SUPPLEMENTARY INFORMATION

Molecular Structure and Thermal Stability of Oxide-Supported Phosphotungstic Wells-Dawson Heteropolyacid

Silvana R. Matkovic^a Sebastián E. Collins^b, Adrián L. Bonivardi^b, Miguel A. Bañares^c, Laura E. Briand^a,

^a Centro de Investigación y Desarrollo en Ciencias Aplicadas –Dr Jorge J.
Ronco CINDECA-CCT La Plata-CONICET. Calle 47 No 257, B1900AJK, La
Plata, Buenos Aires, Argentina.

^b Instituto de Desarrollo Tecnológico para la Industria Química (UNL-CONICET).Güemes 3450, S3000GLN, Santa Fe, Argentina.

^c Catalytic Spectroscopy Laboratory, ICP-CSIC. Marie Curie 2, E-28049 Madrid, Spain.

X-ray Diffraction Analysis

The X-ray diffraction spectra of the bulk phosphotungstic heteropolyacid $H_6P_2W_{18}O_{62}$.xH₂O, the oxide supports and the samples 11aq WDTi, 11aq WDZr, 12aq WDAI and 11aq WDSi (calcined at 573 K for 4 h) were performed at RT with a D5000 diffractometer (Siemens, Germany) with Ni filter, Cu Ka (λ =1.540589 Å) radiation working at 40 kV and 20 mA. The diffraction patterns were obtained within 2 θ = 5° and 60° at a scan rate of 2° min⁻¹ and steps of 0.1°. The following figure shows the X-ray spectra of the bulk HPA, the bare oxide supports and the supported HPA synthesized in aqueous media.

Figure 1S. X-Ray diffraction spectra of bulk phosphotungstic Wells-Dawson heteropolyacid $H_6P_2W_{18}O_{62}$.24 H_2O ; bare oxide supports (SiO₂, TiO₂, Al₂O₃ and ZrO₂) and oxide-supported HPA (11aq WDTi, 11aq WDSi, 12aq WDAI and 11aq WDZr)

Temperature Programmed Raman Spectra of Transition Metal Oxide Supports

Figure 2S. In situ TP-Raman spectra upon heating from R.T. towards 773 K of

bulk phosphotungstic Wells-Dawson heteropolyacid $H_6P_2W_{18}O_{62}.xH_2O$

Figure 3S. *In situ* TP-Raman spectra upon heating from R.T. towards 773 K of titanium dioxide TiO_2 anatase (Aeroxide® P-18 Evonik Ind., 46.8 ± 0.1 m²/g)

Figure 4S. *In situ* TP-Raman spectra upon heating from R.T. towards 773 K of zirconium dioxide ZrO_2 (fumed Evonik Ind., 31.5 ± 0.4 m²/g)

Figure 5S. In situ TP-Raman spectra upon heating from R.T. towards 773 K of alumina AI_2O_3 (Engelhard, 95.8 ± 0.2 m²/g)

Figure 6S. *In situ* TP-Raman spectra upon heating from R.T. towards 773 K of silica SiO₂ (Cab-O-Sil, 328.9 \pm 0.8 m²/g)

Temperature Programmed Raman Spectra of Oxide-supported Wells-Dawson

Heteropolyacid Synthesized in Organic Media

Figure 7S. *In situ* TP-Raman spectra upon heating from R.T. towards 773 K of 11org WDTi

Figure 8S. *In situ* TP-Raman spectra upon heating from R.T. towards 773 K of 11org WDZr

Figure 9S. In situ TP-Raman spectra upon heating from R.T. towards 773 K of

12org WDAI

Temperature Programmed Infrared Spectra of Transition Metal Oxide Supports

Figure 10S. *In situ* TP-IR spectra upon heating from R.T. towards 773 K of titanium dioxide TiO_2 anatase (Aeroxide® P-18 Evonik Ind., 46.8 ± 0.1 m²/g).

Figure 11S. In situ TP-IR spectra upon heating from R.T. towards 773 K of zirconium dioxide ZrO_2 (fumed Evonik Ind., 31.5 ± 0.4 m²/g).

Figure 12S. In situ TP-IR spectra upon heating from R.T. towards 773 K of alumina Al_2O_3 (Engelhard, 95.8 ± 0.2 m²/g).

Figure 13S. In situ TP-IR spectra upon heating from R.T. towards 773 K of silica SiO₂ (Cab-O-Sil, 328.9 \pm 0.8 m²/g).

Evolution of the Raman Signals of the Wells-Dawson Heteropolyacid Dispersed

Over TiO₂ at Various Loadings

Figure 14S. Evolution of the Raman signals of the Wells-Dawson heteropolyacid dispersed over TiO_2 at various loadings ranging from 1.7 towards 22.5 W_{atoms}/nm^2 in aqueous media and calcined *in situ* at 573 K. Open squares \Box indicate Raman signals in the 999-1008 cm⁻¹ range and filled squares \blacksquare indicate Raman signals in the 1018-1021 cm⁻¹ range