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Abstract. We discuss Rayleigh-Ritz variational calculations with nonorthogonal

basis sets that exhibit the correct asymptotic behaviour. We construct the suitable

basis sets for general one-dimensional models and illustrate the application of the

approach on two double-well oscillators proposed recently by other authors. The rate

of convergence of the variational method proves to be considerably greater than the one

exhibited by the recently developed orthogonal polynomial projection quantization.

1. Introduction

In a recent paper Handy and Vrinceanu [1] proposed a method for the calculation of

energy eigenvalues that is based on the projection of the bound-state wavefunction onto

sets of orthogonal polynomials. The approach named orthogonal polynomial projection

quantization (OPPQ) proved to be rapidly converging and more stable than the Hill

determinant methods.

Among other models the authors considered the sextic VS(x) = x6−4x2 and quartic

VQ(x) = x4 − 5x2 two-well oscillators. The bound states behave asymptotically as

ψ(x) ∼ e−x4/4 and ψ(x) ∼ e−|x|3/3 in the former and latter case, respectively. Handy

and Vrinceanu [1] chose the reference functions RG(x) = e−x2/2 and RTT (x) = e−x4/4 and

showed that the latter is preferable for VS(x) while the former is more convenient for

VQ(x). In fact, RTT (x) exhibits the correct asymptotic behaviour for the potential

VS(x). At first sight it appears to be surprising that the authors did not try the

reference function R(x) = e−|x|3/3, which is expected to be suitable for the quartic double

well, since their approach permits the use of arbitrary nonanalytic positive reference

functions [1].

The purpose of this paper is to show that it is quite straightforward to apply

the variational Rayleigh-Ritz method (RRM) with a basis set that exhibits the correct

asymptotic behaviour of the eigenfunctions for the models discussed above. In addition

to it, we deem it worthwhile to compare the well known, extremely reliable and widely

used RRM with the recently developed OPPQ.
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In section 2 we develop the basis sets with suitable asymptotic behaviours for

some general one-dimensional models. In section 3 we calculate the eigenvalues for the

oscillators VS(x) and VQ(x) with three basis sets having different asymptotic behaviours,

including the correct one for each model. We also compare RRM and OPPQ results for

two models and two basis sets. Finally, in section 4 we summarize the main conclusions

of the paper.

2. Basis functions with suitable asymptotic behaviour

In this section we show how to build a non-orthogonal basis set with the appropriate

asymptotic behaviour at infinity. To this end we generalize a procedure proposed

recently by Fernández [2] for a particular case. For simplicity we focus on the one-

dimensional eigenvalue equation

− ψ′′(x) + V (x)ψ(x) = Eψ(x), (1)

and assume tat

lim
|x|→∞

x−2kV (x) = a > 0. (2)

Under such condition the eigenfunctions behaves asymptotically as

ψ(x) ∼ e−|Sk(x)|

Sk(x) =

√
a

k + 1
xk+1. (3)

We consider the following cases:

Case 1: Parity-invariant potential V (−x) = V (x).

a) k even. The non-orthogonal basis set is of the form

fj(x) = |x|je−|Sk(x)|, j = 0, 2, 3, . . . even states,

fj(x) = x|x|je−|Sk(x)|, j = 0, 1, . . . odd states, (4)

b) k odd. In this case we choose

fj(x) = x2j+se−Sk(x), j = 0, 1, . . .
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s =















0 even states

1 odd states
. (5)

Case 2: Asymmetric potential V (−x) 6= V (x). The basis set is

fj(x) = xje−|Sk(x)|, j = 0, 1, . . . (6)

For concreteness in what follows we consider two of the examples discussed by

Handy and Vrinceanu [1]

VQ(x) = x4 − 5x2, (7)

and

VS(x) = x6 − 4x2, (8)

with asymptotic behaviours given by S2(x) = x3/3 and S3(x) = x4/4, respectively.

However, they chose reference functions associated to S3(x) and S1(x) = x2/2 for the

two models.

The RRM enables us to obtain the eigenvalues approximately from the roots of the

secular determinant

|H−ES| = 0, (9)

where H and S are N ×N square matrices with elements

Hij = 〈fi| Ĥ |fj〉 , Sij = 〈fi| fj〉 , (10)

and Ĥ = p̂2 + V (x). Once we have the approximate eigenvalues we obtain the

eigenvectors from the secular equation

(H− ES)C = 0, (11)

where C is an N × 1 column matrix with the coefficients cj of the variational trial

function.

The application of this approach to the Schrödinger equation with a parity-invariant

potential is particularly simple because we can restrict the calculation of the matrix
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elements to the half line x > 0 [2]. Since all the matrix elements reduce to integrals of

the form

〈f | g〉 =
∫ ∞

0
f(x)g(x) dx, (12)

then we do not have to take into account the absolute value of the coordinate explicitly

when k is even.

3. Results

We first verify the effect of the asymptotic behaviour of the basis sets (4) and (5) on the

rate of convergence of the RRM. A reasonable estimate of the rate of convergence is the

logarithmic error LN = log
∣

∣

∣E(app)
n −E(RPM)

n

∣

∣

∣ where E(app)
n is the eigenvalue calculated

by any of the methods described in this paper and E(RPM)
n is a very accurate result

obtained by means of the RPM [3, 4]. Figure 1 shows LN for the first four eigenvalues

of (7) calculated by means of the RRM with the functions S1(x), S2(x) and S3(x)

in terms of the number of basis functions N . We see that the rate of convergence

decreases according to S2(x) > S1(x) > S3(x); that is to say, the RRM converges more

rapidly when choosing the correct asymptotic behaviour S2(x). On the other hand,

figure 2 shows that the relative rate of convergence of the RRM for the potential (8)

is S3(x) > S2(x) > S1(x). Once again the greater rate of convergence is given by

the correct asymptotic behaviour S3(x). Besides, the second inequality appears to be

reasonable because S2(x) is closer to the correct asymptotic behaviour than S1(x).

We think that it is also worthwhile to compare the rate of convergence of the

simple, well known and reliable RRM and the rather more elaborate OPPQ using the

same basis set in both approaches. Handy and Vrinceanu [1] chose the reference function

RG(x) = e−x2/2 for the PT-symmetric potential

V (x) = ix3 (13)

and we therefore choose the function S1(x) for the RRM. More precisely, instead of the

non-orthogonal basis set (5) we resorted to the eigenfunctions of the harmonic oscillator
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that are truly consistent with the orthogonal Hermite polynomials used by those authors.

Figure 3 shows LN for the first four eigenvalues calculated by both methods. It clearly

shows that the RRM rate of convergence is noticeably greater that the OPPQ one.

The better performance of the RRM is not restricted to the PT-symmetric cubic

oscillator; this approach converges more rapidly for the two other models discussed

above. For example, figure 4 compares the logarithmic errors of both approaches for

the eigenvalues of the double-well oscillator (8). In this case we have chosen the basis

set with the correct asymptotic behaviour S3(x) for the RRM and the OPPQ results for

RTT (x) = e−x4/4 [1]. The difference between the convergence rates of both approaches

is even more dramatic for this oscillator. However, it makes more sense for small N

because the number of significant digits of the OPPQ results reported by the authors is

rather small for a fair comparison at large N .

Finally, we deem it worthwhile to show the RPM eigenvalues chosen as a reference

for the calculation of the logarithmic errors. We have

E0 = − 3.41014276123982947529770965352190919871233904756

4881868937911775329611301715294

E1 = − 3.250675362289235980228513775547736877154601147639

4241429953014335680690809034749688022953825298

E2 = 0.6389195637838381244910101033325042648524013290581

37207433367771840730088316019330941500824

E3 = 2.5812162706174514809779380656962090234197947974759

598949291704975284539346710703866627200928172 (14)

for (7)

E0 = − 0.5232686221275522394161694971907840611656342225187

11069953854385633821213450649003542309

E1 = 1.00576834022554481670604083074777604686886504417542
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730471341100873617568288708176003637

E2 = 5.37497000884004499406051476941823532582175431150133

8177585996687355671683247232390293

E3 = 10.5725850445859121139060615553140114648422138800575

29217715660995992776130576146017312 (15)

for (8) and

E0 = 1.156267071988113293799219177999951

E1 = 4.1092287528096515358436684785613

E2 = 7.5622738549788280413518091106314827208

E3 = 11.314421820195804402233783948426989 (16)

for (13). These quite accurate results may be used as benchmarks for other approaches.

4. Conclusions

We have shown that it is not difficult to introduce the correct asymptotic behaviour

of the wavefunction into the RRM variational trial function, specially if the potential

is parity invariant. Present results clearly show that the correct asymptotic behaviour

increases the rate of convergence of the approach dramatically. In principle, the same

strategy can be implemented through the appropriate OPPQ reference function but it

has not yet been tried for the case of k even [1].

We have also shown that the rate of convergence of the RRM is considerably greater

than that for the OPPQ. In addition to it the former approach is simpler and more

straightforward. The integrals that appear in both approaches are basically the same

and can in principle be calculated by the same algorithms. Here we just compared the

results for two oscillators and two basis sets with different asymptotic behaviours but

the trend is exactly the same for the other possible combinations of model and basis set.

We do not know the reason why the RRM rate of convergence is so much

greater than the OPPQ one. What we already know is that in the case of the



Rayleigh-Ritz method 8

0 20 40 60 80
-80

-60

-40

-20

0

N

lo
g|

E
[N

]
0

-E
R

P
M

0
|

0 20 40 60 80
-80

-60

-40

-20

0

N

lo
g|

E
[N

]
1

-E
R

P
M

1
|

0 20 40 60 80
-80

-60

-40

-20

0

N

lo
g|

E
[N

]
2

-E
R

P
M

2
|

0 20 40 60 80
-80

-60

-40

-20

0

N
lo

g|
E

[N
]

3
-E

R
P

M
3

|

Figure 1. Logarithmic errors for the first four eigenvalues of the double well VQ(x)

calculated by means of the basis sets with S1(x) (squares, red) S2(x) (filled squares,

green) and S3(x) (circles, blue)

Hermitian Hamiltonians the former approach exhibits the additional advantage that

its approximate eigenvalues tend to the exact ones from above. On the other hand, the

OPPQ eigenvalues do not appear to exhibit any bounding property.
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Figure 2. Logarithmic errors for the first four eigenvalues of the double well VS(x)

calculated by means of the basis sets with S1(x) (squares, red) S2(x) (filled squares,

green) and S3(x) (circles, blue)
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Figure 3. Logarithmic errors for the first four eigenvalues of the PT-symmetric

potential (13) calculated by means of the RRM (squares, red) and the OPPQ method

(circles, blue)
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Figure 4. Logarithmic errors for the first four eigenvalues of the double well VS(x)

calculated by means of the RRM (squares, red) and the OPPQ method (circles, blue)
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