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STABILIZATION FOR SMALL MASS IN A QUASILINEAR
PARABOLIC-ELLIPTIC-ELLIPTIC
ATTRACTION-REPULSION CHEMOTAXIS SYSTEM WITH
DENSITY-DEPENDENT SENSITIVITY: BALANCED CASE

Y. CHIYO - T. YOKOTA

This paper is concerned with the Neumann initial-boundary problem
for the quasilinear parabolic—elliptic—elliptic attraction-repulsion chemo-
taxis system with ¢ = p and ya —Ey=0:

up =V ((u+1)"""Vu— gu(u+1)P2Vv+Eu(u+1)72Vw),
0=Av+au—PBv,
0=Aw+7yu— 6w

in a bounded domain Q C R" (n € N) with smooth boundary dQ, where
m,p,q€R, x,&, a,B,v,0 > 0 are constants. In the case thatm # 1, p # 2
and ¢ # 2 boundedness and finite-time blow-up have been classified by
the sizes of p,q and the sign of yo — £y (Z. Angew. Math. Phys.; 2022;
73; 61), where the critical case Yo — £y = 0 has been excluded. The
purpose of this paper is to prove boundedness and stabilization in the case

xo—Ey=0.
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1. Introduction

We consider the following initial-boundary value problem for the quasilinear
parabolic—elliptic—elliptic attraction-repulsion chemotaxis system with ¢ = p
and yao —Ey=0:

(14, =V- ((u41)""Vu— gu(u+1)P"2Vv+ Eu(u+1)7*Vw),
0=Av+au—Pv,

0=Aw+yu— ow, (1.1)
Vu-viga =Vv-v[go=Vw-v|jo =0,
Lu(-,0) =uo

in a bounded domain Q C R” (n € N) with smooth boundary dQ, where

m?p?qeR7 x7€7a7ﬁ7’)/75>0

are constants, Vv is the outward normal vector to 0Q,
up €CY(Q), up>0inQ and uy#O0. (1.2)

The fully parabolic version of (1.1) with m = 1 and p = ¢ = 2 has been pro-
posed by Luca et al. [11] in order to describe the aggregation of microglial
cells in Alzheimer’s disease, and has been studied mathematically as will be
explained later. This original problem is also a specialized one introduced by
Painter and Hillen [12, Section 3.3] to represent the quorum sensing effect that
cells keep away from a repulsive chemical substance. One can observe that
(1.1) is regarded as a simplified problem of parabolic—elliptic—elliptic type and
is generalized problem to the quasilinear version. In these systems the functions
u, v and w idealize the density of the cells, the concentration of the chemoattrac-
tant and chemorepellent, respectively. To the best of our knowledge, quasilin-
ear attraction-repulsion chemotaxis systems as in (1.1) were studied firstly by
Frassu, van der Mee and Viglialoro [5] and also by Frassu, Li and Viglialoro [4],
where the second and third equations have consumption and nonlinear produc-
tion terms, respectively.

Before stating our main results, we briefly review previous works related
to the subjects in this paper. Liu and Wang [10] established the first result on
global existence and steady states in the fully parabolic version of the problem
(I.1)withm=1and p=g=2aswell as y =& = a = 1 in the one-dimensional
setting. After that, Tao and Wang [13] derived boundedness in the problem (1.1)
with m = 1 and p = ¢ = 2 by assuming Yo — £y < 0 in two or more space
dimensions, and proved finite-time blow-up in this problem when ya — £y > 0,
B =6, [luollpq) > xo?iféy and [q uo(x)|x —xo|* dx (xo € Q) is sufficiently small
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in the two-dimensional setting. In the literature, it was also shown that the
problem (1.1) possesses only one constant equilibrium (g, %LTQ, %Z/To), where

= ‘1@ Jo uo, under the condition Yy — &y <0and = 8, and that solutions of
the problem (1.1) stabilize toward this constant equilibrium under the condition
xoa—Ey<0and B =38. We note that boundedness under some condition
including y a — £y = 0 was established by Jin and Wang [6, 7] in the parabolic—
parabolic—elliptic and fully parabolic versions in two dimensions. After that,
Li, Lin and Mu [8] showed boundedness in this problem under the condition
x 0 —Ey=0in the two- and three-dimensional settings. Also, stabilization was
derived in the literature under the condition Yo — &y = 0 and some smallness
condition for ug; note that the fully parabolic version was investigated by Lin,
Mu and Wang [9]. On the other hand, in the case that m # 1, p # 2 and ¢ # 2
boundedness and finite-time blow-up were classified by the sign of ya — &7y in
[2]. Also, stabilization was shown in [1] under the condition p < g, or p =g
and Yoo — &y < 0.

In summary, boundedness, finite-time blow-up and stabilization in the prob-
lem (1.1) were obtained under conditions for the sign of yo — &y. However,
in the critical case ya — &y = 0 the problem (1.1) has not been studied yet.
The purpose of this paper is to establish boundedness and stabilization in the
problem (1.1) in the critical case ya — &y = 0.

The main results read as follows.

Theorem 1.1 (Boundedness). Letn € N. Let g = p and yoe — Ey = 0. Assume
that m > max{1,p — %} Then for all uy satisfying (1.2) there exists a unique
triplet (u,v,w) of nonnegative functions

u € COQx1[0,00))NC>(Q x (0,00)),
VW € My CO([0,90); WP (Q)) NCHH(Q % (0,0)),

which solves the problem (1.1) classically, and is bounded, that is,

()|l =) <C
for all t > 0 with some constant C > Q.

Throughout the sequel we denote by

7= 1

the spatial average of arbitrary functions f € L' (Q).
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Theorem 1.2 (Stabilization). Let n € N. Let g = p and xa — &y = 0. Assume
thatm>1land 0 < p—m< % Suppose that ug satisfies (1.2) and

1

2C(p—my’

x5 <

where C(,,_,,, > 0 is a constant appearing in the Poincaré-Sobolev inequality
_ 2

e —0ll2 ) < C(pfm>HV‘PHLhzn+I @ for all € W51 (Q). Then the solu-

tion (u,v,w) of the problem (1.1), provided by Theorem 1.1, fulfills

u(,t) >ug inL7(Q) ast—oo (1.3)
and
ai . oo
v(-,t)—>Euo inL”(Q) ast— oo (1.4)
as well as
w(-,t)—)%bTo inL7(Q) ast— oo. (1.5)

Theorem 1.3 (Exponential stabilization). Let n =2 and let m = 1. Let q=p
and ya—Ey=0. Let k € (0,A;), where Ay > 0 is the first nonzero eigenvalue of
the Neumann Laplacian in Q. Assume that 1 < p < 2. Suppose that ug satisfies
(1.2). Then one can find ty > 0 and & > 0 such that for all € € (0, &), whenever

ug fulfills
[uollLro) < €,

the solution (u,v,w) of the problem (1.1), provided by Theorem 1.1, satisfies

(1) —tol| =) < ge Kl=00) (1.6)
and
o o
AN < L gp—Kklt—t0) 1.
HV( 7t) BMO LN(Q) — Bse ( 7)
as well as
Y Y —x(r—tg)
. - = < 2 0 .
Hw( D)= 550 S 55 (1.8)

forallt > 1.



STABILIZATION IN A QUASILINEAR ATTRACTION-REPULSION SYSTEM 207

The strategy for showing boundedness (Theorem 1.1) is to derive the differ-

ential inequality
d o o
— <
a /Q u + /g u <c

for some ¢ > n and c; > 0. The key to the construction of this inequality is to es-
timate the term J; :=c¢3 [q u® TP~ with ¢, > 0. In [2] the term J; can be removed
by taking advantage of the effect of the repulsion. On the other hand, in our case,
we cannot handle the term J; by the same way as in the literature. Hence, we
shift our perspective to the diffusion instead of the repulsion. Specifically, we
cope with J; by using the effect of the diffusion via the Gagliardo—Nirenberg in-
equality. Once boundedness is established, stabilization (Theorem 1.2) follows
directly from boundedness and [1, Remark 1.1]. We next explain the strategy
for proving exponential stabilization (Theorem 1.3). We first obtain the estimate

limsup [|U(-,1) || = <C3HMOHHC4
100

with ¢3,¢4 > 0, where U (x,t) := u(x,t) —ug for x € Q, ¢ > 0 (see Lemma 4.2),
which implies that there exists #) > 0 such that

1U (1)) < e3lluoll i, (1.9)

for all ¢ > #). We next take & > 0 small enough, and for each € € (0, &), fix up
such that [lug||,1 (@) < €. We also define the set

St = {T* >0 [ |U(G)|| =) < €€ k(=) for all t € [to, T*] }

1+L4

and put 7 := sup S*. Since the power of HuoH 1n (1.9) is greater than 1, we

obtain the sharper estimate [|U(-,?)||;=(q) < 2e (’ ~) on [to, T]. This entails
that T = oo, which derives exponential decay of U (see Lemma 4.3). This argu-
ment is based on that in [8], which deals with the case p = 2. However, since in
our case the problem (1.1) includes (u+ 1)?~2, we need to modify the argument
slightly.

This paper is organized as follows. In Section 2 we give a result on local
existence in (1.1) and a lemma such that an L°-estimate for 1 with some 6y > n
yields an L”-estimate for u. In addition, we state a lemma, which guarantees
that [, w is controlled by Jo u’ for £ > 1. Section 3 is devoted to the proofs of
boundedness (Theorem 1.1) and stabilization (Theorem 1.2). In Section 4 we
show exponential stabilization (Theorem 1.3).

Throughout this paper, we denote by c¢; generic positive constants, which
will be sometimes specified by ¢;(€) and ¢;(M) depending on small parameter
€ > 0 and the mass M := [, uo, respectively.
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2. Preliminaries

We first give a result on local existence in (1.1), which can be proved by standard
arguments based on the contraction mapping principle (see e.g., [3, 14, 15]).

Lemma 2.1. Let Q C R" (n € N) be a bounded domain with smooth boundary
andletm>1, p,q € R, x,&,a,B,7,6 > 0. Then for all uy satisfying the con-
dition (1.2) there exists Thax € (0,00] such that (1.1) admits a unique classical
solution (u,v,w) such that

u € COUQx [0, Tnax)) NC>H(Q x (0, Trnax) ),
VW € Npon CO[0, Tiax); WHP(Q)) NC21(Q x (0, Tinax))-

Moreover;

if Tmax < oo, then t}ig‘lax (-5 1) || =) = o°- (2.1)

We next give a lemma, which provides a strategy to prove global exis-

tence and boundedness. This lemma can be derived from the proof of [14,
Lemma A.1].

Lemma 2.2. Let Q C R" (n € N) be a bounded domain with smooth boundary
and let m > 1, p,g € R, x,&,0,B,y,6 > 0. Assume that uy satisfies (1.2).
Denote by (u,v,w) the local classical solution of (1.1) given in Lemma 2.1 and
by Trax € (0,00] its maximal existence time. Then there are 6y > max{n,—p—+3}
and constants Cy,Cy > 0 independent of M = [ ug such that

a0l €1 _sup uC9)fre) +laoleriy 22
SE(0, I max

forallt € (0, Thax)-

We next recall a lemma, which asserts that [, w' is dominated by Jo u’ for
¢> 1. This lemma can be shown by clarifying the part containing M = [, up in
[2, (3.3)].

Lemma 2.3. Let { > 1. Denote by (u,v,w) the local classical solution of (1.1)
given in Lemma 2.1 and by Thax € (0,00] its maximal existence time. Then the
first and third components of the solution satisfy that for all € > 0,

1 l 1
'/Qw (1) < 8/Qu (-,6) +c(e)MC

for all t € (0, Tyax) with some constants c¢(€) > 0 and Cy > 0 independent of
M = fg up.
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3. Boundedness and stabilization

In these next sections we assume that ¢ = p and yo — &y = 0, and that ug
satisfies (1.2). Then we denote by (u,v,w) the local classical solution of the
problem (1.1) given in Lemma 2.1 and by Tjn.x € (0,0] its maximal existence
time.

We employ the transformation

z=xv—CEw

which was originally introduced by [13]. Noting that g = p and Yo — &y =0,
we see from the transformation that the triplet (u,z,v) satisfies

(

up =V ((u+1)"""Vu—u(u+1)P2Vz) in Qx (0, Tax),
0=Az—06z+x(6—B)v in Q X (0, Tax )
0=Av+au—fv in Q x (0, Tax), (3.1)
Vu-v=Vz-v=Vyv.v=0 on dQ x (0, Thax),

u(-,0) =uo in Q.

Lemma 3.1. Assume that m > 1 and p—m < % Then the first component of
the solution (u,z,v) to (3.1) satisfies that for all ¢ > max{n,—p+ 3} there exist
constants C1,C,,C3 > 0 independent of M = [ ug such that

Qal—

1) o) < {CL M +MP) e [uol|fo ) — €1 (M +MP)] }
3.2)

forallt € (0, Tyax)-
Proof. Let o > max{n,—p+3}. Then we verify that the asserted estimate (3.2)
holds on (0, Tiax ); note that we omit the specification of the range of 7 in the
proof. The first equation in (3.1) and the condition m > 1 as well as integration
by parts imply
1d
EE/QMG = /QuG_IV- ((u+1)""'"Vu—u(u+1)P~2Vz)
— (6- 1)/ U2 (44 17" |V
Q
+ (o — 1)/ u N u+1)P2vy. vz
Q
< (o 1)/ U 3Vu 4+ (o — 1)/ V() Vz
Q Q

:_(:(_i_(;;_li)Z/QWuMg”1’2+(6—1)/£2Vf(u).vz’ (3.3)
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where f(u) := [§'s° ! (s+ 1)P~2ds. Also, multiplying the second equation in
(3.1) by f(u), integrating by parts and using z = yv — &w, we obtain

0:/Qf(u)Az—5/Qf(u)z+)((5—ﬁ)/gf(”)"
—/QVf(u)'VZ—5/Qf(”)(XV—‘§W)+X(5_B)/Qf(”)v
_/Qvf(u).VZ+§6/Qf(u)w—xB/Qf(u)v
— [ V5w Ve &8 [ flum
that is,

/QVf(u)-st gs/gf(u)w

which combined with (3.3) entails

d o G+m1
“ v <o(oc—-1 6/
dt/gu tlotm_1)2 G+m—1 /‘ w2 o(0-1Es | i

Here, noting from the choice o > —p + 3 that

flu)= /uscfl(s—i- 1)P~2ds

0

g/ (s+ 1)+ ds
0

1

- - 16+p—2
- G+p—2(u+ )

and using the fact (A + 1)(”?*2 < 20P=3(A9TP=2 1 1) for A > 0, we obtain

d/uG /‘ o‘+m l
dt Jo G+m—1

< o(0—1)&6 (u+1)°+7"2y

— o+p—2 Jo
20+p73 -1
< o(c-1)§9 {/ u"+”_2w+/ w}. (3.4)
o+p-—2 Q Q

Moreover, from the third equation in (3.1) and the mass conservation property,

we derive
_7 7 _7
/QW—a/Qu—S/QM()—SM
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Substituting this into (3.4) yields

d o G+m 1 _
— Vu Z< o+p-2 M. 3.5
e e [ P [ tean. 69

o+p-—2

We now estimate [ u w. Employing the Holder inequality, we have

o+p—2 1
— — o+p—1 _ o+p—1
/chrp ZWS (/ u6+p 1) p </Wc+p 1> P )
Q Q JQ

Here, by virtue of Lemma 2.3 with / = 6 + p — 1, we infer that for all € > 0,

/W6+pfl SSGerfl/ M6+p71—|-C3(8)MC4.
JQ Q

Combining the above two inequalities implies
/ ustP2y < 8/ u Pl cs(e)M‘fﬁ—l ) (3.6)
Q Q
Thus we see from (3.5) and (3.6) that
i / u° + / ‘ ool 1
dt Jo (o —i— m—
< c18/ uotr=1 +01C5(8)M<’+P—1 + oM. 3.7
Q

Here, the Gagliardo—Nirenberg inequality ensures

2(c+p—1)

1
L= " ol

L ommT (Q)
o+m—1 MQ o+m—1 2(0‘+p:1) (1—9 )
<o IV (ol gy I Gl T

— 2(c+p-1)
+Huc+2 1(‘,1’)” o-+1121—l )
Lo+m—I (_Q)

+p—1
<C6 / |V 6+m l|2) 6+’" IQIM(O'JFP 1)(1— 91)+MG+P l:|’ (3 8)

o+m—1 o+m—1

where 8) = 0 (p) == —arag 22 € (0,1). Indeed, since 2(p—m) —p+1 <
-2

otm—1 , 1
2 +n

—p+3 < o due to the condition p —m < 2 = and the choice 6 > —p+3, we can
verify that

c+m—1 >1 1
200+p—1)" 2 n
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Noticing from the condition p —m < 2 = that

oc+p—1 )
o+m—1 _°+3”—1-|-

o+m—1 2 %51:1]91 o+m—1 )
(/\Vu 2 |> S/]Vu T+
Q Q

Hence we have from (3.8) that

/uc7+p—1 <C6M(G+p—1)(1—91)</|
Q N Q

< c(,M(G+p_])(l_01)/ |Vu6+'2"_1 |2 _|_c6(M(G+P—1)(1—91) _‘_MCH-P—]),
Q

we see that

+ 1) +C6M0'+p—l

which combined with (3.7) entails

d/uc /’ 6+m1
dt Jo G—I—m

<C1C6M(G+p71 )(1-6y) S/ |
Q

€),

where ¢7(M,€) := 616‘5(8)1\/1%;‘*1 + oM + c1c6g(M(°+P—1)(1—91) + MOTPY,
We now add |, u° on the both sides of this inequality. Then we have

6+ml
Vu
dt/u +/ G+m /|
§/u + c1ceM @ TP~D-61) 8/|
Q Q

Here, using (3.8) with p = 1, we infer

[ el [ ) ],
Q Q

+e1(M, ). (3.9)

o+m—1__ o+m—1
where 6, := 6,(1) = c+2m17+ (0, 1), because the relation
2 n 2

6+m—1 1 1 1
_— >
20

l\.) \
NS}
S

holds by the condition m > 1. Also, since the condition m > 1 again ensures

S 4 §—
2:
oc+m—1 °+’2"—1
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the Young inequality derives that for all &’ > 0,
/ u® < cgM°=% (8// \V”HQH ? +c9(8')> + cgM°®
Q Q

SCSMG(I—Gz)el/ ‘Vucﬂzrrl |2+C10(8/)(MG(1_92)+MG).
Q

Applying this inequality to the right—hand side of (3.9), we see that

/ +/ /‘ 0‘+ml
dt " G+m

< (CICGM(G+P*1)(1*91)8+68M0(1*92 ¢ / Vu
Q

o+m—1

|2+011(M,8,8/),

where ¢ (M, &,€') := c7(M,€) + c1o(€') (M1 =%) 4 M%), Hence, choosing
€,€ > 0 small enough, we obtain

d
—/ u"+/ u® < cp(M). (3.10)
dt Jo Q
Here we put
o, ::min{l, ﬁ;—lv (6+p—-1)(1-61), o+p—1, 0(1-6), G}
and
o mmax {1, @)@, o p-1, o1 6, o,

which is the smallest and largest power of M appearing in c1, (M), respectively.
Then, noting from the choice of o that (6 +p—1)(1—6;) and o(1 — 6,) are
possibly smaller than 1, we can estimate cj2(M) as ¢j2(M) < c13(M® +M®").
We thereby infer from the inequality (3.10) that

;lt/u —l—/u <cp(M® +M®).

Therefore we have
/QM° < e (M +M? )+ e [|luo| o) — c13(M +M©)],
which leads to the conclusion. O
We are now in a position to complete the proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. A combination of (2.2) and (3.2) with ¢ = 6y ensures
that [|u(-,1)||=(q) < c1. Therefore, by virtue of the extensibility criterion (2.1),
we arrive at the conclusmn. [l

Proof of Theorem 1.2. Thanks to boundedness established by Theorem 1.1, the
stabilization properties (1.3)—(1.5) result from [1, Remark 1.1]. O
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4. Exponential stabilization

In this section, assuming that n = 2 and m = 1, we prove Theorem 1.3. To this
end we further rewrite the system (3.1) reduced by (1.1). Setting ug := ﬁ fQ uo,
we define the functions U = U (x,t), Z = Z(x,t) and V =V (x,7) as

U(x,t) := u(x,t) — up,
Z(x,1) = z(x,1) —xa(é - %)LTO,

V(x,t) = v(x,r) — %LTO

forx € Q C R, ¢ > 0, where z = v — Ew. Then we see from (3.1) with m = 1
that the triplet (U, Z,V) satisfies

Uy=V-(VU—=u(u+1)P2VZ) inQx (0,c0),
0=AZ—-8Z+x(6—-B)V in Q x (0,00),

0=AV+alU — BV in Q x (0,00), 4.1
VU-v=VZ-v=VV.v=0 on dQ x (0,00),

U(-,0) =up—uy in Q.

We first present the following lemma which can be proved by well-known
estimates for solutions of elliptic equations.

Lemma 4.1. Let Q C R? be a bounded domain with smooth boundary. Let
v € C%(Q) and let a,b > 0. Then the solution ¢ of the boundary value problem
0=A¢p+ay—>bep inQ,

Vo-v=0 on dQ
fulfills
19lzo @) < aCio) Wl (o)
IVollze) < aCuyllWli2 )
forall 0, > 1 with some Cgy,C ) > 0 independent of ||| 1 (o) and ||| 12

We next prove an estimate for U, which is the key to the derivation of L>-
convergence of u. The proof is parallel to [8, Proof of Lemma 4.3], however,
we confirm it because (4.1) is the quasilinear system including (u+ 1)?~2.

Lemma 4.2. Assume that 1 < p < 2. Then the first component of the solution
(U,Z,V) to (4.1) satisfies that for all ¢ > 2 there exist constants C1,C,,C3 > 0
independent of M = [, ug such that

limsup[|U(+,1) || =) < CLM(M© +MS). (4.2)
t—soo
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Proof. Let 6 > 2. Then we infer from (3.2) that there exists #; > 0 such that for
allt > 1,

lu(-,0)[[zo () < €1 (M= +M®). (4.3)

Also, we can show that the second component Z of the solution (U,Z,V) to
(4.1) satisfies

HVZ( )HL93 < C4M (4.4)

for all # > #; and all 83 > 1. Indeed, by the identity VZ = Vz and the second
equation of (3.1), we see from Lemma 4.1 that

IVZ(-10)ll o5y = V2,05
< 118~ Bles- [v(-0)lzqay

for all ¢ > #;. Moreover, from the third equation of (3.1), again by Lemma 4.1,
we have

V(- )l2e) < acsllul- )l @)
= ceM
for all + > t;. The above two estimates yield (4.4). We now rewrite the first

equation in (4.1) as

3
U("t) = e(titl)AU(th) _/ e(t7S)AV ’ [M(',S)(M(',S) + 1)[172VZ('7S)] ds
151
=1(-t)+L(,t) fort>t. 4.5)
In order to prove (4.2) we first show that
\|11(.,t)||Lw(Q) —0 ast—» oo, 4.6)
We infer from [16, Lemma 1.3 (i)] with n = 2 that
I (Gt =) = He(t_[])AU(',fl)HLw(g)
<er(1+ (=) e MU 0)g)
<er(14(t—1) e ™ . 2Mm

for all £ > #;, where A; > 0 is the first nonzero eigenvalue of the Neumann
Laplacian in Q. Hence we derive (4.6). We next estimate ||l2(-,?)||z=(q). For
k > 2, we observe from [16, Lemma 1.3 (iv)] with n = 2 that

120 =(@)

gqlh+a—w%i>l”vw<><mw+DPWﬂ )4 ds
4.7
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for all r > t;. Here, owing to the Holder inequality and the condition 1 < p <2,
we deduce

||M(~,S)(I/£('7S) + l)pizvz(Ws)HLk(Q)
< ||up71('7s)vz('7s)HL/"(Q)
= ) o IVZC )]

k(p—1) Q)

for all s > #;. Since o k > 1 due to the facts k£ > 2 and ﬁ > 1, the
estimates (4.3) and (4.4) 1mply that

lie(-,5) (-, ) + 1P 72VZ(,5) |12y < coM (M2 + M) (4.8)

for all s > #;. A combination of (4.7) and (4.8) yields

t
12(,0)|= @ <09M(M”+MC3)/(1+(t—s)*%*%)e*1<”>ds. (4.9)

151

Also, noting from the condition k£ > 2 that —% — % > —1, we derive that

where I'(+) is the gamma function. Thus we see from (4.9) that
1L(50) || =) < ectM(M? + M) (4.10)
for all r > t;. Combining (4.6) and (4.10) with (4.5), we arrive at (4.2). ]

In light of Lemma 4.2 we infer that there exist £, > 0 and ¢y, c;,c¢3 > 0 such
that

o, )”L“’ <c1M(MCZ+MC3) “4.11)
for all # > t,. We now pick & > 0 such that
2c1(862+883) <1, 4.12)

and for each € € (0, &), fix M = [, up such that 0 < M < e. Then we deduce
from (4.11), the fact M < € < &y and (4.12) that
1UC0)l|=@) < 2¢1(&% +€7) -

e<=¢ 4.13)

N\—‘
| =
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for all ¢ > #,. Thus we have that
S ={T*" >0 | |UC1)|= < €e X0 forallt € 1, T*]}  (4.14)

is nonempty, where x € (0,4, ) and A; > 0 is the first eigenvalue of the Neumann
Laplacian in Q. Indeed, noting that if = 1, then ge ¥(~2) = ¢ (> %8) we
derive from the continuity of the function ¢ — ge¥(=2) that there exists T* > 1
such that ee=*~2) > e for all ¢ € [, 7], which in conjunction with (4.13)
implies |U(-,1)||=(q) < ge ¥U=0) for all 1 € [1y,T*].

We put

T :=supS” € (2,] (4.15)
and note that
U (,0)|| =) < €672 forallt € [t,T] (4.16)

holds by the definition of S*. In the following lemma we derive T = oo which
yields that u converges to 7y at an exponential rate as t — co. The argument in
[8] based on [16, Lemma 1.2], however, this is not applicable directly to our
case because the system (4.1) includes (u+ 1)?~2. So, we go back to the proof
of [16, Lemma 1.2].

Lemma 4.3. Ler & > 0 satisfy (4.12). Let k € (0,A;). Assume that 1 < p < 2.
Then for all € € (0,&)), whenever ug fulfills that 0 < M = [qug < €, the first
component of the solution (U,Z,V) to (4.1) satisfies that

) L= = e .
U (1) ||z < €€ <07 (4.17)
forallt >ty + 1, where t, > 0 is the time appearing in (4.11).

Proof. We first rewrite the first equation in (4.1) as

U(-1) =20 (-,10) —/te(tS)AV' [u(-,s)(u(-,s) + 1)P2VZ(-,5)] ds

[5)

=:L(-,t)+L4(-,t) fort e (n,T) (4.18)

with T = sup S*, where S* is defined in (4.14). We then estimate ||15(-,?)||;=(q)-
Using [16, Lemma 1.3 (i)] with n = 2 and the fact e 1 —2) < ¢=*(—2) we have

I15( 1) =) < er(1+ (f—fz)_l)e_}“(t_m||U('JZ)||L°°(Q)
< 2c¢peKl70) 1U(0) =)
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for all t € (t,,T). Moreover, by virtue of the estimate (4.11) and the condition
M < g, we obtain

HI3('7I)HL°°(Q) < 26‘187’(([42) . 028(863 +8€4)

— c5E(E9 4 £%)e FUTR) (4.19)
for all t € (r2,T). We next estimate ||I4(-,?)||;=(q). Taking k > 2, we see from
[16, Lemma 1.3 (iv)] with n = 2 that

s ()l =)
t
<o [ (4= DM ule5) (le15) + 17 2VZ () 1y s
15}
(4.20)

forall 7 € (1, T). Here, we infer from the condition 1 < p <2 that
_ k(p—1
(-, 8)(u(5) + 1P 2VZ(8) sy < luC8) 1100) IVZC8) k@) @21

for all s € (1, T). Let us estimate the right-hand side of this inequality. In view
of the definition of U (see the beginning of Section 4), the estimate (4.16) and
M < g, we derive

(-, 9)|| =) = U (-, 5) + o]l =)
M
Q|

< creeKU7R) 4 |SQ|

<NUC9) =) +

for all s € (12, T), which means that

k(p—1
8) - (4.22)

k(p—1 re(s—
||M(’s)||L£qp(Q)) é <C7Se K(~ f2)_|_@

for all s € (1, T). Also, by virtue of the second and third equations in (4.1) and
the estimate (4.16) as well as Lemma 4.1, we obtain

IVZ(-,5)llx ) < %16 = Bles - [[V (- 9) [ 2 ()
< x|6 = Bles - acol|U(-,5)[| 1)
< c10[Q[-[|U(9) |
< cpge K6 (4.23)
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for all s € (1, T). Collecting (4.21), (4.22) and (4.23) in (4.20), we have

t
[4(-,0)||=(@) < C128/ (1+ (t—s)*%*%)e*ll(l*S)

15)

k(p—1
-<c78e_’((s_’2)+’£82‘) v )-e_"(s_’Z)ds (4.24)

for all t € (t,T). Combining (4.19) and (4.24) with (4.18) yields

U 1) |1m(@) < cse(e +%)e ¥

!
+C128/ (1+ (t—s)*%*%)e%(tfs)

[5)

Kp-1)
8) P e n) gs (4.25)

. —K(s—t) , &
<C78€ + Q|

forall 7 € (f,T). We next estimate the integral appearing in the right-hand side
of (4.25). We first estimate it as

1

t : € \kp—1)
1+ t— —77% —ll(l—s)' € —K(S—t2)+ . —K'Sd
/12( (t—s) )e <C7 e 7‘Q|> e s
1_1

< CwSk(pl)/t(l +(t—s)7§7)e*ll(H).(e*k(pfl)-x(sftz) +1)-e " ds

oD /’(,_s);;ek<p1>-x<szz>em<rs>e:<sds
15}
=: 2613816(1771)15(',1‘) + 6138](([)71)16(',2‘) (4.26)

forall 7 € (t,T). From a straightforward calculation we rewrite Is(-,¢) as

1
ll—K‘

(=K — Fzg—al1=n)) 4.27)

Ij(,t) — e*},]l . (e(l]fk')l 76(2.]71(')1‘2)

1
_2,1—1(

for all t € (12,T). We next estimate s (-,¢) by dividing the interval (¢,,) into
(t2,t —1) and (r — 1,¢) forr € (t,+1,T). Namely, we rewrite Is(+,7) as

16(‘;t) = /t (t—s)*ifﬁe*k(l’*l)'K(S*tz)e*M(tfs)efksds
t—1

+ (l‘ o S)_E_Eg_k(p_1>"<(s_t2)e_)“1 (t—s)e—sts
[5)

::Ié1>(-,t)+16(2)(-,t) forr e (h+1,7T), (4.28)
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and estimate Iél)(-,t) and Iéz)(-,t). As to Iél)(-,t), we see from the condition
k > 2 and the fact e < ¢~ ¥~ for all s € (r — 1,1) that

t
Iél) (1) = /til (t—s) 2 ke kP DKls=12) =l (1=9) =k g

Se_K(’_l)/t (t—s)_%_%ds
-1
2ke*

_ —Kt

2 (4.29)

forallz € (,+1,T). Also, as to Iéz) (-,1), we observe that

t—1
O A R R T
2

1
S/t o h(=8) s g

[5)

efﬂm (M=K)(—1) (A=Kt

= (eI TR
7L1—K'

_ . 1 K(e_(,h_;c)e—m_emze—ll(f—lz)) (4.30)
1—

for all t € (t, +1,T). Hence, combining (4.29) and (4.30) with (4.28) asserts
that

Is(-,1) < 2ke® e K 4 1 (Alfk)efm_e’(tze*ll(t*tz))

) I« K(e* (4.31)

forallz € (1,4 1,T). Collecting (4.27) and (4.31) in (4.26) ensures

t 11 E k(pil)
1 R e A = —K(s—n) 4 = e
A ( + (t S) 2 I\)e (6'786' + ’Q‘) e ds

< 2¢13M P Vs (1) 4 c12 P Vg (1)
).1 — K
261381‘(1’_1)/(6’(67,“ n 6138k(p_1) (67

k—2 A,l — K
2e—Kt2 2kek‘(1—l‘2) e—).]—l—K(l—tz) »
k(=) 4.32
/11 —K + k—2 + )L] — K ¢ ( )

(efrct - emze*ll (tftz))

(llfk‘)efkt _ eKtzefll(tftz))

S C]38k(p71)
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forallt € (f,+1,T). Thus, a combination of (4.32) and (4.25) implies

U0 =)
< ese(€% +£%4)eKUR)
267}([2 2keK(lft2) e*er(‘(l*Iz)
. k(p—l)[ —K(t—1)
£-C13€
+c12€-c13 11—K+ _2 + - e

:C14£(8C3 +86‘4+8k(p71))671((17t2)

forall 7 € (1,4 1,T). Taking & such that c14(gy* + £5* + 8(];(‘”71)) < 1, we have

€ — _
IWED) @) < 5e K(1—1)

for all t € (-, +1,T). Therefore, in view of the definition of T (see (4.15)
together with (4.14)), we conclude from the continuity of U that T = oo, which
completes the proof. O

Proof of Theorem 1.3. We put U (x,t) := u(x,t) — g, V(x,t) := v(x,1) — %LTO
and W (x,1) := w(x,1) — Lug for x € Q C R?, 7 > 0. Then the second and third
equations and boundary conditions in (1.1) are rewritten as

0=AV+aU—BV, VV-v|jq=0,
0=AW +yU —8W, VW -v|yq=0.

Thus the maximum principle warrants that

ZminU(x,1) V(1) < & maxU(x,1),

B xeQ ﬁ xeQ
Y minU(x,) <W (1) < Lmaxt(x,1)
xeQ xeQ

for all # > 0. Under the assumption of Lemma 4.3, this along with (4.17) yields

O -
ce K(t 12)7

o
IVCDlm@) < BV @ < 5
WD) l=0) < gnU(.,z)HUa(m < %gew(wn

for all t > t; + 1. Therefore we arrive at (1.6)—(1.8). O
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