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Abstract     

Here we present the preparation of a variety of diarylmethanes obtained via ultrasound Stille 

coupling under palladium catalysis between some substituted aryl compounds and benzyltributyltin 

compounds generated through sonicated Barbier reaction in a very short time reaction and excellent 

yield. The study reported below compares different methods to optimize the synthesis of usually 

unstable benzyltin derivatives and is another contribution to the investigation of Csp
3 
- Csp

2 
coupling 

process involving benzyl-aryl reagents. Substituted carboxilated benzophenones were easily 

prepared in a very good yield by oxidation of some diarylmethanes. 

   

Keywords: benzyltin compounds, Barbier reaction, ultrasound, Stille coupling, diarylmethanes, 

benzophenones. 

 

 

1. Introduction 

The extensive use of organotin compounds as reagents or intermediates  in organic synthesis [1] has 

prompted the development of efficient preparation of these type of compounds using rapid and 

convenient synthetic procedures, such as, for example, the Barbier reaction [2]. As the field of Csp
3 
- 

Csp
2 

coupling reactions is always in continuous study from the last thirty years [3], the formation of 

this type of C-C bond via Stille coupling under palladium catalysis is of great interest in organic 

synthesis and, usually, tributylstannyl compounds are between the most common substrates. 

Compared with other coupling types, much less have been reported with these relatively more 

difficult couplings where the alkyl moiety is either on the substrate or on the organometallic partner 

[4].The increased focus on the use of sonochemical methods in organic synthesis has been 

demonstrated by the many reports found in the literature [5].
  
The presence of ultrasound has shown 

to enhance the rates of reactions together with reduction of the induction period and less severe 

conditions. As a result of all previously mentioned, we focussed this work in the synthesis of 

substituted diarylmethanes taking into account that they play an important role in several biologically 

active compounds and drugs [6] such as Papaverin (I), a muscle relaxing agent, the synthetic 

antibiotic Trimethoprim (II) or the dihydrofolate reductase inhibitor for the potential treatment of 

cancer, Piritrexim (III) (Scheme 1). Besides, diarylmethanes are important precursors of the 
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corresponding benzophenones, which have demonstrated to have antibacterial activity [7] and, as is 

already known, the search of new antibiotics is always an important target for medicinal chemistry. 

 

Scheme 1 

 

 

2. Results and discussion 

We based the synthetic strategy for the preparation of the diarylmethanes on the construction of two 

different aromatic “building blocks”, A and B, that will be coupled through a sonicated Stille 

reaction. The benzyltin group was located in the A-ring while the B-ring contains a variety of 

substituted aryl halides. Then, some representative products will be oxidized to the corresponding 

benzophenones (Figure 1). 

 

Figure 1 

 

 

To achieve this, benzyl chloride and 3,5-dimethoxybenzyl chloride (2) were chosen as starting 

materials. Compound 2 was obtained (75% yield) from commercially available methyl-3,5-

dimethoxybenzoate (1) according to Scheme 2.  

 

Scheme 2 

 

 

The selected substrates providers of the Csp
3
 moiety were benzyltri-n-butyltin (3) and 3,5-

dimethoxybenzyltri-n-butyltin (4). Knowing the ease of decomposition of these type of compounds, 

we tested four different methods to prepare them: direct synthesis between zinc powder, tri-n-

butyltinchloride and benzyl halide (I) [8]; Grignard reaction between tri-n-butyltin chloride and 

benzylmagnesium halide (II) [9]; reaction between lithium tri-n-butyltin, THF and benzyl halide (III)
 

[10]; and Barbier sonicated reaction in the presence of magnesium turnings, THF, tri-n-butyltin 

chloride and benzyl halide (IV) [2c]. The results are summarized in Table 1. As can be seen in 

entries 4 and 8, the Barbier reaction was the best procedure for both 3 and 4 compounds, due to its 

simplicity, mild conditions, rate of reaction and very high yield compared with the other methods 

[11]. Benzyl chlorides were chosen instead of bromides to prevent the possible reduction to toluene 

derivatives.  Besides, no side products were observed except the Bu3SnCl formed during the 

reaction. It is clear that the very short time of reaction prevents the formation of undesired 

byproducts. The progress of the reaction was followed by thin layer chromatography (TLC) on silica 



 

gel and checked by 
119

Sn NMR spectra. The use of (Bu3Sn)2O as electrophile gave very poor yields 

and (Bu3Sn)2 as byproduct. No dimerization of R3Sn or benzyl species was observed [12].  

 

Table 1 

 

 

Once 3 and 4 were obtained, (A-ring), we tested the scope of the sonicated Stille coupling catalyzed 

by palladium complexes.
  
At this point it is important to note that, usually, this coupling is carried out 

with benzylhalides as the Csp
3
 center with a variety of arylstannanes as the Csp

2
 source [13]. 

 

According to the very good results observed in the synthesis of the benzyltin compounds 3 and 4, we 

proposed a reversal of this approach so these substrates will provide the Csp
3
 center for the coupling 

reaction with several substituted aryl halides derivatives (B-ring). Thus, two reaction conditions were 

monitored: i) Pd(PPh3)2Cl2, THF, AsPh3, LiCl, r.t., ultrasound and ii) Pd2(dba)3, DMF, AsPh3, LiCl, 

r.t., ultrasound. The corresponding diarylmethanes (5 - 17) were obtained and the results are shown 

in Table 2.  

 

Table 2 

 

 

Except for 1-(3,5-dimethoxybenzyl)-2-methylbenzene, (13, entry 9), in all cases the best yields were 

achieved using the Pd2(dba)3 / DMF system (method ii) and no traces of homocoupling byproduct 

was observed.  On the other hand, the Stille reaction performed with the Pd(PPh3)2Cl2 /THF system 

(method i) gave the homocoupling products in almost all cases (entries 1, 2, 3, 5, 6, 8 and 10) and in 

a high proportion in some of them (entries 2 and 8). It is important to note that the diarylmethanes 8, 

11, 13, 15, 16 and 17 (entries 4, 7, 9, 11, 12 and 13) were the only products observed, no 

homocoupling byproducts were obtained and the yields were regular to low for most cases. As 

expected, the increase in the number of substituents on the phenyl groups gave higher time of 

reaction in both methods suggesting an important steric factor involved. After chromatographic 

purification with neutral alumina of compounds 5 – 17, five of them (5, 8, 9, 13 and 14) were 

oxidized [10] as representative cases at the benzylic center in a single reaction step (Scheme 3). 

 

Scheme 3 

 

 

As is already known [22], the combination of cerium (IV) ammonium nitrate (CAN) in catalytic 

amounts and potassium bromate can be employed for benzylic oxidation. Thus, compounds 5 and 8 

were oxidized, giving the already known benzophenone (18) and the expected 3-benzoylbenzoic acid 



 

(19) due to the additional oxidation of the methyl group. Because of this and taking into account that 

oxygen-bearing substituents like methoxy or nitro were not compatible with the latest reaction 

conditions [23],  oxidation with chromium (VI) oxide (CrO3) in acetic acid [24] was used in these 

special cases (9, 13 and 14). The corresponding benzophenones 20-22 were synthesized in very good 

yields after purification. In the case of substrates 13 and 14, 2-(3,5-dimethoxybenzoyl)benzoic acid 

(21) and 3-(3,5-dimethoxybenzoyl)benzoic acid (22) were obtained due to the inevitable oxidation of 

the methyl group. 

 

3. Conclusions 

In conclusion, we have demonstrated that the creation of a Csp
3
 benzyl center for the synthesis of 

substituted diarylmethanes structures is possible through trialkylbenzyltin intermediates generated 

under ultrasound Barbier reaction with excellent yields followed by the corresponding sonicated 

Stille coupling with substituted aryl halides. The creation of new Csp
3 

- Csp
2
 bond, usually very 

difficult to achieve, is well accomplished under mild condition reactions and suitable yields. The use 

of ultrasound irradiation not only improved the reaction conversion, but made the reaction run 

smoothly.  

 

 

4. Experimental     

 

4.1. General methods 

 

All the reactions were performed under nitrogen or argon as indicated. The solvents used were dried 

and distilled in accordance with standard procedures. 
1
H, 

13
C, and 

119
Sn NMR spectra were recorded 

in CDCl3 on a Bruker ARX 300 Multinuclear instrument (300.1 MHz for 1H, 75.5 MHz for 
13

C and 

111.9 MHz for 
119

Sn) at 23º C and calibrated by using signals from solvents referenced to SiMe4 (
1
H, 

13
C NMR) and with respect to Me4Sn in the case of 

119
Sn-NMR spectra. Chemical shifts (δ) are 

reported in ppm and coupling constants (J) are in Hz. Compounds described in the literature were 

characterized by comparing their 
1
H, 

13
C and 

119
Sn NMR spectra to the previously reported data. 

Unknown compounds were purified and analyzed from a single run and then were repeated to 

determine an average yield and were characterized by 
1
H and 

13
C NMR spectra, MS and elemental 

analysis. Mass spectra were obtained with a GC/MS instrument (HP5-MS capillary column, 30 m / 

0.25 mm / 0.25 mm) equipped with 5972 mass selective detector operating at 70 eV (EI). High 

resolution mass spectra (HRMS) were recorded on a Finnigan Mat 900 (HR-EI-MS). IR spectra were 

recorded on a Nicolet Nexus FT spectrometer instrument. Melting points were determined with a 

Kofler Hot-Stage apparatus and are uncorrected. The progress of the reaction and the purity of 

compounds were monitored by TLC analytical silica gel plates (Merck 60 F250). The reactions 

under ultrasonic conditions were performed in an NDI ULTRASONIC 104X bath operating at 43-47 



 

KHz and 30°C ( 1°C). The reaction flask was located in the water bath of the ultrasonic cleaner, 

and the temperature of the water was controlled by addition or removal of water fron the ultrasonic 

bath. Column chromatography was performed over silica gel 60 70-230 mesh ASTM. Flash 

chromatography was performed over alumina. All the solvents and reagents were commercially 

available and analytical grade.  

 

4.2. Synthesis of 3,5-dimethoxybenzyl chloride (2) [25]
 

To a suspension of AlLiH4 (0.6 g; 15.8 mmoles) in dry ethyl eter (15 mL) under nitrogen 

atmosphere, a solution of commercial methyl-3,5-dimethoxybenzoate (1) (2 g; 10.0 mmoles) in 10 

mL of anhydrous ethyl eter was added dropwise with stirring. After 6 h of refluxing, the mixture was 

quenched with HCl 10% (20 mL). The organic layer was separated and dried over anhydrous 

MgSO4. The solvent was removed under reduced pressure and the crude product (1.71 g, quantitative 

yield, 10.2 mmol) was dissolved in CH2Cl2 (48 mL) under nitrogen atmosphere and, with magnetic 

stirring, tionyl chloride freshly distilled (1.5 mL; 20.4 mmol) was added dropwise. The reaction 

mixture was heated to reflux and then a solution of triethylamine (6 mL) in CH2Cl2 (48 mL) was 

added during 2 h. The reaction mixture was quenched with saturated NaHCO3 (100 mL) and was 

extracted with ether (40 mL x 3). The organic layer was separated and dried over anhydrous MgSO4 

and concentrated. The crude residue was purified by flash column chromatography with alumina and 

3,5-dimethoxybenzyl chloride (2) eluted as a yellowish solid (1.8 g, 9.6 mmol, 94%, m.p.: 45-46°C, 

lit. [7f] m.p.: 46°C).  

 

4.3 Synthesis of benzyltin derivatives (3) and (4).  Synthesis of benzyltri-n-butyltin (3) 

All the reactions were carried out following the same procedure. One experiment is described in 

detail in order to illustrate the methods used.  

 

4.3.1 Method I: 

Tri-n-butyltin chloride (0.54mL; 2 mmol) was poured to a mixture of zinc powder (0.26 g; 4 mmol) 

in THF (2 mL) / NH4Cl saturated aqueous solution (4mL) contained in a round-bottomed two necked 

flask equipped with condenser and dropping funnel. With magnetic stirring, benzylbromide (0.48 

mL; 4 mmol) was added dropwise at such a rate to maintain a gentle reflux due to the exothermicity 

of the reaction. During the addition, the disappearance of zinc powder was observed. After stirring 

24 h at room temperature, the organic layer was separated and THF removed under reduced pressure. 

The crude product (heavy liquid) was purified by silica-gel column chromatography dopped with 

10% KF, eluting (3) with hexane as an oil [26] (0.61 g; 1.6 mmol; 80%). 

 

4.3.2 Method II: 



 

Tri- n-butyltin chloride (15.3 mL; 13.2 mmol) was dissolved in a mixture of anhydrous benzene (15 

mL) and anhydrous ethyl eter (8 mL) in a round bottomed two necked flask equipped with reflux 

condenser and dropping funnel under nitrogen atmosphere. After cooling to 0°C (in an ice-water 

bath), benzylmagnesium bromide (15 mL of 1.32 M ethyl ether solution; 19.9 mmol) was added 

dropwise and then kept 12 h under reflux.  The reaction was cooled and quenched by slow addition 

of 10% HCl solution. The organic layer was dried with anhydrous MgSO4 and the solvent was 

removed under reduced pressure. The residue was purified by silica gel column chromatography 

dopped with 10% KF, eluting (3) with hexane as an oil (3.6 g; 9.5 mmol; 72%). 

 

4.3.2.1 3,5-dimethoxybenzyltri-n-butyltin (4). Yellowish oil (0.17 g, 0.9 mmol, 46% ). 
1
H NMR 

(CDCl3): δ 7.24-7.20 (s, 1H), 7.16-7.00 (m, 2H), 3.62 (s, 6H); 2.18 (s, 2H, 
2
JSn-H = 55.7 CH2), 1.60-

1.22 (m, 6H), 0.99-0.82 (m, 15H), 0.54-0.40 (m, 6H). 
13

C NMR (CDCl3): δ 159.86, 144.34, 122.90, 

110.27, 55.62, 25.06 (
3
JSn-C = 20.3 CH2), 23.09 (

2
JSn-C = 53.9 CH2), 17.29 (

1
JSn-C = 244.9 CH2), 12.64, 

12.29 (
1
JSn-C = 318.8 CH2). HR-MS (EI): Anal. calcd. for C21H38O2Sn (442.1894): C, 57.16; H, 

8.18%;  found: C, 57.15; H, 8.14%.                    

 

4.3.3 Method III: 

A mixture of tri-n-butyltin chloride (1.35 mL; 5 mmol) and lithium chippings (0.38 g; 5 mmol) in 

anhydrous THF (2.5 mL) was stirred 1 h in a round-bottomed flask equipped with nitrogen 

atmosphere and reflux condenser. The reaction becomes exothermic and the mixture turned dark 

green. After 2 h stirring, the mixture was filtered through glass wood to another round bottomed 

flask under nitrogen atmosphere and cooled to 0°C in an ice-water bath. Benzyl chloride (0.58 mL; 5 

mmol) in anhydrous THF (1 mL) was added, followed by 12 h stirring at room temperature. The 

reaction was quenched with water (5 mL) and the aqueous layer washed with ethyl ether (2 x 2 mL). 

The combined organic layers were dried over anhydrous MgSO4 and after removing the solvent, the 

crude product was purified by 10%  KF dopped-silica gel column chromatography, eluting (3) with 

hexane as an oil (1.30 g; 3.4 mmol; 68%).  

Following the same procedure, compound (4) was obtained in 72% yield (0. 66 g, 3.6 mmol). 

 

4.3.4 Method IV (Barbier reaction): 

A mixture of magnesium turnings (0.32 g; 13 mmol) and tri-n-butyltin chloride (3.25 g; 10 mmol) in 

anhydrous ethyl ether (2 mL) and few drops of pure benzyl chloride was placed in a Schlenk tube 

under argon atmosphere and submerged into a commercial ultrasonic cleaning bath. Once the 

reaction starts, the remaining benzyl chloride (1.4 mL, 12 mmoles) was added in ethereal solution 

(10 mL). When the reaction finished (30 min.), the mixture was washed with a saturated solution of 

NaCl and extracted with diethyl ether (7 mL). The organic layer was dried over anhydrous MgSO4 



 

and the solvent was removed under reduced pressure. The product was purified by silica gel column 

chromatography dopped with 10% KF, eluting (3) with hexane as an oil (3.42 g; 9 mmol; 90%). 

Following the same procedure, compound (4) was obtained in 87 % yield (2.07 g, 11.3 mmol).  

 

4.4 Synthesis of diarylmethanes (5) – (17) (ultrasound Stille coupling). Synthesis of 1-benzyl-3-

methylbenzene (8) 

All the reactions were carried out following the same procedure. One experiment is described in 

detail in order to illustrate the methods used.  

 

4.4.1 Method i: [27]
 

A solution of benzyltri-n-butyltin (3) (0.38 g, 1 mmol), Pd(PPh3)2Cl2 (2 mol%), AsPh3 (30 mg, 0.012 

mmol), LiCl (0.13 g, 3 mmol), 3-iodotoluene (0.22 g,  1 mmol) and THF (4 mL) under argon 

atmosphere was maintained in an ultrasonic bath. After 16 h of reaction no progress in the reaction 

was seen by TLC analysis. The crude product was filtered through celite to separate the inorganic 

insolubles salts together with the catalyst. The solvent was distilled off under reduced pressure and 

product 8 was isolated by column chromatography with alumina dopped with 10% of KF to retain 

tributyltin halides formed during the reaction. 8 eluted with 95:5 (hexane/diethyl ether) as an 

yelowish oil. (0.12 g, 0.68 mmol, 68%, b.p.: 276.9°C/760 mmHg, lit: 
15 

b.p.: 279.2/760 mmHg). 

 

4.4.2 Method ii: [28] 

A solution of 3,5-dimethoxybenzyltri-n-butyltin (3) (0.19 g, 0.5 mmol), Pd2(dba)3 (7.5 mg, 0.013 

mmol), AsPh3 (7.5 mg, 0.03 mmol), LiCl (31.3 mg, 0.75 mmol), 3-iodotoluene (0.11 g,  0.5 mmol) 

and DMF (10 mL) under argon atmosphere was maintained in an ultrasonic bath. After 11 h the 

reaction was complete and no starting product was observed by TLC (SiO2). The crude product was 

filtered through celite to separate the inorganic insoluble salts together with the catalyst. The solvent 

was distilled off under reduced pressure and product 8 was isolated by column chromatography with 

alumina dopped with 10% of KF to retain tributyltin halides formed during the reaction. 8 (0.07 g, 

0.39 mmol, 78%) eluted with 95:5 (hexane/diethyl ether). 

 

4.4.2.1 1-(3,5-dimethoxybenzyl)-4-methylbenzene (12): yellowish oil, 
1
H NMR (CDCl3): δ 7.19 (d, 

2H); 7.05 (d, 2H); 6.55-6.48 (m, 3H); 3.96 (s, 2H); 3.62 (s, 6H); 2.09 (s, 3H). 
13

C NMR (CDCl3): δ 

162.23; 142.05; 139.23; 135.15; 129.02; 128.42; 107.62; 100.90; 57.21; 40.93; 21.14. HR-MS (EI): 

Anal. calcd. for C16H18O2 (242.1307): C, 79.31; H, 7.49%, found: C, 79.29; H, 7.53%. 

 

4.4.2.2 1-(3,5-dimethoxybenzyl)-2-methylbenzene (13): yellowish oil,
 1

H NMR (CDCl3): δ 7.39-7.30 

(m, 2H), 7.21-7.16 (m, 2H), 6.46-6.40 (m, 3H), 3.95 (s, 2H), 3.65 (s, 6H), 2.16 (s, 3H). 
13

C NMR 

(CDCl3): δ 161.87, 143.96, 141.89, 135.51, 129.23, 128.60, 127.52, 126.00, 106.94, 99.32, 58.63, 



 

40.12,  20.67. HR-MS (EI): Anal. calcd. for C16H18O2  (242.1307): C, 79.31; H, 7.49%; found: C, 

79.34; H, 7.45%. 

 

4.4.2.3 1-(3,5-dimethoxybenzyl)-3-methylbenzene (14): yellowish oil,
 1

H NMR (CDCl3): δ 7.26-7.00 

(m, 4H), 6.34-6.30 (m, 3H), 3.86 (s, 2H), 3.75 (s, 6H), 2.30 (s, 3H). 
13

C NMR (CDCl3): δ 160.11, 

143.61, 140.70, 138.13, 130.40, 130.12, 129.67, 126.05, 107.70,  98.10, 55.70, 42.06, 22.12. HR-MS 

(EI): Anal. calcd. for C16H18O2 (242.1307): C, 79.31; H, 7.49%;  found: C, 79.35; H, 7.50%. 

4.5 Synthesis of benzophenones (18) – (22).  

All the reactions were carried out following the same procedure. One experiment is described in 

detail in order to illustrate the methods used.  

 

4.5.1 3-benzoylbenzoic acid (19): A solution of 1-benzyl-3-methylbenzene (8) (0.182 g, 1 mmol), 

potassium bromate (0.083g, 0.5 mmol) and cerium (IV) ammonium nitrate (CAN) (0.055 g, 0.1 

mmol) was added to acetic acid (1.5 mL). The solution was stirred and heated 24 h at 110°C or until 

no starting product was observed by TLC (SiO2). The reaction mixture was poured into a cold 

mixture of water (2 mL) and CH2Cl2 (2 mL). The organic layer was separated, washed with water (2 

x 3 mL) and dried over anhydrous MgSO4. The solvent was removed under reduced pressure and the 

product was purified by recristallyzation as a white solid from CHCl3 / hexane (0.14 g, 0.71 mmol, 

71%, m.p.: 153-154°C, lit.[29] m.p.:157-158°C). 

 

4.5.2 4-methoxybenzophenone (20):  To a solution of 1-benzyl-4-methoxybenzene (9) (0.16 g, 0.8 

mmol) in acetic acid (15 mL), chromium trioxide (0.12 g, 1.2 mmol) was added. The mixture was 

left at room temperature during 1 h or until no starting product was observed by TLC (SiO2). The 

solution was extracted with diethyl ether (3 x 20 mL). The combined organic layers were washed 

with water (5 x 15 mL) and brine (10 mL). After drying over anhydrous Na2SO4, the solvent was 

removed off under reduced pressure. The crude product was purified by silica gel column 

chromatography and 20 eluted as a white solid with hexane/diethyl ether (70/30), (0.15 g, 0.7 mmol, 

88%, m.p.: 60-61°C, lit.: [30]
 
m.p.:60-63°C). 

 

4.5.3 2-(3,5-dimethoxybenzoyl)benzoic acid (21): yellowish oil, IR (νmax cm
-1

): 3448 (O-H), 1683 

and 1662 (C=O), 1253 (C-O). 
1
H NMR (CDCl3): δ 11.80 (s, 1H), 8.17-7.50 (m, 4H), 7.06-6.44 (m, 

3H), 3.62 (s, 6H). 
13

C NMR (CDCl3): δ 193.46, 165.83, 161.55, 137.68, 137.20, 134.75, 131.76, 

131.14, 128.30, 127.80, 107.20, 107.81, 58.90. HR-MS (EI): Anal. calcd. for C16H14O5 (242.1307): 

C, 67.13; H, 4.93%;  found: C, 67.10; H, 4.89%. 

 

4.5.4 3-(3,5-dimethoxybenzoyl)benzoic acid (22): yellowish oil, IR (νmax cm
-1

): 3440 (O-H); 1687 and 

1641 (C=O); 1250 (C-O). 
1
H NMR (CDCl3): δ 10.78 (s, 1H), 8.35-7.46 (m, 4H), 7.23-6.60 (m, 3H), 



 

3.68 (s, 6H); 
13

C NMR (CDCl3): δ 192.09, 166.22, 162.40, 142.01, 136.98, 135.44, 132.54, 130.21, 

130.06, 129.60, 107.20, 106.71, 59.04. HR-MS (EI): Anal. calcd. for C16H14O5 (242.1307): C, 67.13; 

H, 4.93%;  found: C, 67.18; H, 4.90%.  
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Table 1.  Synthesis of benzyltin derivatives 3 and 4 under different reaction conditions. 

 

 
 

Entry G 
Reaction 

Conditions 
b 

Time (h)  / yield 

(%) 
a 

1 H I 24 / 80 

2 H II 12 / 72 

3 H III 12 / 68
 

   4 H IV 0.5 / 90 

5 -OCH3 I --- 
c 

6 -OCH3 II 12 / 46 

7 -OCH3 III 10 / 72 

8 -OCH3 IV 0.5 / 87 
                                        a Alter purification with column chromatography. b Zn powder, Bu3SnCl, benzyl 

                                        halide (I), Bu3SnCl, ArCH2MgCl (II), LiSnBu3, THF, ArCH2Cl (III), Mg, THF,  

                                        Bu3SnCl, ArCH2Cl, ultrasound (IV).   c No reaction observed. 
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Table 2.  Sonicated Stille reaction between benzyltributyltin compounds (3) and (4) and several 

substituted aryl halides.  

 

 

 

Entry G  R1 X Reaction  

conditions 
a 

Product
 

 

% yield 
b
 Time (h)  Ref. 

 

1 H H Br i / ii 
 

39 (10) / 70 12 / 9 [14] 

2 H p-CH3 I i / ii 
 

26 (32) / 67 18 / 12 [15] 

3 H o-CH3 I i / ii 
 

63 (8) / 75 18 / 12 [16] 

4 H m-CH3 I i / ii 
 

68 / 78 16 / 11 [17] 

5 H p-OCH3 I i / ii 
 

45 (40) / 56 18 / 12 [18] 

6 H o-OCH3 I i / ii 
 

67 (20) / 71 18 / 12 [19] 

7 H m-OCH3 I i / ii 
 

45 / 60 20 / 14 [20] 

8 -OCH3
 

p-CH3 I i / ii 
 

28 (60) / 59 26 / 20 --- 

9 -OCH3
 

o-CH3 I i / ii 

 

42 / 39 28 / 19 ---- 

10 -OCH3
 

m-CH3 I i / ii 
 

51 (20) / 65 27 / 20 ---- 

11 -OCH3
 

p-OCH3 I i / ii 
 

45 / 68 28 / 22 [21] 

12 -OCH3
 

o-OCH3 I i / ii 

 

55 / 72 30 / 25 [21] 

13 -OCH3
 

m-OCH3 I i / ii 
 

52 / 75 36 / 25 [21] 

 a
 Reaction conditions: i) Pd(PPh3)2Cl2, THF, AsPh3, LiCl, r.t., ultrasound; ii) Pd2(dba)3, DMF, AsPh3, 

LiCl, r.t., ultrasound. 
b
 Determined by GC/MS; isolated yields as an average of at least three 

independent runs and corresponds to reaction conditions i and ii respectively. In parentheses the yield of 

homocoupling product is shown.  
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