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Abstract 1 

Minocycline (MIN) and tigecycline (TIG) are antibiotics currently used for treatment of 2 

multi-drug resistant nosocomial pathogens. In this work, we show that blue light, as well 3 

as white light, modulate susceptibility to these antibiotics in a temperature-dependent 4 

manner. The modulation of susceptibility by light depends on the content of iron, 5 

resulting an increase in iron in a reduction  in antibiotic susceptibility both under light as 6 

well as in the dark, though the effect was more pronounced in the latter condition. We 7 

further provide insights into the mechanism by showing that reduction in susceptibility to 8 

MIN and TIG induced by light is likely triggered by the generation of 
1
O2, which, by an 9 

yet unknown mechanism, would ultimately lead to the activation of resistance genes such 10 

as those coding for the efflux pump AdeABC. The clinical relevance of these results may 11 

rely in surface-exposed wound infections, given the exposure to light in addition to the 12 

relatively lower temperatures recorded in these type or lesions. We further show that the 13 

modulation of antibiotic susceptibility not only occurs in A. baumannii but also in other 14 

microorganisms of clinical relevance such as Escherichia coli or Staphylococcus aureus. 15 

Overall, our findings allow us to suggest that MIN and TIG antibiotic treatments may be 16 

improved by the inclusion of an iron chelator, a condition that in addition to keeping the 17 

wounds in the dark would increase the effectiveness in the control of infections involving 18 

these microorganisms. 19 

 20 

  21 
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INTRODUCTION 1 

Acinetobacter baumannii has emerged as a nosocomial pathogen of increasing clinical 2 

importance over the course of the last decades. It has established itself within the hospital 3 

niche, where its ability to persist in the nosocomial environment despite unfavorable 4 

conditions such as desiccation, nutrient starvation, and antimicrobial treatments appears 5 

key in its success as a pathogen (Mussi et al., 2010). In this sense, recent findings from 6 

our group have shown that light governs many processes related to its ability to persist 7 

and live in the environment, as well as key determinants involved in its pathogenesis 8 

(Mussi et al., 2010). In fact, we found that blue light inhibited motility and the formation 9 

of biofilms and pellicles in A. baumannii cells cultured at 24°C in liquid broth, and 10 

enhanced the ability of the bacteria to kill the filamentous form of the eukaryotic fungus 11 

Candida albicans (Mussi et al., 2010). By means of biophysics as well as genetic studies 12 

we have shown that this response to light depends on BlsA, the only photoreceptor 13 

encoded in its genome (Mussi et al., 2010). In addition, we have also shown that the 14 

response to light is widespread within other species belonging to the Acinetobacter 15 

genus, showing that sensing and responding to light is part of the lifestyle of these 16 

bacteria (Golic et al., 2013). 17 

The other determining factor in the success of A. baumannii as a pathogen is its ability to 18 

acquire or rapidly evolve and accumulate resistance mechanisms to antibiotics, where its 19 

suitability for genetic exchange is of central importance (Mussi et al., 2011; Snitkin et al., 20 

2011; Tan et al., 2013). In fact, the rates of multidrug resistance in this organism have 21 

been increasing among clinical strains lately, resulting in a present panorama where most 22 

strains are extensively (XDR) or pan drug resistant (PDR), rendering most available 23 
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antibiotic treatments useless (Magiorakos et al., 2011). In this sense, the selected 1 

treatment for infections caused by A. baumannii has for many years been the carbapenem 2 

antibiotics such as imipenem (IPM) and meropenem (MEM). However, most A. 3 

baumannii isolates are now resistant to these antibiotics, even reaching 85% of the strains 4 

in our country (on line: http://antimicrobianos.com.ar/2013/10/informe-resistencia-2012-5 

argentina/, last acceded April 19th, 2014). Minocycline (MIN) and its derivative 6 

tigecycline (TIG) are tetracycline antibiotics capable of confronting certain MDR-A. 7 

baumannii infections and therefore, constitute a therapeutic option to treat infections 8 

caused by these microorganisms (Bradford et al., 2005;  Talbot et al., 2006). 9 

One aspect that has been scarcely studied is related to whether resistance to antibiotics is 10 

modulated in response to external signals. Given that the response to light is an important 11 

trait modulating A. baumannii -as well as other members of the genus Acinetobacter- 12 

physiopathology (Mussi et al., 2010; Golic et al., 2013), the question arises on whether 13 

light modulates antibiotic susceptibility as well. 14 

In this work, we show that light effectively modulates antibiotic susceptibility, in 15 

particular, to antibiotics such as MIN and TIG in a temperature-dependent manner. We 16 

found that this response is dependent on the culture media, being the content of iron 17 

present in the media key for the magnification of the phenotype. Modulation of 18 

susceptibility to MIN and TIG by light is not dependent on BlsA, the photoreceptor 19 

previously shown to mediate light regulation of motility, biofilm formation and virulence 20 

in A. baumannii. Rather, the effect would probably involve the generation of 
1
O2 as a 21 

result of light absorption by a photosensitizer molecule which, by an yet unknown 22 

mechanism, would ultimately lead to the activation of resistance genes such as those 23 

http://antimicrobianos.com.ar/2013/10/informe-resistencia-2012-argentina/
http://antimicrobianos.com.ar/2013/10/informe-resistencia-2012-argentina/
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coding for the efflux pump AdeABC. The clinical relevance of these results may rely in 1 

surface-exposed wound infections, given the exposure to light in addition to the relatively 2 

lower temperatures recorded in these type or lesions. We further show that the 3 

modulation of antibiotic susceptibility not only occurs in A. baumannii but also in other 4 

microorganisms of clinical relevance such as Escherichia coli or Staphylococcus aureus. 5 

In conclusion, our results contribute to the characterization of factors modulating one of 6 

the main determinants in the success of important nosocomial pathogens, antibiotic 7 

resistance, and provide information valuable for medical practices in the hospital setting. 8 

  9 
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MATERIALS AND METHODS 1 

Bacterial strains. Thirty-five A. baumannii clinical isolates obtained during the period 2 

from 1990 to 2013 from patients hospitalized in 12 public nosocomial institutions of 3 

major urban centers of Argentina were used in the present study. These strains were used 4 

initially to determine whether light modulated antibiotic resistance and to identify the 5 

affected antibiotics, and are not further described. In addition, A. baumannii type strains 6 

ATCC 19606, ATCC 17978 as well as the extensively characterized strain A118 7 

(Ramírez et al., 2011; Traglia et al., 2014) were also used in this study. The clinical strain 8 

A118 was the first naturally competent A. baumannii strain reported (Ramírez et al., 9 

2010). A118, unlike other clinical isolates, is susceptible to numerous antibiotics, 10 

supports replication and stable maintenance of different plasmid replicons and takes up 11 

fluorophore labeled oligonucleotides (Ramírez et al., 2010; 2011). This strain showed to 12 

be a singleton by MSLT technique. ATCC 19606 is also susceptible to multiple 13 

antibiotics with widespread use in most experimental studies, and doesn’t belong to any 14 

of the most widespread clonal complexes, as is the case for the A118 strain. Regarding 15 

strain A42, it is MDR (Vilacoba et al., 2013), though susceptible to MIN and TIG, and 16 

belongs to the international clonal complex 1 (ICL1), which together with the ICL2 are 17 

the most widespread clonal complexes of A. baumannii. 18 

Moreover, 8 strains representative of non-baumannii Acinetobacter species and 7 isolates 19 

belonging to other important nosocomial pathogen species were also included (Table 4). 20 

The Acinetobacter spp. isolates were identified to species level using i) conventional 21 

biochemical tests, ii) automated system VITEK2, iii) API 20 NE system (Vitek; 22 

bioMérieux, France), iv) matrix-assisted laser desorption ionization– time of flight 23 
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(MALDI-TOF) mass spectrometry (MS) (Bruker Daltonik) using of the current 1 

BrukerDaltonics 206 database version 3.0 (MBT-BDAL-5627 MSP library) and v) rpoB 2 

sequence analysis when was required, or obtained from the mentioned sources (indicated 3 

in Table 4).  4 

Antibiotic Susceptibility Assays. Antibiotic susceptibility assays were performed 5 

according with the procedures recommended by the NCLSI, with the following 6 

modifications: 7 

a) Disk Diffusion method. For determination of inhibition halos by the disk diffusion 8 

method, plates containing 20 ml of different media: Müeller Hinton (MH; Britania); 9 

minimal media BM2 (62 mM potassium phosphate (pH=7.0), 0.5 mM MgSO4, 10µM 10 

FeSO4, and 7 mM (NH4)2SO4) supplemented with 10 mM sodium succinate; or Luria 11 

Bertani (LB; Difco) were prepared. When indicated, LB Difco agar plates were 12 

supplemented with FeCl3, or 2,2'-dipyridyl (DIP) to simulate iron-replete or iron-limited 13 

conditions; NaCl; or methylene blue (MB), to produce 
1
O2 in the presence of red light 14 

(Galbis-Martínez et al., 2012). The agar plates were inoculated with 100 µl of a culture of 15 

each tested strain, which was previously resuspended in physiologic solution and adjusted 16 

to OD600= 0.1. It should be noted that the inocula was not swabbed in the plates but 17 

administered using Drigalsky spatula, to standardize and homogenize conditions between 18 

replicates exposed to light or kept in the dark. Antimicrobial commercial discs (BBL, 19 

Cockeysville, MD, USA) containing 10 mg of ampicillin, 30 mg of amikacin, 30 mg of 20 

cefepime, 30 mg of cefotaxime, 30 mg of cefoxitin, 30 mg of cephalotin, 30 mg of 21 

chloramphenicol, 5 mg of ciprofloxacin, 10 mg of imipenem, 10 mg of gentamycin, 10 22 

mg of meropenem, 100 mg of piperacillin, 5 mg of rifampicin, 15 mg TIG or 30 mg MIN 23 
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were placed on the surface of plates, which were latter incubated overnight at 24ºC or 1 

37ºC in the dark or under light emitted by nine-LED (light-emitting diode) arrays with an 2 

intensity of 6 to 10 µmol photons/m2/s. Each array was built using three-LED module 3 

strips emitting blue, green, or red light (Mussi et al., 2010). The assays were performed in 4 

triplicate.  5 

Breakpoints defined by the CLSI criteria for MIN in MH solid media consider: 6 

susceptible ≥16 mm; intermediate 13-15 mm; resistant ≤12 mm. The breakpoint criteria 7 

assumed to determine the TIG phenotype was based on the United States Food and Drug 8 

Administration for Enterobacteriaceae and considers susceptibility ≥19 mm; 9 

intermediate 15-18 mm; resistant ≤14 mm.  10 

b) Minimum Inhibitory Concentration (MIC) determination in liquid media. MIC 11 

determination was performed in multi-well microplates using LB Difco broth at 24ºC, 12 

conditions that produced maximal differences in the disk diffusion method between light 13 

and dark conditions. For these assays, we used minocycline hydrochloride (Sigma; cat. 14 

number M9511), which was resuspended in water at a stock concentration of 12.5 mg/ml. 15 

The antibiotic was subjected to serial half dilutions starting from 64 µg/ml. In addition, 16 

we used TIG (Richet). The antibiotic was prepared in a stock solution of 3 mg/ml in 17 

DMSO. In this case, the antibiotic was subjected to serial half dilutions starting from 256 18 

µg/ml. The tested strains were resuspended in physiologic solution and adjusted to 19 

OD600= 0.1, then diluted 1/10 in LB Difco media and applied to the wells. Identical 20 

microplates were incubated overnight in the dark or under blue light using devices 21 

described in the above item. In MH broth, breakpoints for MIN defined by CLSI are: 22 

susceptible ≤4 µg/ml; 8 µg/ml intermediate; resistant:≥16 µg/ml. The breakpoint criteria 23 



9 
 

used to determine the TIG phenotype was based on the United States Food and Drug 1 

Administration breakpoint criteria for Enterobacteriaceae considering susceptibility ≤ 2 2 

µg/ml, intermediate at 4 µg/ml and resistance ≥ 8 µg/ml.  3 

 4 

Construction of the A. baumannii ATCC 19606.OR isogenic insertion derivative. A 5 

genomic fragment containing the blsA gene and flanking sequences was PCR amplified 6 

using primers BlsA.R/1 and BlsA.F/2 (see Table 1), from ATCC 19606 genomic DNA. 7 

The amplicon was cloned into pGemT-easy vector to generate pBLSA. This fragment 8 

was subsequently subcloned into the EcoRI sites of pKNOCK-Amp, and the resulting 9 

plasmid (pKABLSA) was used to construct pKABLSA-Km, in which the pUC4K PstI 10 

restriction fragment harboring the DNA kanamycin resistance (Km
r
) cassette was inserted 11 

into a unique NsiI site within the blsA gene. E. coli DH5α cells harboring pKABLSA-12 

Km, E. coli HB101 cells harboring pRK2073, and A. baumannii ATCC 19606 cells were 13 

used as donor, helper, and recipient strains, respectively, in triparental conjugations. 14 

Transconjugants were selected on Simmons citrate agar plates containing 40 µg/ml Km. 15 

Total DNA was isolated from a putative A. baumannii ATCC 19606.ORtransconjugant 16 

derivative, which was resistant to Km and sensitive to 1000 µg/ml ampicillin (Amp), and 17 

used to confirm the nature of the site-directed insertion mutation by PCR with primers 18 

BlsA.R/1 and BlsA.F/2. 19 

Transcriptional analysis. A42 or ATCC 19606 cells were grown in LB Difco broth until 20 

they reached DO= 0.5 at 24ºC in the presence or absence of blue light. When indicated, 21 

the culture media was supplemented with TIG 0.1 µg/ml. Cell pellets were immediately 22 

mixed with 2 ml lysis buffer (0.1 M Na acetate, 10 mM EDTA, 1% SDS) in a boiling-23 
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water bath. Cell lysates were extracted twice at 60°C with phenol, which was equilibrated 1 

to pH 4.0 with 50 mM Na acetate, and then once with chloroform at room temperature. 2 

The RNA precipitated overnight at -20°C with 2.5 volumes of ethanol was collected by 3 

centrifugation, washed with 70% ethanol, and dissolved in DEPC-treated deionized 4 

water. Total RNA samples were treated with RNase-free DNase I. The integrity of the 5 

RNA samples was checked by agarose electrophoresis.RNA samples were collected from 6 

three different biological samples prepared in triplicate each time.  7 

First-strand cDNA was synthesized with MoMLV-reverse transcriptase following the 8 

manufacturer’s instructions (Promega, Madison, WI, USA) using 2 µg of RNA and 9 

random primers. Relative expression was determined by performing quantitative real-10 

time PCR (qRT-PCR) in an iCycleriQ detection system and the Optical System Software 11 

version 3.0a (Bio-Rad, Hercules, CA, USA), using the intercalation dye SYBR Green I 12 

(Invitrogen) as a fluorescent reporter, with 2.5 mM MgCl2, 0.5 µM of each primer and 13 

0.04 U/µl GoTaq (Promega). PCR primers used in these experiments are described in 14 

Table 1, and were designed with the aid of the web based program “primer3” 15 

(http://www.frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) in a way to produce 16 

amplicons of 150 to 300 bp in size. A ten-fold dilution of cDNA obtained as described 17 

above was used as template. Samples containing no reverse transcriptase or template 18 

RNA were included as negative controls to ensure RNA samples were free of DNA 19 

contamination. Cycling parameters were as follows: initial denaturation at 94°C for 2 20 

min; 40 cycles of 96°C for 10 s, and 54°C for 15 s; 72°C for 1 min, and 72°C for 10 min. 21 

The SYBR Green I fluorescence of the double strand amplified products was measured at 22 

76ºC. Melting curves for each PCR reaction were determined by measuring the decrease 23 
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of fluorescence with increasing temperature (from 65ºC to 98ºC). The specificity of the 1 

PCR reactions was confirmed by melting curve analysis using the software as well as by 2 

agarose gel electrophoresis of the products. Amplification efficiency (E) for each gene 3 

was determined from the relative standard curve method (Cikoš et al., 2007). The adeA, 4 

adeB and adeC transcript levels of each sample were normalized to the recA transcript 5 

levels for each cDNA sample Relative gene expression was calculated using the 6 

Comparative E
-∆CT

 method (Livak & Schmittgen, 2001). Each cDNA sample was run in 7 

technical triplicate and repeated in at least three independent sets of samples. ANOVA 8 

test was used to determine statistical significance. 9 

  10 
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RESULTS 1 

Blue light modulates antibiotic susceptibility to MIN and TIG in A. baumannii. 2 

We systematically performed antibiotic susceptibility assays under blue light or in the 3 

dark using a wide collection of clinical strains of A. baumannii (see Materials and 4 

Methods), to determine if light regulates this trait in addition to modulating motility, 5 

biofilm formation, and virulence as previously described by our group (Mussi et al., 6 

2010). The experiments were initially performed at 24°C since photoregulation has been 7 

shown to occur at this temperature and not at 37ºC in A. baumannii (Mussi et al., 2010).  8 

Our results show that light effectively modulates antibiotic susceptibility in A. 9 

baumannii. In fact, light produces important differences in the diameters of inhibition 10 

zones of MIN and TIG antibiotics between blue light and dark conditions, when the 11 

bacteria were cultured in solid LB media. Strains A118, A42 and ATCC 19606 are 12 

representatives of isolates that showed the highest differences in the diameters of 13 

inhibition zones (between 12 and 14 mm)(Figure 1A and Table 2), and therefore were 14 

selected for further studies. Other strains, such as Ab107or ATCC 17978, are examples of 15 

strains showing less pronounced differences (Table 2).  16 

Other antibiotics such as IPM and MEM also showed differences between light and dark 17 

for some strains, however, to a much lesser extent (data not shown). Despite belonging to 18 

the same family, we did not observe differences between light and dark for tetracycline 19 

(TET) (Table 2); nor for other antibiotic considered last resource to treat XDR strain such 20 

as colistin (COL) (Table 2). 21 

It is important to note that the light-mediated response is not due to the effect of light on 22 

cell growth and viability. Cells cultured in LB broth displayed similar growth curves and 23 
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reached comparable viable counts after incubation for up to 96 h at 24°C in the presence 1 

or absence of light (not shown). 2 

 3 

 Blue light induces important reductions in susceptibility to both MIN and TIG in 4 

liquid media. 5 

We were interested in determining whether blue light modulates susceptibility to MIN 6 

and TIG also in liquid media. To test this possibility, we performed MIC determinations 7 

for MIN and TIG using strains A42, A118 and ATCC 19606 under blue light or in the 8 

dark at 24ºC. Our results show again that the bacteria are more resistant to MIN and TIG 9 

under blue light than in the dark. For example, we registered changes in MIC values to 10 

MIN from <0.125 µg/ml in the dark to 16 µg/ml under blue light in strain A42, or 11 

changes from 2 µg/ml in the dark to 128 µg/ml as a result of application of blue light in 12 

strain ATCC 19606. These differences in MIC values are very important, ranging from at 13 

least 16 to 128 folds between light and dark conditions depending on the strain and 14 

antibiotic analyzed (Table 3). These results highlight the importance of the findings 15 

reported in this work showing that light significantly reduces bacterial susceptibility to 16 

these antibiotics.  17 

 18 

Blue light modulation of antibiotic resistance in A. baumannii is dependent on the 19 

culture media. 20 

Further studies using isolates A118 and ATCC 19606, show that light modulation of 21 

antibiotic susceptibility is strongly dependent on the culture media. For instance, our 22 

results using strain A118 show that blue light modulation of antibiotic susceptibility is 23 
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particularly important for MIN and TIG in LB agar (Difco), while the effect is minimized 1 

in MH agar (Table 2). When agar blood media (AB) was used, the extent of light 2 

modulation of antibiotic susceptibility was intermediate respect to media producing the 3 

highest or minimal differences (LB Difco or MH) (Table 2). We also tested the 4 

phenotype using the minimal BM2 media. Again, in this media no differences in 5 

antibiotic resistance were registered between light and dark conditions for MIN or TIG. 6 

Similar results were obtained for ATCC 19606, revealing again strong differences when 7 

LB Difco media was employed, which were minimized in MH (Table 2). These results 8 

indicate that the presence or absence of some component in the culture media contributes 9 

to the amplification of the modulation of susceptibility to MIN and TIG by light. 10 

 11 

Blue light modulation of antibiotic susceptibility in A. baumannii varies with the 12 

content of iron. 13 

We were interested in determining which component of the culture media was 14 

responsible for the differences in light modulation of antibiotic susceptibility observed 15 

among the different media used. For this purpose, we supplemented LB media with 16 

different concentrations of NaCl or FeCl3. The addition of NaCl showed no effect at 17 

physiological concentrations (Figure 2D), a condition previously shown to modulate 18 

antibiotic resistance to some antibiotics such as aminoglycosides, carbapenems, 19 

quinolones, and colistin in A. baumannii (Indriati Hood et al., 2010). However, the 20 

addition of FeCl3 resulted in a reduction in the effect of light in antibiotic susceptibility. 21 

Specifically, the halos of both MIN and TIG were significantly reduced both under light 22 

as well as in the dark, though the effect was higher in the dark, resulting in an overall 23 
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reduction in the difference in the halos between both conditions (Figure 2B). Conversely, 1 

the addition of the iron chelator DIP (Penwell et al., 2012), results in a slight 2 

amplification in the differences in the inhibition halos between light and dark for these 3 

antibiotics (Figure 2C). 4 

 5 

Blue light modulation of antibiotic susceptibility in A. baumannii depends on 6 

temperature. 7 

We also evaluated whether the effect of light on antibiotic susceptibility observed at 24ºC 8 

occurred also at 37ºC. Our results show that at this temperature, the effect was 9 

significantly reduced or null, indicating that the modulation of antibiotic susceptibility by 10 

light occurs mainly at 24ºC. In particular, strain A42 shows only a slight difference 11 

between light and dark both for MIN as well as TIG at 37ºC (Figure 3A and E), in 12 

contrast to the effect observed at 24ºC. Similar results were obtained for strains A118 and 13 

19606 (Figure 3B, C, D and E). Overall, our results show that modulation of antibiotic 14 

susceptibility occurs mainly at environmental temperatures. 15 

 16 

White and blue light modulate susceptibility to MIN and TIG in A. baumannii. 17 

We initially studied the effect of blue light on antibiotic resistance since we previously 18 

found that blue light modulated different physiologic responses related to pathogenesis 19 

(Mussi et al., 2010). To characterize the modulation of susceptibility to MIN and TIG by 20 

light described in this work further, we studied the effect of different light wavelengths. 21 

Our results indicate that white light produced the same effect as blue light at 24°C 22 

(Figure 4). This is not surprising given that blue light is a component of white light. On 23 



16 
 

the contrary, red-light illumination showed no differences in antibiotic susceptibilities 1 

neither for MIN or TIG, indicating that this light source does not modulate resistance to 2 

these antibiotics (Figure 4). Finally, incubation of antibiogram plates in the presence of 3 

green light resulted in a partial inhibition compared to that detected with blue light 4 

(Figure 4). These results are consistent with the fact that the emission spectra of the blue 5 

and red LEDs do not overlap, while the emission spectra of the blue and green LEDs are 6 

superimposed. It is noteworthy to mention that white light, the type of light most 7 

commonly used in our everyday life, modulates antibiotic susceptibility.   8 

 9 

Modulation of antibiotic susceptibility in A. baumannii is not dependent on the 10 

photoreceptor BlsA. 11 

In order to determine whether the modulation of antibiotic susceptibility is mediated by 12 

the photoreceptor BlsA, we constructed a blsA mutant in ATCC 19606 strain by insertion 13 

of a Kn resistance cassette within its coding sequence, using a similar strategy as the one 14 

we used before for the construction of blsA mutant in ATCC 17978 (Mussi et al., 2010). 15 

When we assayed ATCC 19606 wt as well as its isogenic derivative ATCC 19606.OR 16 

(blsA mutant), we found that they present the same difference in antibiotic susceptibility 17 

both for MIN as well as for TIG under blue light or in the dark (Figure 1B and Table 2), 18 

indicating that modulation of antibiotic susceptibility occurred regardless of the presence 19 

of BlsA, and therefore, this photoreceptor is not responsible for the observed phenotype. 20 

We also assayed whether there existed difference between the mutant and wild type 21 

strains in the presence of iron or DIP, to test whether BlsA played a role in modulation by 22 

iron, but again, we observed no difference (not shown). Finally, despite ATCC 17978 23 



17 
 

shows a much less pronounced light-mediated effect in antibiotic resistance than ATCC 1 

19606 strain, we also assayed the 17978.OR (blsA mutant) to evaluate the contribution of 2 

BlsA to the modulation of antibiotic susceptibility by light in this strain as well. Again, 3 

we did not observe any difference between the wild type and the blsA mutant regarding 4 

antibiotic susceptibility to MIN and TIG under blue light or in the dark (Table 2). 5 

 6 

1
O2 triggers reduction in susceptibility to MIN and TIG in A. baumannii. 7 

It has been recently reported that light can modulate gene expression in Myxococcus 8 

xanthus independently of the presence of "traditional" bacterial photoreceptors (Galbis-9 

Martínez et al., 2012; Ortiz-Guerrero et al., 2011). One of these mechanisms is mediated 10 

by singlet oxygen (
1
O2), which is produced as a result of excitation of protoporphyrin IX 11 

(PPIX) by blue light absorption in this microorganism (Galbis-Martínez et al., 2012). 12 

The photosensitizer methylene blue (MB), a phenothiazinium dye which strongly absorbs 13 

red but not blue light (absorption range of 550 to 700 nm) (Kochevar & Redmond, 2000; 14 

Mellish et al., 2002), has been used to generate 
1
O2 from molecular oxygen (Berghoff et 15 

al., 2009; Lourenco & Gomes, 2009; Galbis-Martínez et al., 2012). Red light irradiation 16 

of MB in the presence of oxygen can therefore be used as a means of generating 
1
O2 that 17 

bypasses the blue-light–sensitizer interaction. We therefore studied whether 
1
O2 could be 18 

involved in the modulation of antibiotic resistance by light by investigating the response 19 

when MB and red light were applied together in antibiogram plates. As can be observed 20 

in Figure 5A, when the bacteria are irradiated by red light, the diameters of inhibition 21 

zones both for MIN or TIG are similar to those observed in the dark; i.e., bacterial 22 

resistance to MIN and TIG is blind to red light. However, the application of both MB and 23 
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red light resulted in important reductions in the inhibition diameters (Figure 5B and 5C), 1 

consistent with the bacteria becoming more resistant, reaching similar patterns to those 2 

observed under blue light illumination (Figure 1A and Table 2). These results suggest 3 

that the modulation of susceptibility to MIN and TIG could be mediated by 
1
O2. 4 

 5 

Blue light induces the expression of resistance genes to TIG. 6 

In contrast to other antibiotic families, there is little information regarding the 7 

mechanisms of resistance to MIN and TIG in A. baumannii. The available data indicate 8 

the involvement of the efflux pumps Tet(B) and AdeABC in resistance to MIN and TIG 9 

in this microorganism, respectively (Ribera et al., 2003; Ruzin et al., 2007; Vilacoba et 10 

al., 2013; Rumbo et al., 2013). 11 

Tet(B) is a tetracycline-specific efflux pump able to extrude MIN and TET (Ribera et al., 12 

2003). In the case of TIG, it has been shown that overexpression of adeABC as a result of 13 

point mutations in the regulatory genes adeR or adeS or triggered by the incorporation of 14 

insertion sequences, would play a role in the development of resistance or in the decrease 15 

in susceptibility to this antibiotic (Higgins et al., 201; Rumbo et al., 2013).  16 

Bioinformatic searches into the sequenced genome of A118 strain indicate that the tet(B) 17 

determinant is not present in this strain. Besides, no tetB homologs were retrieved in 18 

database searches in strain ATCC 19606, and PCR reactions showed no amplification for 19 

this strain. The overall data indicate that light modulation of antibiotic resistance to MIN 20 

is dependent on another mechanism different from tetB.  21 
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We therefore focused on AdeABC, particularly in studying whether the expression levels 1 

of AdeABC transcripts were induced under blue light, a situation that would provide 2 

evidence on the involvement of this mechanism in reduction of susceptibility to TIG 3 

mediated by light. To test this hypothesis, we collected ATCC 19606 or A42 cells from 4 

exponentially growing cultures  performed in LB Difco media incubated under blue light 5 

or in the dark at 24ºC. Our results show that the levels of AdeA (major fusion protein), 6 

AdeB (member of the RND superfamily) and AdeC (outer membrane component) 7 

transcripts are induced aprox. 2-3 folds by light in strain ATCC 19606 (Figure 6A). Most 8 

strikingly, in the presence of sub-MIC concentrations of TIG (0.1 µg/ml) in the growth 9 

media the difference in expression levels of the AdeA and B transcripts between light 10 

respect to dark conditions was greatly expanded, showing inductions of aprox. 60 and 18 11 

folds, respectively (Figure 6C).  12 

In the case of strain A42, we detected an induction in AdeA and B transcripts of aprox. 2 13 

folds under blue light respect to dark conditions in LB Difco exponentially growing cells; 14 

while AdeC transcripts experienced an increace of aprox. 13 folds. When sub-MIC 15 

concentrations of TIG (0.1 µg/ml) were applied to the growth media, an increase in AdeB 16 

and AdeC transcripts of 8 and 17 folds were detected between light and dark conditions.  17 

These findings indicate a correlation between induction of the genes coding for key 18 

members of the efflux pump AdeABC and the reduction in susceptibility to TIG observed 19 

in the presence of light.  20 

 21 

Blue light modulates antibiotic susceptibility in other Acinetobacter species. 22 
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In the last years -with the introduction of new technologies to identify microorganisms in 1 

clinical settings- Acinetobacter non-baumannii species have been increasingly recognized 2 

as responsible for intrahospital infections (Mader et al., 2010; Turton et al., 2010; Karah 3 

et al., 2011; Sousa et al., 2014). This prompted us to study whether other members within 4 

the Acinetobacter genus also show light modulation of antibiotic susceptibility. For this 5 

purpose, we performed similar experiments to those described above for A. baumannii 6 

but using strains representatives of different species (n= 7).  7 

Our results show that modulation of antibiotic susceptibility by light, in particular to MIN 8 

and TIG antibiotics, is widely distributed among the different species at 24°C, albeit to 9 

different extents. In fact, our results showed important differences similar to those 10 

observed in the case of A. baumannii for MIN and/or TIG in some strains of A. 11 

nosocomialis, A. pitti, A. calcoaceticus, which belong to the Acinetobacter calcoaceticus-12 

baumannii complex (Golic et al., 2013; Sousa et al., 2014), as well as A. radioresistens 13 

strain Ar181, and A. lwoffii. In contrast, the tested strains of A. oleivorans, A. 14 

radioresistens SH164 and A. soli showed less pronounced phenotypes (Table 4).    15 

Since in our previous works we showed that modulation of motility occurred at 37ºC for 16 

non-baumannii Acinetobacter species (Golic et al., 2013), we also evaluated in this work 17 

whether modulation of antibiotic resistance occurred also at 37ºC in some of these 18 

strains. In the case of A. radioresistens strain SH164 no difference was observed for MIN 19 

or TIG at 37ºC, while an important difference is observed at 24ºC (Table 4). In the case 20 

of A. calcoaceticus, the tested strain showed difference mostly for TIG at 24ºC (Table 4), 21 

which was significantly reduced at 37ºC (not shown). 22 

 23 
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Blue light modulates antibiotic susceptibility in other bacterial genres also of clinical 1 

importance.   2 

We were interested in studying whether other species belonging to other genres of 3 

bacteria that share niches with A. baumannii, and also represent a concern in the 4 

nosocomial context, also showed modulation of antibiotic susceptibility. For this purpose, 5 

we included in our study strains representatives of a group of particular pathogens that 6 

has been collectively named ESKAPE (Enterococcus faecium, Staphylococcus aureus, 7 

Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and 8 

Enterobacter species), as they can cause the majority of hospital infections and "escape" 9 

antibiotic treatment by becoming resistant or persistent to antibiotic treatment (Rice, 10 

2010; Boucher et al., 2009; Boucher et al., 2013). These pathogens are responsible for a 11 

substantial percentage of nosocomial infections in the modern hospital and represent the 12 

vast majority of isolates whose resistance to antimicrobial agents presents serious 13 

therapeutic dilemmas for physicians (Rice, 2010; Boucher et al., 2009; Boucher et al., 14 

2013). Again with the aim to identify differences in antibiotic susceptibility between blue 15 

light or in the dark, we carried out similar experiments as were described before using the 16 

following species: S. aureus, K. pneumoniae, P. aeruginosa, and E. cloacae (Table 4). 17 

Among the studied strains, S. aureus strain 632 showed remarkable differences between 18 

light and dark conditions for TIG and MIN (Table 4). The results obtained show that 19 

other members within the ESKAPE group also present modulation of antibiotic 20 

susceptibility. In addition, we also show that E. coli strain DH5α presents differences in 21 

resistance to MIN and TIG under blue light or in the dark (Table 4), spreading further the 22 

spectra of bacteria affected by the phenotype. 23 
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Discussion 1 

For a long time, bacteria were considered insensitive to light, with the exception of 2 

phototrophs, which use sunlight as an energy source (Gomelsky & Hoff, 2011). However, 3 

recent studies demonstrated that chemotropic bacteria are also able to perceive this 4 

stimulus through photoreceptors, and adjust their behavior accordingly (Mussi et al., 5 

2010, Gomelsky & Hoff, 2011; Golic et al., 2013). In this context, new exciting 6 

discoveries have shown that light modulates physiologic responses as diverse and 7 

interesting as the general response to stress in B. subtilis (Avila-Pérez et al., 2006); the 8 

attachment of Caulobacter crescentus to glass surfaces (Purcell et al., 2007), the ability 9 

of B. abortus to replicate within murine macrophages (Swartz et al., 2007), or even traits 10 

related to persistence and virulence in the nosocomial pathogen A. baumannii (Mussi et 11 

al., 2010) or in other members within this genus (Golic et al., 2013). In this work, we 12 

extended our previous findings by showing that antibiotic susceptibility is also modulated 13 

by light in A. baumannii, however through a different mechanism. In particular, our 14 

results show that light modulates susceptibility to the antibiotics MIN and TIG.  15 

MIN, and particularly its derivative, TIG, have been during the last years in addition to 16 

COL, the only antibiotics to which remain susceptible the A. baumannii isolates 17 

circulating in our region. These antibiotics have shown high antimicrobial activity against 18 

A. baumannii, though relevant clinical evidence is still scarce. Yet, it is well known that 19 

these drugs have a potential therapeutic benefit in combination treatment with COL and 20 

carbapenems (Bradford et al., 2005; Talbot et al., 2006). MIN and TIG are also effective 21 

against difficult-to-treat pathogens such as methicillin-resistant S. aureus, vancomycin-22 

resistant Enterococcus spp., as well as Gram-negative bacterial strains that produce 23 
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extended-spectrum β-lactamases. However, TIG is only actually approved for the 1 

treatment of severe intra-hospital bacterial infections such as severe skin and intra-2 

abdominal infections (Bradford et al., 2005; Talbot et al., 2006). Moreover, no defined 3 

susceptibility breakpoints have been established thus far for TIG in A. baumannii. In 4 

Argentina, the emergence of MIN resistance has been observed in the past few years, 5 

varying from 10 to 40% resistance among different centers, and an increasing rate to TIG 6 

resistance has also been observed (12, http://antimicrobianos.com.ar/2013/10/informe-7 

resistencia-2012-argentina/). 8 

Surprisingly, light modulation of susceptibility to MIN and TIG does not depend on 9 

BlsA, the only "traditional" photoreceptor encoded in the genome of A. baumannii 10 

(Mussi et al., 2010). The existence of alternative pathways for light sensing that do not 11 

depend on traditional photoreceptors is increasingly being recognized. For example, 12 

sensing of the light signal that triggers the transcriptional response leading to 13 

carotenogenesis in Myxococcus xanthus is achieved by two distinct mechanisms, neither 14 

of which is based on conventional photoreceptor proteins. In one of them, light is sensed 15 

by a photosensitizer molecule, protoporphyrin IX (PPIX) (Ortiz-Guerrero et al., 2011). 16 

Blue light interaction with PPIX generates 
1
O2, which must be transmitted via CarF to 17 

trigger inactivation of the anti-sigma factor, CarR, and the consequent liberation of the 18 

cognate extracytoplasmic function (ECF) factor, CarQ. Then, CarQ, in association with 19 

core RNA polymerase (RNAP) activates transcription from PQRS, the promoter of the 20 

regulatory carQRS operon, and from PI, the promoter of the carotenogenic gene crtIb, 21 

underlying light-induced carotenogenesis (Galbis-Martínez et al., 2012). In the second 22 

mechanism, the light signal is sensed by a coenzyme B12-based photoreceptor, which 23 

http://antimicrobianos.com.ar/2013/10/informe-resistencia-2012-argentina/
http://antimicrobianos.com.ar/2013/10/informe-resistencia-2012-argentina/
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specifically dictates the functioning of the repressor CarH in the dark and on exposure to 1 

light. CarH contains two B12 binding domains associated with a DNA HTH binding 2 

domain, which perceive the light signal and modulate gene expression accordingly 3 

(Ortiz-Guerrero et al., 2011). In A. baumannii, there is only one protein, methionine 4 

synthase, which is involved in the metabolism of methionine that contains a B12-binding 5 

domain, which is associated with domains specific to the functioning of the protein. 6 

Therefore, light perception by B12 does not seem to be an operating mechanism in A. 7 

baumannii.  8 

The exact mechanism of light perception and modulation of antibiotic resistance in A. 9 

baumannii is still unknown and currently under study in our laboratory. However, our 10 

results suggest a mechanism by which light is perceived by some photosensitizer 11 

molecule, with the concomitant generation of 
1
O2, as occurs with M. xanthus. Afterwards, 12 

1
O2 could be transmitted through unknown partners to trigger a possible transcriptional 13 

response leading to reduced susceptibility to MIN and TIG. In fact, our results show that 14 

light, with a wider effect in the presence of low concentrations of TIG, induces the 15 

expression of some key components of an efflux pump, AdeABC, previously shown to be 16 

involved in resistance to this antibiotic in A. baumannii (Vilacoba et al., 2013; Higgins et 17 

al., 2010).  18 

The difference in susceptibility to MIN and TIG between light and dark is maximized 19 

under low iron levels while, conversely, almost suppressed in the presence of this ion, 20 

indicating that its content is a variable modulating the effect. Perhaps the presence of iron 21 

reduces the amount of free photosensitizer, reducing therefore the possibility to generate 22 

1
O2. This, as well as other possibilities, are under study in our laboratory. Finally, it 23 



26 
 

should be mentioned that the stimulation of antimicrobial resistance by the presence of 1 

iron has been previously reported in P. aeruginosa for tobramycin as well as TIG 2 

(Oglesby-Sherrouse et al., 2014). However, the mechanism for this modulation has not 3 

yet been characterized. 4 

 5 

Clinical implications of light-induced antibiotic tolerance or reduction in 6 

susceptibility. 7 

Given that there is no light within organs or tissues, it does not seem that light plays a 8 

significant role in modulation of systemic infections in humans. However, modulation of 9 

surface-exposed wound infections by light may be of critical importance, given in 10 

addition the relatively lower temperatures recorded in these type or lesions (McGuiness et 11 

al., 2004; Mussi et al., 2010). In this context, it is important to mention that the 12 

microorganisms reported here to show modulation of antibiotic susceptibility by light, 13 

such as S. aureus and A. baumannii, are known causative agents of skin infections.  14 

The fact that, as expected, white light modulates antibiotic susceptibility as well implies 15 

that the findings reported in this work can be translated to the clinical setting. Also of 16 

critical importance is that blue light modulation is observed in liquid media as well, 17 

highlighting that it is a general finding and discarding an unspecific effect of the solid 18 

media. Most importantly, MIC values showed differences of even 128 folds between blue 19 

light respect to dark conditions for some strains. These impressive differences point out 20 

the profound influence light can exert on antibiotic susceptibility, as well as the fact that 21 

the importance of light as a key environmental stimuli is underestimated.  Alternatively, 22 

in other strains such as A118, the response to light might enhance the bacterium’s ability 23 
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to persist until conditions are more favorable for growth or until additional resistance 1 

determinants can be accumulated. 2 

Finally, our findings allow us to postulate that MIN and TIG antibiotic treatments may be 3 

improved by the inclusion of an iron chelator (such as the FDA-approved DSX), a 4 

measure that in addition to keeping the wounds in the dark, would increase the 5 

effectiveness in the control of infections involving these microorganisms. 6 

 7 
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Table 1. Primers used in this study. 1 

Name/No. Nucleotide sequence 

BlsA.R/1 5'- GCAATGTCTCACAATTATGT-3' 

BlsA.F/2 5'- ATGACCATACAAACATCTAG-3' 

TetBF 5'- ATAGGCGCATCGCTGGATTACT- 3' 

TetBR 5'- GAACCACTTCACGCGTTGAGAA- 3' 

adeA.rtF 5'- GGGCATGTATGTGCGTGTCAAT- 3' 

adeA.rtR 5'- ACAACGACTCTGTCACCGACTT- 3' 

adeB.rtF 5'- ATTGAGCGCGAATTATCGGGTG- 3' 

adeB.rtR 5'- AAGCGAGCTTCTACAGCCTTGA- 3' 

adeC.rtF 5'- ACAACCGTGATTTACGGACTGC- 3' 

adeC.rtR 5'- TAGGCAGTCATTCCCAAGCCAA- 3' 

RecAF.rt 5´- TACAGAAAGCTGGTGCATGG-3´ 

RecAR.rt 5´- TGCACCATTTGTGCCTGTAG -3´ 

 2 

Table 2. Blue light modulates susceptibility to MIN and TIG in A. baumannii, and is 3 

dependent on the culture media.  4 

  MIN   TIG  TET COL Source 

 AB MH LB 
(Difco) 

BM2 AB MH LB 
(Difco) 

BM2 LB 
(Difco) 

LB 
(Difco) 

 

A118           Ramírez et 

al., 2010  

Light 26±1 40±2 28±1 50±2 18±1 23±1 20±1 32±1 32±1 ND  

Dark 30±1 40±2 42±1 50±2 18±1 24±1 28±1 33±1 32±1 ND  

ATCC 

19606 

          ATCC 

Light  ND 40±1 30±1 ND ND 25±1 18±1 ND 30±1 23±1  

DarK ND 40±1 44±1 ND ND 27±1 30±1 ND 30±1 21±1  

ATCC 

19606 

blsA 
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Light ND ND 29±1 ND ND ND 17±1 ND ND ND  

Dark ND ND 44±1 ND ND ND 30±1 ND ND ND  

A42           (Vilacoba 

et al., 2013) 

Light ND 36±2 26±1 ND ND ND 20±1 ND 26±1 ND  

Dark ND 38±2 40±1 ND ND ND 28±1 ND 28±1 ND  

ATCC 

17978 

          ATCC 

Light ND 32±1 31±1 ND ND ND 16±1 ND ND ND  

Dark ND 31±1 37±1 ND ND ND 23±1 ND ND ND  

ATCC 

17978 

blsA 

           

Light ND ND 31±1 ND ND ND 16±1 ND ND ND  

Dark ND ND 37±1 ND ND ND 23±1 ND ND ND  

Ab107           This work 

Light ND 29±1 28±1 ND ND ND 20±1 ND 17±1 ND  

Dark ND 30±1 33±1 ND ND ND 23±1 ND 18±1 ND  

Diameters of inhibition zones of antibiogram plates performed in the indicated media 1 

under blue light or in the dark. L: light; D: dark. MIN: 30 µg. TIG: 15 µg; ND: non-2 

determined. The experiments were repeated at least three times for each condition. 3 

Table 3. Blue light modulates susceptibility to MIN and TIG also in liquid media. 4 

 MIC 

Minocycline 

(µg/ml) 

  MIC 

Tigecycline 

(µg/ml)   

  

Strain Light  Dark MIC 

folds 

Light Dark MIC 

folds 

A42 16 <0.125 128 64 2 32 

A118 4 <0.125 32 32 1 32 

ATCC 19606 2 <0.125 16 128 2 64 
a
The MICs were determined by the microdilution method, in accordance with 5 

general procedures recommended by the National Committee for Clinical Laboratory 6 
Standards. For specific details, please refer to Materials and Methods. 7 

 8 
  9 
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 1 

Table 4. Blue light modulates antibiotic susceptibility to MIN and TIG in other 2 

species. 3 

24ºC   Source 

 MIN TIG  

A. radioresistens    

SH164L 28±1 17±1 (Seifert et al., 

1997) 

SH164D 34±1 24±1  

Ar181L 25±2 18±1 This work 

Ar181D 35±2 30±1  

A. nosocomialis    

45L 28±2 17±2 This work 

45D 42±2 29±2  

A. oleivorans    

DR1L 27±1 19±1 (Jung et al., 2010) 

DR1D 31±1 24±1  

A. pittii    

SH024L 27±1 19±1 (Seifert et al., 

1997) 

SH024D 35±1 27±1  

A. lwoffii    

SH145L 24±2 15±2 (Seifert et al., 

1997) 

SH145D 39±2 24±2  

A. calcoaceticus    

48L 29± 21± This work 

48D 32± 30±  

A. soli   This work 

7L 25±1 18,5±1,5  

7D 32±2 26±4  

E. coli    Gibco-BRL 

DH5αL 23±1 18±1  

DH5αD 30±1 26±1  

P. aeruginosa    

802L 24±1 16±1 This work 

802D 20±1 18±1  

S. aureus    

632L 28±2 22±1 This work 
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632D 38±1 32±0,5  

K. pneumoniae    

313L 20±1 22± This work 

313D 25±1 26  

404L 8±1 18±1 This work 

404D 8±1 22±1  

E. cloacae     

9L 14±1 16±1 This work 

9D 16±1 18±1  

1L 18±2 18±1 This work 

1D 20±1 22±1  

 1 

  2 
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Legends to Figures 1 

Figure 1. Light modulates susceptibility to MIN and TIG in A. baumannii. Cells of 2 

the parental strain ATCC 19606 (A) and the ATCC 19606.OR blsA mutant (B) were 3 

resuspended in physiologic solution and adjusted to OD600= 0.1. Then, 100 µl of the 4 

bacteria were plated on the surface of LB Difco agar plates. Plates were inspected and 5 

photographed after incubation overnight (10 to 12 h) in darkness (D) or in the presence of 6 

blue light (BL) at 24°C. MIN: 30 µg. TIG: 15 µg. The experiments were repeated at least 7 

three times for each condition. 8 

Figure 2. The content of iron influences the effect of light on antibiotic susceptibility. 9 

Cells of ATCC 19606 were resuspended in physiologic solution and adjusted to OD600= 10 

0.1. Then, 100 µl of the bacteria were plated on the surface of LB Difco agar plates 11 

without supplement (A), supplemented with 200 µM FeCl3 (B), supplemented with 100 12 

µM DIP (C); or with 200 mM NaCl (D). Plates were inspected and photographed after 13 

incubation overnight (10 to 12 h) in darkness (D) or in the presence of blue light (BL) at 14 

24°C. MIN: 30 µg. TIG: 15 µg. The experiments were repeated at least three times for 15 

each condition. 16 

Figure 3. Light modulation of susceptibility to MIN and TIG occurs at 24ºC and not 17 

at 37ºC in A. baumannii. Cells of strains A42 (A), A118 (B) and ATCC 19606 (C and 18 

D) were resuspended in physiologic solution and adjusted to OD600= 0.1. Then, 100 µl of 19 

the bacteria were plated on the surface of LB Difco agar plates. Plates were inspected and 20 

photographed after incubation overnight (10 to 12 h) in darkness (D) or in the presence of 21 

blue light (BL) at 37ºC (A, B and C) or 24°C (D). MIN: 30 µg. TIG: 15 µg. (E) 22 

Quantification of the diameters of inhibition zones of antibiogram plates similar to those 23 
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shown in A, B, C and D. BL: blue light; D: dark. The experiments were repeated at least 1 

three times for each condition. 2 

Figure 4. White and blue light modulate susceptibility to MIN and TIG in A. 3 

baumannii. (A) Cells of the parental strain ATCC 19606 were resuspended in 4 

physiologic solution and adjusted to OD600= 0.1. Then, 100 µl of the bacteria were plated 5 

on the surface of LB Difco agar plates. Plates were inspected and photographed after 6 

incubation overnight (10 to 12 h) under different light sources or in the dark at 24°C. 7 

MIN: 30 µg. TIG: 15 µg. (B) Quantification of the diameters of inhibition zones of 8 

antibiogram plates similar to those shown in A. WL: white light; BL: blue light; GL: 9 

green light; RL: red light; D: dark. The experiments were repeated at least three times for 10 

each condition. 11 

Figure 5. 
1
O2 triggers reduction in susceptibility to MIN and TIG in A. baumannii. 12 

Cells of the parental strain ATCC 19606 were resuspended in physiologic solution and 13 

adjusted to OD600= 0.1. Then, 100 µl of the bacteria were plated on the surface of LB 14 

Difco agar plates(A) or LB Difco agar plates supplemented with 5 µM MB. Plates were 15 

inspected and photographed after incubation overnight (10 to 12 h) in darkness (D) or in 16 

the presence of red light (RL) at 24°C.MIN: 30 µg. TIG: 15 µg. (B) Quantification of the 17 

diameters of inhibition zones of antibiogram plates similar to those shown in A and B. 18 

Figure 6. Effects of light and sub-MIC concentrations of TIG on AdeA, B and C 19 

transcript levels. cDNA from A. baumannii ATCC 19606 (A and C) or A42 (B and D) 20 

cells grown to exponential phase in LB Difco at 24°C in the presence of blue light (L) or 21 

in darkness (D) was used as the template for qRT-PCR using adeA, B or C specific 22 

primers. Panels C and D show data for cells grown under the same conditions as in panels 23 
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A and B, with the difference that 0.1 µg/ml TIG was added to the culture media. 1 

Transcription of recA was used as a constitutively expressed internal control. Standard 2 

deviations of three independent experiments are shown. Asterisks indicate transcript 3 

levels statistically different between light and dark conditions. Above the bars are 4 

indicated the ratio of induction of each transcript between light vs. dark conditions. 5 

 6 

 7 
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