a significant increase in the composite dielectric permittivity was obtained 

depending on the orientation of fibers inside the matrix [24]. 

The prediction and measurement of the dielectric properties of composites have been a 

challenging issue [19,26-28]. Several quantitative rules of mixture models have been 

proposed to calculate the dielectric permittivity of heterogeneous two-component systems 

considering the dielectric properties of each component [29]. However, whereas different 

models have been developed, usually little experimental evidence is provided to support the 

derived equations. Therefore, it is difficult to choose the correct model to calculate the 

effective dielectric permittivity of polymer/ceramic composites. 

Several models have been proposed and used to predict the effects of second phases on 

the dielectric properties of composites such as the Maxwell-Garnett’s equation [30], the 

Lichtenecker’s equation [31], the Bruggeman’s equation [32], the Jayasundere-Smith’s 

equation [33], the Effective Medium Theory (EMT) [31] and the Poon-Shin’s equation [34]. 

All these models take into account a continuous medium filled with spherical particles. 

However, only a few theoretical models are useful to predict the dielectric permittivity of 

polymer/ceramic-fiber composites [19]. 

This work aims to the estimation of the dielectric permittivity of both BaTiO3 fibers and 

Epoxy/BaTiO3-fibers composites. The dielectric permittivity of BaTiO3 fibers has been 

calculated considering a fiber air-composite. Then, composite materials made of BaTiO3 

fibers embedded in an epoxy resin matrix were studied. The experimental dielectric values of 

Epoxy/BaTiO3-fibers composites were matched with the ones calculated from the rule of 

mixtures (ROM) model. 
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Experimental procedure 

1. Fiber synthesis 

For the synthesis of barium titanate fibers, a sol of titanium isopropoxide (Aldrich, 

97%), acetylacetone (Aldrich, 99.9%) and absolute ethanol were mixed, under vigorous 

stirring inside a glove box, with a solution of barium acetate (Mallinckrodt) in acetic acid 

(Merk). A solution of poly(vinyl pyrrolidone) (PVP, 1.3MDa, Aldrich) in absolute ethanol 

was added to the resulting sol precursor, which was loaded into a polypropylene syringe for 

electrospinning. A DC voltage of 13 kV was applied to the metallic needle by means of a 

Gamma High Voltage Research (0-30 kV) unit, and a syringe pump (AcTIVA Prestige-

equipment) fed the sol at a constant rate of 0.5 ml/h. Random fiber mats were collected 10 cm 

below the needle tip on aluminum foil. Crystalline BaTiO3 fibers were obtained after a heat 

treatment in air at 800 ºC for 1 h. 

 

2. Structural and Microstructural Characterization of Fibers 

X-ray diffraction (XRD) was performed on fiber samples using a PANalytical, X’pert 

Pro equipment running with CuKα radiation and step size of 0.02°/min, from 10° to 80° 2θ. 

Raman spectra were collected with a Renishaw inVia Raman microscope using a 514 nm Ar-

ion laser (50 mW nominal power). The microstructure and morphology of fibers were also 

characterized by Field Emission – Scanning Electron Microscopy (FE-SEM, Zeiss Supra 35). 

 

3. Preparation of Epoxy/BaTiO3Composites 

A polymer-ceramic composite was prepared from bisphenol A-type epoxy resin (D.E.R. 

331) and D.E.H. 24 (12.5% w/w) curing agent, both from Dow Chemical, with Epodil 747 

(10% w/w) as reactive diluent and tetrahydrofuran (THF, Dorwil Chemical) (10vol%.) as 
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solvent. Heat-treated fiber mats, in which fibers are not oriented but distributed at random, 

were embedded in epoxy resin inside silicone molds. The resulting composite samples were 

cured in an oven at 100 °C for 2 h for solvent removing and resin polymerization. The 

obtained composite was cut into specimens with dimensions in thickness, width and length, of 

1, 1 and 10 mm, respectively. 

 

4. Dielectric Characterization of Fibers and Composites 

4.1. Fibers 

In order to determine the effective permittivity of barium titanate fibers, the heat-treated 

fiber mats were considered as a biphasic composite material made of BaTiO3 and air. For this 

purpose, 2 and 4 layers of fiber mats were slightly pressed in order to obtain two ceramic/air 

composite samples with different volume fraction of ceramic filler (Vf). In this way the 

composite material can be considered as a capacitor containing two phases that can be 

approximated to a structure of parallel capacitors with respect to electrodes (Figure 1) 

 

Figure 1. Schematic representation of BaTiO3 fiber layers/air composite. 

 

4.2. Composites 

For the dielectric characterization of composites, silver electrodes were painted on 

different faces of the composite samples (dimensions 1x1x10 mm), in order to obtain two 
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different configurations of electrodes (parallel or perpendicular) regarding to the fiber mat 

layers, as shown in Figure 2, (as already described in Ávila et al. [24]). 

 

Figure 2. Epoxy/BaTiO3 fibers composites in parallel and perpendicular configurations. 

 

In order to predict the dielectric properties of the Epoxy/BaTiO3 composites, equation 

(1) was used as follows, 

 

,                                                      (1) 

 

where, n equals -1 for a parallel configuration, and +1 for a perpendicular configuration
 
[35]. 

Dielectric measurements were carried out at room temperature in the 0.1 – 10
7
 Hz 

frequency range using HIOKI 3522-50 LCR HiTester (10 mHz – 100 kHz) and HIOKI 9700-

10 Head Amp Unit (100kHz – 120 MHz) instruments. 

 

Results and Discussion 

Figure 3(a) shows the X-ray diffraction pattern of BaTiO3 fibers heat-treated at 800 °C 

along with the peaks of the BaTiO3 tetragonal phase from the reference file JCPDS 74-1956. 

The diffraction pattern corresponds to barium titanate without secondary phases in agreement 
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with the reference file. The Raman spectrum in Figure 3(b) shows typical bands for the 

tetragonal phase. These results demonstrate that BaTiO3 fibers consist of a mixture of cubic 

and tetragonal phases. The effect of thermal treatment on the crystalline structure of BaTiO3 

fibers was discussed in a previous work [24]. 

 

 

 

 

 

 

 

Figure 3. (a) XRD pattern and (b) Raman spectrum of BaTiO3 heat-treated fibers. 

 

Figure 4 shows the FE-SEM images of heat-treated fibers. Figure 4(a) shows BaTiO3 

fibers with average diameter of 250 nm. The magnification in Figure 4(b) shows uniform 

sintered grains and mesopores generated during polymer burning. It is important to notice the 

continuity of fibers, which is the most important feature for determining dielectric properties 

of composites. 
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Figure 4. FE-SEM images of heat-treated electrospun BaTiO3 fibers. 

 

Figure 5 shows a cross-section image of the Epoxy/BaTiO3-fiber composite fabricated 

with heat treated fibers. The micrograph shows dark and bright regions that belong to the 

epoxy resin matrix and BT fiber layers, respectively. It is clear that the epoxy resin fully 

covers the fibers mats and that the presence of voids or porosity in Epoxy/BT-fibers 

interphase is negligible. 

 

 

Figure 5. Cross-sectional SEM image of an Epoxy/BT-fiber composite showing fiber layers (vertical 

bright regions) embedded in epoxy resin (dark regions). 
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The permittivity as a function of frequency for BaTiO3 fiber layers/air composites is 

shown in Figure 6. Taking into account the low volume fraction of fibers and the important 

changes measured in the permittivity values, it can be assumed that the permittivity can be 

approximated by a linear regression using three points with Vf : 0, 0.0234 and 0.157, 

respectively. Then, the measured permittivity of the composite ( c) can be related with the 

BaTiO3 (filler) permittivity ( f) as follows, 

 

 ,                                                (2) 

 

where, m is the permittivity of the matrix (air relative permittivity = 1.00058). Then, the 

permittivity of the ceramic fibers can be determined from the slope of c vs. Vf plots. The 

permittivity values of BaTiO3 fibers/air composite at specific frequency are shown in Table 1, 

as well as the respective linear correlation coefficients. 

 

 

 

 

 

 

 

 

Figure 6. Relative permittivity of BaTiO3 fibers/air composites of two different volume fractions. 
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Table 1. Relative permittivity values ( c) of BaTiO3/air composites with different fiber volume 

fractions (Vf), calculated permittivity of fibers ( f) at different frequencies using air = 1.00058, and 

linear correlation coefficient (r
2
). 

 c c f Correlation 

coefficient 

Frequency (Vf = 2.34x10
-2

) (Vf = 0.157) r
2
 

10 kHz 6.8 26.9 161.0 0.9971 

100 kHz 6.5 26.1 156.4 0.9974 

1 MHz 6.3 25.9 155.5 0.9979 

10 MHz 6.1 25.7 154.7 0.9983 

 

The permittivity values of BaTiO3 fibers are smaller than those of BaTiO3 powders 

reported by various authors as Fang et al. ( r = 6100 at 1 kHz) [36], Dutta et al. ( r = 500-

6000 at 1 kHz) [37], Tsurumi et al. ( r = 3000) [38], Ying et al. ( r = 800 at 1 kHz) [39], 

George et al. ( r = 1223 at 1 MHz) [40]. However, physical-morphological factors as 

diameter, grain size, and tetragonality could significantly affect the permittivity values of 

BaTiO3 fibers. Then, a direct model to predict relative permittivities, which uses few 

parameters and fits the experimental data, is put forward hereafter. In a recent work Wei et al. 

calculated the dielectric permittivity of BaTiO3 nanofibers using the Maxwell-Granett’s 

model by considering a porous bulk specimen as a BaTiO3 fibers/air composite [41]. The high 

dielectric permittivity ( r ~ 820) reported by the authors may be associated with the 

experimental procedure, by means of which fibers were pressed into pellets at 2MPa and heat 

treated at 1050°C. It is worth noting that the applied pressure and the high temperature 

treatment can destroy the original fiber morphology, breaking fibers into small pieces and 

favoring grain growth and sintering with the consequent increase in dielectric permittivity. 
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The model used in this work is simpler than that proposed by Wei et al. [41], and the 

experimental procedure followed does not modify or destroy the original fiber morphology. 

 

Figure 7. Permittivity of Epoxy/BaTiO3 fibers composites for 4.92 vol% showing the experimental 

(blue) and calculated (red) data. The curve of the epoxy resin (green) is also shown. 

 

In a previous work [24], a new kind of polymer/ceramic fibers composite using BaTiO3 

fiber layers in parallel and perpendicular configurations with regard to the electrodes was 

introduced. One of the problems in predicting the effective dielectric permittivity of 

polymer/ceramic composites is the fact that the dielectric permittivity of the ceramic filler is 

not available. For biphasic composites, the highest permittivities may be calculated with 

equation (1) using n = 1. 

Figure 7 shows both experimental and theoretical permittivities of Epoxy/BaTiO3 fibers 

composites calculated using equation 2 with perpendicular (n = 1) and parallel (n = -1) 

electrode configurations. The variation observed with frequency is due to the normal decay of 

the epoxy resin permittivity, as shown by the green curve obtained from a pure epoxy 

specimen.  
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Some restrictions must be considered before applying the ROM model. These are: (a) 

the assumption that fiber layers are completely embedded in the matrix so there is perfect 

bonding between fibers and matrix; (b) the absence of relaxation processes in the analyzed 

frequency range; (c) the proposed model is only applicable for low filler fractions; (d) the 

absence of voids and the electrical conductivity values of filler and matrix are restricted by 

percolation theory. 

Despite the restrictions of the ROM, the calculated values for both configurations are 

concomitant with experimental data. However, slight differences between experimental and 

theoretical permittivities, especially in the parallel arrangement, can be brought about by 

extrinsic defects such as air bubbles, discontinuous fibers, random orientation of fibers within 

the layers and residual solvent in composites. 

 

Conclusions 

A simple method has been used to determine the relative permittivity of ceramic 

(BaTiO3) fibers. Then, the permittivity values obtained by means of the rule of mixtures were 

employed to calculate the dielectric permittivity of Epoxy/BaTiO3 fibers composites with two 

different configurations. Estimations matched closely the experimental results for this kind of 

composites. The dielectric constant of a composite with alternating fiber-layers can be 

described by the rule of mixtures model equations. 
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