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Using a gene disruption strategy, we generated mutants in the gliP locus of the plant-beneficial

fungus Trichoderma virens that were no longer capable of producing gliotoxin. Phenotypic assays

demonstrated that the gliP-disrupted mutants grew faster, were more sensitive to oxidative stress

and exhibited a sparse colony edge compared with the WT strain. In a plate confrontation assay,

the mutants deficient in gliotoxin production were ineffective as mycoparasites against the

oomycete, Pythium ultimum, and the necrotrophic fungal pathogen, Sclerotinia sclerotiorum, but

retained mycoparasitic ability against Rhizoctonia solani. Biocontrol assays in soil showed that the

mutants were incapable of protecting cotton seedlings from attack by P. ultimum, against which

the WT strain was highly effective. The mutants, however, were as effective as the WT strain in

protecting cotton seedlings against R. solani. Loss of gliotoxin production also resulted in a

reduced ability of the mutants to attack the sclerotia of S. sclerotiorum compared with the WT.

The addition of exogenous gliotoxin to the sclerotia colonized by the mutants partially restored

their degradative abilities. Interestingly, as in Aspergillus fumigatus, an opportunistic human

pathogen, gliotoxin was found to be involved in pathogenicity of T. virens against larvae of the wax

moth, Galleria mellonella. The loss of gliotoxin production in T. virens was restored by

complementation with the gliP gene from A. fumigatus. We have, thus, demonstrated that the

putative gliP cluster of T. virens is responsible for the biosynthesis of gliotoxin, and gliotoxin is

involved in mycoparasitism and biocontrol properties of this plant-beneficial fungus.

INTRODUCTION

Gliotoxin is an intriguing natural product of some fila-
mentous fungi, notably the human pathogen Aspergillus
fumigatus and the plant disease biocontrol agent Tricho-
derma (Hypocrea) virens. Similar to other ETP (epipolythio-
dioxopiperazine) compounds, the reactivity of gliotoxin
originates from the intact disulphide bridge within the
molecule that reacts with thiol groups on proteins, resulting
in varied detrimental effects including apoptosis, inhibition
of the catalytic activities of the proteasome and angiogenesis
(Scharf et al., 2012b). Strong antimicrobial and cytotoxic

activity encouraged early attempts to develop this compound
as an antibiotic or as a chemotherapeutic agent (Waring &
Beaver, 1996). Initially described as a ‘lethal principle’,
gliotoxin was first discovered in T. virens (misidentified as
Trichoderma lignorum/Gliocladium fimbriatum/Trichoderma
viride) and shown to inhibit growth of the plant pathogen
Rhizoctonia solani (Weindling, 1934). The active compound
was subsequently purified, the structure elucidated and
mechanisms of the antimicrobial properties were studied in
detail by several groups (Weindling, 1934, 1941; Weindling &
Emerson, 1936, Johnson et al., 1943; Brian, 1944; Dutcher
et al., 1944; Brian & Hemming, 1945; Wright, 1952; Jones &
Hancock, 1988). Despite the discovery of gliotoxin in A.
fumigatus as early as 1944 (Glister & Williams, 1944; Menzel
et al., 1944), the interest in gliotoxin research continued to
focus on its relevance in the suppression of plant pathogens
(Howell, 2003). The compound was detected in soil and the

Abbreviations: ETP, epipolythiodioxopiperazine; NRPS, non-ribosomal
peptide synthetase; PLSD, protected least significant difference; ROS,
reactive oxygen species.

Four supplementary figures and one supplementary table are available
with the online Supplementary Material.
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rhizosphere after application of T. virens as a biocontrol
agent (Wright, 1952; Lumsden et al., 1992). Using pulse
labelling, Wilhite & Straney (1996) examined the course of
gliotoxin biosynthesis in T. virens. The production was
demonstrated to commence after 32 h incubation in liquid
medium, increase sharply for the next 6 h and then abruptly
decline with the last detected labelling occurring at 48 h,
representing a duration of de novo biosynthesis of about
16 h. In a significant development for biocontrol of plant
pathogens, Howell et al. (1993) found that not all isolates of
T. virens produce gliotoxin. A proposal reflecting the
difference in biosynthesis was presented to designate isolates
in one of two groups, consisting of gliotoxin producers, ‘Q’
groups, and non-producers, ‘P’ groups (Howell et al., 1993;
Howell & Puckhaber, 2005).

Several studies attempted to establish the role of gliotoxin
in the biological control of plant pathogens by generating
non-producing mutants through UV mutagenesis (Wilhite
et al., 1994, Howell & Stipanovic, 1995). In one study, the
non-producing mutants displayed significantly less protec-
tion of zinnia seedlings against Pythium ultimum than the
WT strain (Wilhite et al., 1994). However, a second study
failed to demonstrate a difference between non-producing
mutants and the WT parent strain in protecting cotton
seedling from disease incited by R. solani (Howell &
Stipanovic, 1995). The results of these two studies illustrate
the complexity of analysing mutants generated by chemical
mutagenesis and replication of secondary metabolite
production in different strains of the same biocontrol
agent. As the application of conventional mutagenesis has
the disadvantage of the accumulation of non-target
mutations, the interpretation of the different results from
these two studies may be due to genetic factors other than
mutations in the targeted gene.

Interest in understanding the molecular basis of biosyn-
thesis was renewed once gliotoxin was implicated as a
virulence factor in the pathogenesis of the human pathogen
A. fumigatus (Scharf et al., 2012b). The publication of the
genome sequence of this opportunistic human pathogen
and subsequent identification of the putative gene cluster
(Gardiner & Howlett, 2005; Nierman et al., 2005) enabled
the selective inactivation of the core enzyme GliP [a non-
ribosomal peptide synthetase (NRPS)] and established the
genetic understanding of the first step in gliotoxin
biosynthesis (Balibar & Walsh, 2006; Cramer et al., 2006;
Kupfahl et al., 2006; Sugui et al., 2007). GliP catalyses the
formation of a dipeptide (a fusion of L-phenylalanine and
L-serine) followed by cyclization to yield the diketopiper-
azine (DKP) scaffold. The gene cluster comprises, in addi-
tion to gliP, 12 other genes that are co-regulated during
gliotoxin biosynthesis, with expression regulated by the
velvet complex proteins (Perrin et al., 2007; Sugui et al.,
2007; Schrettl et al., 2010; Dhingra et al., 2012) and com-
ponents of the MAPK signalling pathways (Jain et al.,
2011). The DKP scaffold is C-hydroxylated by GliC, a
putative cytochrome P450 monooxygenase that, after
elimination of water, gives rise to imine intermediates that

are attacked by the nucleophilic cysteine thiolate residues
of two glutathione molecules catalysed by GliG, a
glutathione S-transferase (Davis et al., 2011; Scharf et al.,
2011; Chang et al., 2013). GliI, a carbon–sulfur (C-S) lyase,
catalyses the dual C-S cleavage to yield the epidithiol
moiety of gliotoxin (Scharf et al., 2012a). The disulphide
forming oxidoreductase GliT oxidizes this intermediate to
yield gliotoxin, which has an intra-molecular disulphide
bridge. GliT also mediates self-resistance to gliotoxin in A.
fumigatus by maintaining the compound with a sulfur-
bridge, thus avoiding generation of reactive oxygen species
(ROS) and protein conjugates (Scharf et al., 2010, Schrettl
et al., 2010). GliZ is a transcriptional regulator of the glio-
toxin cluster genes, and the deletion of the gene encoding
this protein eliminates gliotoxin biosynthesis and virulence
in A. fumigatus (Bok et al., 2006). The glutamyltransferase
GliK and dipeptidase GliJ are also essential for gliotoxin
biosynthesis (Gallagher et al., 2012; Scharf et al., 2013).
GliK is induced by exogenous H2O2, and its deletion
renders A. fumigatus hypersensitive to oxidative stress.
Gliotoxin itself is an antioxidant and immunosuppressive
metabolite, providing an advantage to A. fumigatus during
the infection process (Choi et al., 2007; Schrettl et al., 2010;
Scharf et al., 2012b).

Contrary to the understanding of the genetic structure and
function of gliotoxin in A. fumigatus, similar advances have
not been demonstrated for this compound that is profusely
produced in T. virens. The incorrect annotation of a
sirodesmin-like gene cluster (sirP cluster) as a gliotoxin
cluster in T. virens hampered early efforts to obtain gliP
mutants (Patron et al., 2007; C. M. Kenerley, unpublished
data). Only recently has the putative gene cluster for
gliotoxin biosynthesis been identified following the pub-
lication of the genome sequence of T. virens (Kubicek et al.,
2011; Mukherjee et al., 2012). The putative gliotoxin
cluster in T. virens, however, is ‘truncated’ comprising only
8 of the 13 genes reported in A. fumigatus (Mukherjee et al.,
2012). Since the scaffold containing this cluster is small
(only these eight genes) and flanked by AT-rich regions,
the presence of other members of this cluster elsewhere on
the genome is currently unknown. As the seemingly vital
genes gliZ and gliT are absent from this cluster, the T.
virens cluster appears incomplete. However, the T. virens
genome does contain two orthologues (EHK22124 and
EHK24545) of gliT and two orthologues (EHK21730 and
ABV48713) of gliZ (with more than 50 % identity to A.
fumigatus) located elsewhere in the genome. Unlike A.
fumigatus, T. virens is a beneficial fungus that is found
abundantly in soil and the rhizosphere, and offers a wide
range of benefits to plants by suppressing pathogenic fungi,
promoting photosynthesis and inducing resistance against
invading pathogens (Mukherjee et al., 2013). As a first step
towards understanding the biosynthesis and biology of
gliotoxin in this beneficial fungus, we sought to obtain gliP
disruption mutants and establish the role of this secondary
metabolite during interactions of T. virens with plant
pathogens and plants.
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METHODS

Cultivation of fungi and plants. Two strains of T. virens, Gv29-8

the WT strain and an arginine auxotrophic strain (Tv10.4), and the

plant pathogens, P. ultimum, R. solani and Sclerotinia sclerotiorum

were used in this study. The fungal strains were routinely cultivated

on potato dextrose agar (PDA), and the oomycete on corn meal agar

modified with rifampicin. Transformants of T. virens were selected

and maintained on PDA modified with hygromycin B (250 and

100 mg l21, respectively; PDAH) or Vogel’s minimal medium

supplemented with 1.5 % sucrose (VMS).

Bioinformatics. The sequences of gliP/sirP orthologues from various

fungi were downloaded from the National Center for Biotechnology

Information site or from their respective genome sites (http://genome.

jgi.doe.gov/programs/fungi/index.jsf). The domains of gliP/sirP were

identified on the Pfam server (http://pfam.xfam.org/search) and the

evolutionary analyses were conducted in MEGA5. Identification of the L-

Phe and L-Ser binding domains was performed by alignment using

CLUSTAL W software (Stachelhaus et al., 1999; Balibar & Walsh, 2006;

Kalb et al., 2013). NRPS predictor 2 was used to identify the signature

sequences of the adenylation domains (Röttig et al., 2011).

Construction of gene (gliP) deletion and complementation

vectors. The gene deletion cassette used with the WT was

constructed by the double joint PCR method (Kuwayama et al.,

2002). The left and right flanks were amplified by PCR using the

primer pairs GliPUpF/GliPUpR and GliPDwnF/GliPDwnR (Table S1,

available in the online Supplementary Material), respectively. A

1430 bp fragment consisting of the trpC promoter and hygB gene

from pCSN43 (Fungal Genetics Stock Center) was amplified with

primer pair HygF/HygR. The three fragments were fused by double-

joint PCR and the final construct was amplified with the primer pair

GliPNestF/GliPNestR. A second gene deletion vector was constructed

for use with strain Tv10.4, an auxotrophic strain deficient in the

production of arginine. The vector was constructed by cloning a 3 kb

fragment of gliP into the pJMB4 plasmid containing the arg2 gene

(Baek & Kenerley, 1998). The gliP fragment was amplified using the

gliP forward primer glipFWD (59-GGTCTGGTTCGCGGTGAA-39)

and the reverse primer glipREV2 (59-CGCGGATCCACGCCTTCT-

GCCACACTG-39). Preparation of protoplast- and PEG-mediated

transformation of WT with selection for hygromycin resistance or

Tv10.4 for arginine prototrophy was performed as previously

described (Baek & Kenerley, 1998). Stable prototrophic transformants

with hygromycin resistance were selected by consecutive transfer of

single colonies to PDAH, PDAH, PDA and PDAH. A similar serial

transfer was conducted to obtain stable transformants for arginine

prototrophy (VMS, VMS, PDA and VMS). The deletion of part of the

gliP gene in stable transformants was confirmed by Southern and

Northern hybridization (Sambrook et al., 1989).

A mutant (DgliP44-4) deficient in the production of gliotoxin in the

Tv10.4 background was then complemented with the full-length

7.6 kb AfgliP gene from A. fumigatus as well as 562 bp upstream and

603 bp downstream regions of the gene (Sugui et al., 2007).

Complementation was performed by a co-transformation strategy

with a plasmid (pCSN43) containing the hygB gene using hygromycin

B as a selectable marker. The absence/presence of the gliP gene was

confirmed by PCR (forward primer AfgliP 59-ATGCTCGTGACC-

TTGCTCAT-39, reverse primer AfgliPR 59-CGCCATGCAGCAAC-

GCAGAGA-39). Production of gliotoxin was confirmed using TLC.

RNA extraction and Northern blotting assays. Total RNA from

fungal tissue was prepared using TRIzol reagent (Gibco-BRL). RNA

integrity was confirmed after electrophoresis in agarose gels. Samples

of RNA were blotted on Hybond-N+ membranes (Amersham

Biosciences) after electrophoresis according to the manufacturer’s

suggestions. The probes were PCR-amplified fragments from fungal
genomic DNA. The fragments amplified corresponded to exons of each
gene using the primers listed in Table S1 and the correct amplification
product was confirmed by sequencing. The purified DNA samples were
[32P] labelled and used for membrane hybridization.

HPLC and TLC analysis. WT and mutant strains were grown in
Weindling’s medium (Weindling, 1941) for 4 days, filtered and 10 ml
culture filtrate extracted with 20 ml ethylacetate. Samples were air-
dried and resuspended in 30 ml methanol. Pure gliotoxin (Sigma) was
used as a standard. HPLC was performed as described by Howell et al.
(1993) for the detection of gliotoxin, viridin and viridiol at the
USDA-ARS-Southern Plains Agricultural Research Center, College
Station, TX, USA. Gliotoxin production by the complemented strains
was confirmed by TLC. Culture filtrate (10 ml) of strains grown in
Weindling’s medium was extracted with ethylacetate, dried under
constant air flow and the residue suspended in 20 ml methanol.
Samples (10 ml) were loaded onto silica TLC plates and processed
using 70 : 29 : 1 chloroform : acetone : formic acid running buffer.
Plates were visualized under UV light.

Phenotypic analysis. Radial growth of three mutants in the WT
background, WT and a strain with an ectopic copy of the deletion
vector was determined by placing a 0.5 cm-diameter agar plug from
the edge of an actively growing colony for each strain in the centre of
a PDA plate. Colony diameter was assessed every 24 h over a 4-day
period. There were three biological replications for each strain per
experiment with three independent experiments performed. The same
plates were used to assess the morphology and branching of hyphae of
each strain at the edge of each developing colony using an Olympus
BX60 compound microscope, Q Imaging go-21 camera and
QCapture software. For assaying the sensitivity of the strains to
oxidative stress, spore suspensions (107 spores ml21) of each strain
were prepared from 10-day-old cultures. A 3 ml drop was placed in
the centre of a plate containing PDA supplemented with 1 or 10 mM
H2O2. For controls, the strains were inoculated on plates without the
addition of H2O2. The plates were incubated at 27 uC in plastic boxes
with saturated paper towels to maintain humidity. The radial growth
was recorded every 24 h in three independent experiments (biological
replications) that included three plates for each strain.

Confrontation and hyphal coiling. Ability of the DgliP mutants to
overgrow and lyse the colonies of the pathogens P. ultimum, R. solani
and S. sclerotiorum was assessed by placing pairs of the fungi
approximately 60 mm apart opposite each other on PDA plates. The
plates were observed daily over a 7-day period for overgrowth of
Trichoderma on the pathogen colonies. To observe hyphal coiling by
strains of T. virens, 1 ml VMS was pipetted onto glass microscope
slides. The slides were then inoculated with a plug of strains WT,
DgliP6, DgliP13 or DgliP14. After incubating for 12 h at 27 uC, the
slides were then inoculated at the opposite end of the slide with a plug
of R. solani. After 24 h co-incubation, microscopic observations of the
interaction zone were performed.

Interactions with sclerotia. Ability of WT and DgliP mutants to
attack the sclerotia of S. sclerotiorum was assessed in 24-well plates
containing 1 ml PDA per well. Each well was seeded with a conidial
suspension (10 ml of 107 conidia ml21) of the appropriate strain, and
plates were sealed with Parafilm and incubated for 7 days at 25 uC.
Sclerotia were harvested from 7-day-old cultures of S. sclerotiorum,
and one sclerotium was placed in each pre-inoculated well. Prior to
placing the sclerotia into the wells, each well was visually assessed to
determine that the entire well was colonized with hyphae of the
appropriate strain of T. virens. The plates were resealed and incubated
for an additional 11 days. In a second trial, the sclerotia were dipped
in gliotoxin (20 mg ml21 in methanol) or methanol (control) for
approximately 30 s before placing into wells pre-inoculated with
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conidia of the WT or mutants. Susceptibility of sclerotia to attack by
the strains of T. virens was determined by simple pressure test with
forceps and rated from 1 to 3: 1, complete softening with collapse of
the integrity of the sclerotial wall and contents; 2, partial effect with
pressure required to indent the sclerotium with the forceps; and 3, no
effect with the sclerotial wall intact. The control (no strains of T.
virens) sclerotia were assayed first to determine the integrity and
amount of pressure to apply to the other treatments. The experiment
was repeated three times with six replicates, each well being
considered a replicate for a total of 18 experimental units per
treatment.

Root colonization assay. The ability of WT and the DgliP mutants
to internally colonize maize roots was assessed by the method
described earlier (Vargas et al., 2009). Briefly, maize seeds were
planted in glass tubes (186150 mm) each containing 10 g non-sterile
soil that was infested with an aqueous conidial suspension (107

conidia ml21, 1 ml per tube) of the appropriate strain. The tubes were
incubated in a growth chamber at 25 uC with a 16 : 8 h light : dark
cycle under constant humidity. Seedlings were harvested after 4 days,
and the root surface disinfested with1 % NaClO. Roots were ground
in 100 mM sodium phosphate buffer (pH 7) with 20 mM MgCl2 and
Silwet L-77 (1 g roots in 5 ml solution) and plated on T. virens
selective medium (GVSM) minus gliotoxin (Park et al.,1992).
Trichoderma colonies were counted after 3 days. Roots from five
seedlings were combined for one replication, each treatment was
replicated four times and the entire experiment repeated.

Biocontrol assay in a growth chamber. The ability of WT and
DgliP strains to protect cotton seeds/seedlings from the pathogens P.
ultimum or R. solani was assessed in non-sterile soil in test tubes
(186150 mm) (Djonović et al., 2007). Briefly, cotton seeds were
coated with a chlamydospore preparation (Weaver & Kenerley, 2005)
of the appropriate strains and sown in soil pre-infested with P.
ultimum oospores or wheat bran colonized by R. solani. The assay
tubes were incubated for 7 days in a growth chamber at 27 uC with a
light : dark cycle of 14 : 10 h. Seedling survival was enumerated using
an index from 1 to 3: 1, dead with extensive lesions or shrivelled roots;
2, discoloured lesions apparent; and 3, generally healthy with no signs
of seedling damage. There were 10 tubes per replication, with four
replications per experiment and the entire experiment was repeated
three times.

Mortality of wax moth (Galleria mellonella) larvae. Final instar
larvae of G. mellonella (Vanderhorst Wholesale) were injected with
5 ml conidial suspension (105 or 107conidia ml21 in PBS) of WT or
DgliP mutant. Larvae were injected via the last left proleg, incubated
at 25 uC in the dark (Julie et al., 2006; Jackson et al., 2009) and
monitored daily for 3 days to record mortality. There were 12 larvae
per treatment with three replications and the entire experiment was
performed twice.

Statistical analysis. Statistical analyses were performed for the
appropriate experiments using ANOVA and mean separation by
Fisher’s protected least significant difference (PLSD) test (P,0.05 or
P,0.01) (Statview; SAS Institute).

RESULTS

Deletion of gliP abolishes gliotoxin production in
T. virens

Using double-cross-over homologous recombination, we
obtained mutants in the T. virens gliP gene with hygB
gene as the selectable marker. The gene disruption was

confirmed by Southern blotting analysis (Fig. 1a, b). Null
expression of the gene was determined by Northern
blotting (Fig. 1c). The mutants did not produce gliotoxin
as determined by HPLC analysis of the culture filtrate (Fig.
1d). However, the mutants did produce the fungistatic
compound viridin and the mycoherbicide viridiol that are
characteristic of the WT strain (Fig. 1d) (Jones & Hancock,
1987). Overall, these results confirmed the inactivation of
gliP in T. virens and correlated the functional synthesis of
the gene product with gliotoxin accumulation.

We also studied the effect of gliP disruption on the
expression of other genes of the cluster (gliC, gliF, gliG, gliI,
gliK, gliM and gliN). Northern blot analysis indicated that
transcription of all these genes are gliP (or possibly
gliotoxin) dependent, though their expression was not
completely repressed in the gliP mutants (Fig. 2).

Phenotypic analysis

Compared with WT, the mutants showed significantly
enhanced radial growth after 48 h incubation on PDA
plates (Fig. 3a, b), VMS, malt extract agar or water agar
(data not shown), thus, providing evidence that gliotoxin
biosynthesis has negative effects on vegetative growth in the
fungus. An examination of the mycelia at the edge of the
advancing colony of the mutants on PDA illustrated
morphology that was more dispersed, less dense and less
branched as compared with the WT (Fig. 3c). Comple-
mentation of a gliP mutant with the A. fumigatus gliP gene
(Sugui et al., 2007) restored the production of gliotoxin
(Fig. S1).

Gliotoxin mutants are hypersensitive to oxidative
stress

The sensitivity of the mutants to oxidative stress was
assessed by incorporating H2O2 in the medium and
measuring colony growth at regular intervals. As previously
observed, the mutant strains exhibited significantly greater
colony growth than the WT strain on PDA without H2O2

(Fig. 4). When the strains were compared in the presence
of 1 mM H2O2, the DgliP strains demonstrated consid-
erable sensitivity to the oxidative stress. As illustrated in
Fig. 4, the colony area of the DgliP strains was reduced by
approximately 50 % compared with their growth on PDA.
At this concentration of H2O2 there was no significant
difference in growth among the strains. The importance of
gliotoxin for oxidative-stress tolerance was further con-
firmed when comparing the effect of 10 mM H2O2 on
colony growth. In this case, a 50 % reduction in growth
rate was observed in the WT strain compared with control
plates (no H2O2 added). In contrast, the mutant strains
were severely affected by the addition of 10 mM H2O2,
displaying up to 90 % reduction in growth compared with
Gv29-8 under the same condition. The three mutants were
similar, but Gv29-8 had significantly greater growth
(Fig. 4).
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Gliotoxin is involved in antagonism and disease
biocontrol, but not in internal colonization of
roots

T. virens is a mycoparasite and capable of overgrowing
colonies of some plant pathogens in dual culture. Strains
are also effective agents for degradation of the resting
structures known as sclerotia (Mukherjee et al., 1995). As
expected, WT continued to grow over the colonies of P.
ultimum and S. sclerotiorum in the confrontation assay
(Fig. 5). Deletion of gliP, however, adversely affected the
antagonism of T. virens. Instead, the pathogens overgrew
the colony of T. virens (Fig. 5), indicating attenuation of

mycoparasitism in the absence of gliotoxin production,

despite faster growth rate of the mutants in pure culture.

All strains were capable of overgrowing colonies of R.

solani (Fig. 5). Also, both the mutants and the WT strain

were capable of coiling around the hyphae of R. solani

(data not shown). The absence of gliotoxin production

adversely affected not only hyphal parasitism, but also the

ability to degrade the sclerotia of S. sclerotiorum. The WT

strain was found to alter the physical integrity of the wall of

the sclerotia more significantly than either of the mutants

(Fig. 6a). Although, the mutants were significantly reduced

(P,0.01) in their ability to attack the sclerotia, an
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Fig. 1. Gliotoxin production is abolished in T. virens due to deletion of part of the gliP gene. (a) The scheme depicts the strategy
for gene deletion through homologous recombination. After recombination, the hygromycin cassette is inserted into the genomic
region disrupting the GliP-encoding region. (b) Southern hybridization of genomic DNA extracted from the WT and DgliP

mutant strains using the probe indicated in panel (a). Arrows on the right indicate the expected band size for both native and
deletion events. The minor non-specific bands appear to be due to non-selective hybridization with other NRPS(s).
(c) Comparison of the accumulation of mRNA for gliP in the WT and mutant strains. Fungal mycelium was incubated in
Weindling’s medium for 96 h and total RNA extracted for Northern hybridization. Fifteen micrograms total RNA were
electrophoresed in agarose gels and blotted on nitrocellulose membranes. The probe used for the hybridization was PCR-
amplified from genomic DNA using the primers GliPF/GliPR and radioactively labelled with [32P]dCTP. (d) HPLC detection of
gliotoxin in culture filtrates from Gv29-8 and DgliP6.
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exogenous application of gliotoxin to the sclerotia prior to
incubation with the putative antagonists partially restored
this property in the mutants (Fig. 6b). That is, the mean
separation test demonstrated a significant difference
between mutants with or without gliotoxin, but both were
significantly less able to attack sclerotia than WT. The
addition of exogenous gliotoxin to sclerotia prior to adding
the sclerotia to wells containing WT did not enhance
sclerotia susceptibility by WT (Fig. 6b). The mutants also
had impaired biocontrol ability in the protection of cotton
seedlings against P. ultimum in a growth chamber assay
after 7 days incubation (Fig. 7). A comparison among the
treatments indicated that the WT offered significant
protection to cotton seedlings against the pathogen
compared with the ability of the mutants. The mutants
showed no level of control, as survival of seedlings coated
with chlamydospores of the mutants was similar to seeds
planted with just P. ultimum. In contrast, the mutants were
not significantly different from the WT in their ability to
protect seedlings against R. solani. Application of mutants
or WT as chlamydospores to cotton seeds resulted in a
significant increase in seedling survival compared with the

control (R. solani alone treatment). Treatments with WT
and mutants resulted in .85 % survival compared with
25 % for treatment with R. solani alone (Fig. S2). In
another standard assay the mutants were found to retain
their ability to invade and internally colonize maize roots,
suggesting that gliotoxin does not play a significant role in
root colonization (data not presented).

Gliotoxin is involved in entomopathogenic
properties of T. virens

An infection assay of G. mellonella larvae indicated that
gliotoxin is indeed involved in the ability of T. virens to kill
insects. In our assay conditions, there was lower mortality in
the gliotoxin mutants compared with the gliotoxin-pro-
ducing WT strain at both conidial concentrations injected
into the larvae. However, the effect was more pronounced
when 5 ml of 107 conidia ml21 were injected compared with
a lower conidial concentration (105 conidia ml21) (Fig. 8).

The two adenylation (A) domains of the ETP
NRPSs have evolved independently

A phylogenetic analysis of the first (A1) and second (A2)
adenylation domains of fungal NRPSs involved in ETPs
(GliP/SirP) biosynthesis indicated that these two domains
evolved independently and not by duplication (Fig. S3).
Also, the phylogenetic relatedness of both the domains of T.
virens to those of A. fumigatus is indicative of a possible
horizontal gene transfer. Interestingly, Trichoderma reesei
also harbours a putative (partial) gliotoxin cluster even
though this fungus does not produce gliotoxin and is not a
biocontrol strain. The A1 domains of GliP and SirP are
closer to each other (the case with A2 domains is similar)
than to their own A2 domains, and it is possible that these
A1 domains of SirP and GliP and A2 of SirP and GliP have a
common origin. An analysis of the L-Phe-activating
adenylation domains indicated that the putative amino
acid-activating residues are identical in A. fumigatus and T.
virens. The same is true for the L-Ser-activating adenylation
domain residues (Stachelhaus et al., 1999) (Fig. S4).

DISCUSSION

Gliotoxin was first discovered in T. virens and studied for
its ability to suppress plant pathogens (Weindling, 1934).
Even though T. virens has the ability to produce copious
amounts of this secondary metabolite, an understanding of
the genetic system for biosynthesis in T. virens has lagged
compared with what is known in A. fumigatus, the other
economically important fungus that produces gliotoxin.
Previous studies have demonstrated that a gli cluster
resides in T. virens that is similar to the gli cluster in A.
fumigatus, members of the gli cluster are co-regulated
during interactions with the plant pathogen R. solani, and
gliotoxin production is regulated by the velvet complex
protein Vel1 (Mukherjee & Kenerley, 2010; Kubicek et al.,
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gliP/gliotoxin. Total RNA samples were prepared from fungal
mycelia incubated for 96 h in Weindling’s medium. Fifteen
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blotted on nitrocellulose membranes. The probe used for the
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2011; Mukherjee et al., 2012; Atanasova et al., 2013). Our
research is, to the best of our knowledge, the first genetic
study to demonstrate that the cluster is responsible for
biosynthesis of gliotoxin in T. virens and represents a

significant first step in understanding the biology of
gliotoxin biosynthesis in this plant-beneficial fungus.

The role of gliotoxin in biocontrol of soil-borne plant
diseases was earlier examined by obtaining non-producing
mutants through classical chemical mutagenesis (Howell &
Stipanovic, 1995; Wilhite & Straney, 1996). However, each
group used a different parent strain to generate their
mutants and evaluated the constructed mutants against a
different plant pathogen. The application of different
strains of T. virens has demonstrated a strain effect on
the efficacy of disease control against the pathogens P.
ultimum and R. solani (Lumsden & Locke, 1989; Burns &
Benson, 2000; Lewis & Lumsden, 2001; Dubey et al., 2011).
Q strains (which produce gliotoxin) were shown to be
effective against R. solani while P strains (which produce
gliovirin, but not gliotoxin) were effective against P.
ultimum, and not vice versa (Howell et al., 1993). By
testing mutants in the same genetic background derived by
selected gene disruption of gliP against the pathogens P.
ultimum or R. solani, we sought to resolve the role of
gliotoxin against these important soil-borne pathogens.
Our results confirm previous studies in that gliotoxin is
clearly involved in protection of seedlings against P.
ultimum, but not R. solani. Mutant and WT strains
demonstrated similar levels of control against R. solani,
but the mutants were greatly impaired in their ability to
control P. ultimum. Our assay did not differentiate whether
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the control was the result of mycoparasitism of pathogen
propagules or induction of resistance in the host. We have
previously demonstrated that mutants lacking the ability to

produce an endochitinase are impaired in their ability to
protect cotton against R. solani (Baek et al., 1999). By
constitutively expressing two glucanases in WT, we also
showed an enhanced ability to protect cotton seedlings
against the same pathogen (Djonović et al., 2007). Even
though glucanases have been demonstrated to be signific-
antly involved in the biocontrol ability of T. virens against
P. ultimum (Djonović et al., 2006, 2007), perhaps the
combination of these enzymes and gliotoxin is necessary to
prevent infection of seeds and newly formed roots by this
soil-borne pathogen. The effect of gliotoxin on P. ultimum
may be explained by differential interaction with the cell
wall of an oomycete, which is in a distinct phylogenetic
linage from filamentous fungi. Gliotoxin and other ETPs
such as sirodesmin exhibit phytotoxic properties, which
may differentially have a greater effect on oomycetes. In
addition, we demonstrated that gliotoxin does play a role
in sclerotial degradation, which is useful for strain
selection. Sclerotia are resistant to many environmental
conditions. Gliotoxin mainly affects metabolic functions
and is not known to have a lytic function. Therefore, an
assumption would be that gliotoxin is not responsible for
the degradation of sclerotia, but rather facilitates the
colonization of the resting structure by T. virens. The
mechanism(s) enabling gliotoxin to exert such an effect
remains to be studied. Another interesting feature is that
gliotoxin deficiency did not affect the ability of T. virens to
penetrate and colonize roots internally. Successful root
colonization by T. virens and other beneficial fungi is a
complex interaction involving signalling events between
the host and putative symbiont. Colonization requires an
ability to recognize and adhere to roots, penetrate the
plant and initially withstand any toxic metabolites pro-
duced by the plant in response to the invasion. T. virens
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Fig. 5. Gliotoxin biosynthesis differentially contributes to the
antagonistic effect of Gv29-8 against P. ultimum, S. sclerotiorum

and R. solani. Dual cultures of strains Gv29-8 and DgliP13, and
the pathogens P. ultimum, S. sclerotiorum and R. solani, on PDA
medium. Plates were incubated at 25 6C for 7 days.
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and other species grow intercellularly in the root epidermis
and cortex, but persistent and continued hyphal growth in
this portion of a living root after ingress by Trichoderma
requires damping or repressing the plant defence responses

(Druzhinina et al., 2011). Once hyphae of T. virens
encounter roots of a seedling of any number of crop hosts,
the process of colonization is initiated, secreted effectors are
delivered to the surface or the interior of plant cells and the
plant responds to the intruder (Harman et al., 2004).
Despite the demonstration by Lumsden et al. (1992) that
gliotoxin is produced in soil and soilless media, the com-
pound does not appear to be necessary in this competitive
environment to enhance or control root colonization.

Using a targeted gene strategy, we have shown that
gliotoxin negatively affects vegetative growth and alters
colony morphology in the producing strain. These pheno-
typic changes are in contrast to A. fumigatus where
disrupting the production of gliotoxin did not alter colony
growth. However, the role of gliotoxin in oxidative-stress
tolerance is similar to that observed in A. fumigatus (Scharf
et al., 2010; Schrettl et al., 2010).

ETP toxins such as gliotoxin can perform what is known as
redox cycling in which the disulfide bond is broken via
reduction and auto-oxidized into its disulphide form
producing ROS (Gardiner et al., 2005; Scharf et al.,
2010). This redox cycling may be important for the
toxicity of gliotoxin. As T. virens is noted for producing
large quantities of gliotoxin (Lumsden et al., 1992), this
fungal strain most likely co-evolved a mechanism enabling
the cells to cope with or tolerate large concentrations of
ROS. Our results indicate a significant difference in
oxidative stress tolerance in T. virens strains impaired in
gliP expression as compared with the WT strain Gv29-8.
Even though these results suggest a connection between
this ETP compound and the mechanisms involved in
detoxification of exogenous H2O2, the precise mechanisms
are not fully understood. In A. fumigatus it was demon-
strated that normal expression of gliK is important for
gliotoxin accumulation and in coping with oxidative stress
(Gallagher et al., 2012). In T. virens, the sensitivity of the
gliP-disrupted mutants to oxidative stress may be related
to either a co-regulation of gliP and ROS-detoxifying
mechanisms or a direct effect of gliotoxin per se on H2O2.
Further investigations will be necessary to provide a better
understanding of the mechanisms involved in gliotoxin-
mediated H2O2 tolerance by T. virens.

This study provides the first documented evidence that the
putative gliotoxin cluster found in the T. virens genome is
indeed a gli cluster, and future studies should focus on the
role of individual genes in the cluster in gliotoxin
biosynthesis in T. virens, as well as the regulation of this
cluster. Such studies will not only help in the understand-
ing of the gliotoxin-dependent biology of this biocontrol
fungus, but also bolster our understanding of gliotoxin
biosynthesis in general, having a bearing on A. fumigatus
biology as well. Moreover, since gliotoxin is regarded as a
mycotoxin, better understanding of gliotoxin biosynthesis
and its role in T. virens would also aid in finding ways of
minimizing gliotoxin ‘load’ in the environment. The
potential for gliotoxin use in biocontrol applications as a
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formulated product or in transgenic or overexpressing
strains needs to be assessed in field trials. The anti-cancer
effects of this reactive compound warrant further exami-
nation as ETPs and ETP-like alkaloids have exhibited
potent anti-cancer roles via induction of apoptosis (Boyer
et al., 2013). However, negative effects on non-cancerous
cells are a concern. Potentially the use of a gli cluster gene
product in conjunction with an ETP such a gliotoxin may
find use in emerging cancer treatments such as antibody–
drug conjugate therapy. This therapy involves the use of a
therapeutic toxin bound to an antibody that is specifically
delivered to a cancerous area. Such treatments have already
been approved by the US Food and Drug Administration
(Teicher & Doroshow, 2012; Flygare et al., 2013). Further
studies on gli cluster gene products may reveal the potential
for cancer cell-specific treatments. The mining of microbial
secondary metabolites has the potential for discovery of
compounds that can be implemented for the protection of
both field crops and mammalian diseases.
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