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The recent outbreak of coronavirus disease 2019 (COVID-19) is posing a global threat to human 

population. The pandemic caused by novel coronavirus (2019-nCoV), also called as severe acute 

respiratory syndrome coronavirus-2 (SARS-CoV-2); first emerged in Wuhan city, Hubei province of 

China in December 2019. The rapid human to human transmission has caused the contagion to spread 

world-wide affecting 244,385,444 (244.4 million) people globally causing 4,961,489  

(5 million) fatalities dated by 27 October 2021. At present, 6,697,607,393 (6.7 billion) vaccine doses 

have been administered dated by 27 October 2021, for the prevention of COVID-19 infections. Even 

so, this critical and threatening situation of pandemic and due to various variants’ emergence, the 

pandemic control has become challenging; this calls for gigantic efforts to find new potent drug 

candidates and effective therapeutic approaches against the virulent respiratory disease of COVID-

19. In the respiratory morbidities of COVID-19, the functionally crucial drug target for the antiviral 

treatment could be the main protease/3-chymotrypsin protease (Mpro/3CLpro) enzyme that is 

primarily involved in viral maturation and replication. In view of this, in the current study I have 

designed a library of small molecules against the main protease (Mpro) of coronavirus SARS-CoV-2 

(2019-nCoV) by using multimodal generative neural-networks. The scaffold-based molecular 

docking of the series of compounds at the active site of the protein was performed; binding poses of 

the molecules were evaluated and protein-ligand interaction studies followed by the binding affinity 

calculations validated the findings. I have identified a number of small promising lead compounds that 

could serve as potential inhibitors of the main protease (Mpro) enzyme of coronavirus SARS-CoV-2 

(2019-nCoV). This study would serve as a step forward in the development of effective antiviral 

therapeutic agents against the COVID-19. 
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Introduction 

The recent global outbreak of novel 

coronavirus disease 2019 (COVID-19) is 10 

times more severe than the swine flu pandemic 

that emerged in 2009-2010 causing 1.6 million 

confirmed cases with the death toll of 18,449; as 

stated by the World Health Organization (WHO) 

[1,2].  COVID-19 has been found even more 

deadly than expected. The coronavirus disease is 

caused by novel coronavirus (2019-nCoV), 

which is called as severe acute respiratory 

syndrome coronavirus-2 (SARS-CoV-2) by the 

International Committee on Taxonomy of 

Viruses [3]. SARS-CoV-2 is a new strain of 

coronavirus [3]; among the four genera (ranks) of 

coronavirus such as alpha, beta, gamma and 

delta, it belongs to beta coronavirus genus [4,5]. 

Coronaviruses (CoVs) have been known to infect 

a variety of vertebrates such as avian, swine and 

humans [6,7]. The alpha and beta CoVs cause 

infections only in mammals; whereas gamma and 

delta CoVs mostly infect avian (birds) but few of 

them can infect mammals too [8]. In humans and 

wild animals, CoVs cause respiratory and 

intestinal infections [8]. So far, six CoVs species 

have been found to cause infection in human 

hosts; they are grouped together and named as 

human coronaviruses (HCoVs), which cause 

several respiratory diseases such as pneumonia, 

bronchiolitis and common cold, and can also 

infect neurological, hepatic and enteric systems 

[3,6,7]. These six HCoVs are HCoV-OC43, 

HCoV-NL63, HCoV-229E, HCoV-HKU1, 

Middle East respiratory syndrome coronavirus 

(MERS-CoV) and severe acute respiratory 

syndrome coronavirus (SARS-CoV) [6,7]. 

Among them, four species of HCoVs (HCoV-

OC43, HCoV-NL63, HCoV-229E and HCoV-

HKU1) are commonly distributed in the human 

population across the globe and cause around 

one-third human infections related to common 

cold [6,7]. However, in case of adversity, these 

four species of HCoVs can cause severe 

respiratory illness in children, elderly persons 

and immunocompromised patients [6,7].  

 Prior to the onset of COVID-19, the two 

human pathogens (HCoVs) SARS-CoV and 

MERS-CoV have previously caused emergence 

of viral respiratory illness SARS in 2002-2003 in 

China and Hong Kong, and MERS in 2012 in 

Saudi Arabia [3,6,7,9]. SARS-CoV and MERS-

CoV were transmitted to human hosts from 

intermediate hosts: palm civets and dromedary 

(Arabian) camels respectively; the primary origin 

of both CoVs were likely to be bats [6–8]. The 

outbreak of SARS affected more than 8000 

people in 29 countries with a mortality rate of 

10% [6]. The MERS emergence caused 

infections in more than 2000 individuals with a 

fatality rate of ~35% [3,6,7]. The SARS and 

MERS outbreaks dragged the attention of the 

research community towards HCoVs, which had 

not been considered previously as highly 

pathogenic to humans [8]. It is commonly 

assumed that viruses have already prevailed in 

their natural reservoirs for long times [6,8]. It 
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turns out to be a great challenge for researchers 

to find out the rationality for the rapid evolution 

of human coronaviruses (HCoV) with frequent 

genomic nucleotide mutations and 

recombinations [6,8]. There is a growing 

consensus that human activities comprising 

urbanization, modern agricultural practices and 

poultry farming are the factors that have largely 

caused a steady spill-over of viruses from their 

natural hosts to other animals and to humans 

[6,8,10]. Recurrent mixing of species have 

caused severe repercussions of genetic 

recombination of viruses and thus allowing them 

to cross the species barrier [6,8]. In view of the 

high risks of pandemics, the concept of “One 

World - One Health” has already been introduced 

globally in 2004; which highlights the linkage 

between mankind, animals and environment, and 

encapsulates the regimes related to the health of 

all three: humans, animals and ecosystem 

[8,11,12]. In the same line, it has already been 

emphasized that efforts should be made to 

maintain preventive barriers between natural 

reservoirs and human community; in order to 

control the evolution of genetically diverse 

pathogens and to possibly prevent the potential 

damage to the mankind due to life-threatening 

pathogenic emergence and viral zoonosis [6,8]. 

 The SARS-CoV-2 belongs to 

Coronaviridae lineage, is a large spherical 

enveloped virus with a diameter ranging from 50 

to 200 nm; containing positive-sense, non-

segmented, and a long single-stranded RNA 

genome [3,6,7,13]. There are mainly four 

structural proteins of SARS-CoV-2: spike (S), 

membrane (M), envelope (E), and nucleocapsid 

(N) [13]. The nucleocapsid (N) of the virion is 

symmetrically helical structure that enfolds 

exceptionally large-sized RNA genome of 26-32 

kilobases (kb) [6]. The name coronavirus is given 

for the reason that under an electron microscope, 

coronavirus seems to have a crown-like 

appearance due to the presence of club-shape 

spike glycoproteins present on its surface; also 

resembles it with solar corona [3,9,14]. The spike 

(S) protein allows the virus to anchor the cell 

membrane of the host [13,15,16]. The 

angiotensin converting enzyme 2 (ACE2) 

receptors present on the host’s cell membrane is 

the target of the viral spike protein [13,15,16]. 

 SARS-CoV-2 was first surfaced in 

Wuhan city, Hubei province of China in 

December 2019; the epicenter of viral infection 

was tied to exotic organisms and seafood 

wholesale marketplaces in the city [3,9,15,16]. 

The plausibility of SARS-CoV-2 to be a 

laboratory-construct or purposefully engineered 

virus is unlikely as no clues have been found to 

support the hypothesis, from the comparative 

genomic data analysis about SARS-CoV-2 origin 

[17,18]. However, recent studies have supported 

the animal origin of SARS-CoV-2, considering 

bats and pangolins as natural reservoirs of the 

virus [18,19]. The SARS-CoV-2 has shown 

91.02% whole-genome sequence identity to 

Pangolin-CoV and 96.2% identity to Bat-CoV 
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(RaTG13) [18,19]. The disease was found to be 

highly contagious, caused rapid transmission 

from human to human; due to which the WHO 

declared Public Health Emergency of 

International Concern (PHEIC) on 30 January 

2020 [15,16]. By 27 October 2021, the COVID-

19 epidemic has affected 244,385,444 (244.4 

million) people worldwide with 4,961,489 (5 

million) fatalities. At present, 6,697,607,393 (6.7 

billion) vaccine doses have been administered for 

the prevention of COVID-19 infections [20]. 

  The viral genome of SARS-CoV-2 

constituted of ~30,000 nucleotides [21]. The 

RNA genome of the virus behaves as a 

messenger RNA (mRNA) once invaded and 

subsequently infected the host cell [22]. Thereby, 

the viral replicase gene directs the encoding of 

two long polyproteins namely pp1a and pplab, 

required for replication/transcription of the virus 

[21]. Proteolytic processes of the cutting of 

polyproteins into polypeptides and other 

functional machinery are performed by the 

proteases [22]. The main protease (Mpro) also 

referred to as 3-chymotrypsin protease (3CLpro) 

is the key viral enzyme of coronavirus SARS-

CoV-2 (2019-nCoV) that plays an essential role 

in viral replication/transcription and maturation; 

thus turns it out to be a fascinating drug target 

[21,23].  

 In the current prolonged situation of 

global crises due to coronavirus disease (covid-

19) pandemic, a sense of strong and urgent need 

has come out to explore novel drug discovery 

approaches and to discover new effective drugs, 

therapeutics and specialized tools for treatment 

[24–26]. On the other hand, a huge and 

significant amount of drug research has already 

been conducted in the last two years and 

continuous efforts are still under way [26,27]. In 

the same line, different covid-19 vaccines to 

prevent against SARS-CoV-2 virus have been 

developed and approved by WHO, namely: 

Pfizer-BioNTech, Moderna, Johnson & 

Johnson’s Janssen, Oxford–AstraZeneca, 

Sinopharm BIBP, Covaxin, CoronaVac, and 

Novavax [28,29]. Vaccines have changed the 

contagion and their role is gratifying, but having 

said that there is still a strong urge for drugs 

which can rapidly and effectively treat covid-19 

[30]. The immunity against coronavirus gained 

by vaccines gradually wanes after a particular 

time of administration; as the pandemic prevails 

and due to surfacing of variants (especially 

Omicron variant), booster shots are 

recommended to reduce the chances of becoming 

infected by the viral transmission [31]. Besides 

vaccines, other alternative therapeutic options 

are antibodies and small antiviral drug molecules 

[27]. 

 Drug discovery and development 

approaches could be based on either 

conventional/traditional strategies or existing-

drug repurposing/repositioning [32]. 

Conventional drug discovery processes are 

expensive and time-consuming [28,32,33]. 

Repurposing/repositioning of old drugs, in which 
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existing drugs or compounds are reused to 

explore new therapeutic activities is on the 

contrary safe, speedy and cost-effective [28,32]. 

However, the drug repositioning process could 

be hampered due to finding the unique disease-

drug relationship [32]. Therefore, assorted 

alternative approaches including artificial 

intelligence (AI) based computational 

approaches have been developed to address the 

limitations of drug discovery processes [32,34]. 

 A great effort has been extensively 

carried out to discover efficacious antiviral drugs 

and to analyze existing drugs against covid-19 by 

various experimental and computational 

approaches [24,30,35–48]. It is pertinent to 

mention the attempts to design small molecule 

antivirals by Pfizer named as PF-07321332, 

Nirmatrelvir [49–52]. It is a 3CLpro/Mpro 

inhibitor of SARS-CoV-2 [49,50]. Food and 

Drug Administration (FDA) is currently 

considering to authorize the emergency use of 

two oral COVID-19 antiviral pills [49]. One, 

Paxlovid by Pfizer (a combination of 

Nirmatrelvir and Ritonavir) which has been 

authorized by FDA and the other Molnupiravir 

by Merck & Co. [49]. Molnupiravir is a RdRp 

(viral RNA-dependent RNA polymerase) 

inhibitor; RdRp is a viral enzyme that synthesizes 

RNA [49]. However, emergency use of RdRp 

inhibitor Remdesivir has already been approved 

by FDA in October 2020 which is intravenously 

administered to patients [49,53]. Remdesivir and 

Molnupiravir are anti-Ebola virus (EBV) and 

anti-Venezuelan equine encephalitis virus 

(VEEV) repurposed drugs respectively, while 

Paxlovid is SARS-CoV-2 optimized drug 

candidate [49]. Several Mpro and RdRp 

antivirals are still currently under development 

phases [49]. 

 Artificial Intelligence is now increasingly 

applied in medical and health care [32,34,54]. 

One of the most common sub-field of AI is 

machine learning [32]. Machine learning is 

basically a statistical approach of fitting models 

to data sets and to learn from training models 

over data [34]. Neural network is the complex 

form of machine learning [34]. One of the 

machine learning methods involving artificial 

deep neural networks is termed as deep learning 

[32,34]. AI and machine learning are cutting-

edge techniques that offer solutions and could 

support the discovery process and optimization 

of novel antivirals against SARS-CoV-2 [32,55]. 

Several robust AI based approaches including 

neural network have been successfully applied 

during the pandemic to identify and develop anti-

covid19 drugs [25–28,30,32,42,55–62]. 

 Recently a deep-learning model LiGANN 

(ligand generative adversarial network) has been 

developed that uses generative adversarial 

network (GAN) for structure-based de novo 

ligand design and generating novel small 

molecules based on target protein structural 

information, 3D pocket representation, protein 

shapes and chemical properties [24,63,64]. 

Initially the protein binding pocket is voxelized 
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and then GAN generates 3D ligand shapes which 

are then converted into SMILES (simplified 

molecular-input line-entry system) 

representation of ligand’s chemical structure 

[63]. A recent study using a combination of 

neural network based deep learning technique of 

LiGANN, lead optimization and docking has 

been performed [65]. Macchiagodena et al. have 

applied LiGANN-Autodock4 protocol to identify 

the possible lead compounds against Mpro of 

SARS-CoV-2 [65]. A series of 93 molecules 

were generated, among them 5 lead compounds 

were identified; compound-27 was identified as 

the best binder to the protease enzyme [65]. In 

that work, the authors have mentioned that 

3CLpro from SARS-CoV-2 (PDB: 6LU7) share 

high structural similarity with 3CLpro from 

SARS-CoV (PDB: 1UK4); structural alignment 

of substrate-binding pockets of the two main 

proteases showed the RMSD of 0.99 A [65]. 

Therefore, based on that the two proteases 

possess similar binding modes of inhibitors [65]. 

The authors have thus compared and found good 

agreement of binding free energies of the lead 

compounds to the experimental value of the most 

potent inhibitor (ML188) of 3CLpro of SARS-

CoV [65,66]. 

 In the current research, LiGANN-

SkeleDock-KDeep protocol is utilized to 

discover the lead compounds against the main 

protease of SARS-CoV-2 [63,67,68]. LiGANN, 

the deep-learning based multimodel generative 

neural network is used to generate de novo ligand 

design [63]. The three-dimensional ligand shapes 

complementary to the shape and chemical 

properties of the protease pocket of coronavirus 

were generated. Later, these shapes were 

decoded into SMILES strings which correspond 

to the correct molecular structures. The small 

molecules were docked; and the molecular 

interaction studies followed by the binding 

affinity calculations validated the findings. By 

this approach, potential binders have been 

designed which are novel for the Mpro protein 

target. A library of 91 compounds were 

generated**, among them 5 promising lead 

compounds were identified; compound 

“prot_mol00065” was identified as the best 

binder of the main protease. The binding free 

energies of the compounds range in between -5 

to -10 kcal/mol. The predicted binding free 

energy of the “prot_mol00065” is -7.91 kcal/mol, 

which is in good correlation with the 

experimental value (ΔG = -7.98 kcal/mol) of the 

most potent inhibitor (ML188) of 3CLpro of 

SARS-CoV [66]. The results of the proposed 

study are also in good agreement with the work 

of Macchiagodena and co-workers [65]. 

 

Materials and Methods 

All Tables and Figures are presented on 

Supplementary Information. 

The co-crystallized structure of the main 

protease (Mpro) (viral protein) of coronavirus 

SARS-CoV-2 (2019-nCoV) with a peptide-like 

inhibitor (N3) was obtained from RCSB Protein 
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Data Bank (PDB ID: 6LU7) [21] – having 2.16 

Å resolution. There are 306 amino acid residues 

(SER1 to GLN306) in PDB file of the crystal 

structure constituting chain A. However, another 

chain C comprising of a sequence length of 6 

residues (02J, ALA, VAL, LEU, PJE and 010) 

together constitute a synthetic peptide-like 

inhibitor. These 6  residue names of chain C in 

the PDB file were manually changed to residue 

name LIG. The  residues present in chain C were 

by default recognized as ATOM; therefore all 

residues of the chain C were manually changed 

from ATOM to HETATM. 

 The protein structure was then protonated 

and optimized by using ProteinPrepare web 

application of PlayMolecule from 

playmolecule.org [69,70]. ProteinPrepare 

utilizes an empirical method to compute 

protonation states of titratable/ionizable amino 

acid residues by using PROPKA 3.1 [71]. The 

PDB2PQR 2.1 [72] software used by 

ProteinPrepare adds missing atoms to the protein 

structure and performs the hydrogen bond 

optimization. The input PDB (PDB ID: 6LU7) 

was uploaded and pKa calculations were 

performed at default pH of 7.4. The 

crystallographic waters were retained and 

heteroatoms were also included during 

calculations. The computations were performed 

selecting all chains and the option to mutate non-

standard residues was not availed thus leaving 

the non-standard residues unchanged. The 

protonated PDB file was further utilized for a 

structure-based de novo drug design tool 

LiGANN [63] built on multimodel generative 

neural-networks.   

 The molecular discovery web application 

tool LiGANN by PlayMolecule [63,69] was used 

to produce a library of shape-complementary 

molecules for binding pocket of the target 

protein. The protonated protein PDB file 

prepared in the previous section was uploaded. 

The three-dimensional box was automatedly 

defined over the location of protein where the 

first non-protein (ligand) molecule was present. 

The 3D-box can be placed at any position where 

the user is intended to generate potential ligands 

by adjusting x, y and z coordinates. In my case, I 

had fragments of 6 residues of peptide-like 

inhibitor/chain C; by default the box was 

centered over residue 1 of the peptide inhibitor. 

In order to avoid this issue, the centroid 

coordinates (x, y, z) of the whole peptide ligand 

(LIG) were provided to correctly position the 3D-

box centered over the whole peptide-like 

inhibitor. The geometric center (centroid) of the 

ligand was computed by CHIMERA [73] by the 

following command: 

define centroid mass false :LIG 

The x, y, and z centroid coordinates 

obtained were -10.712, 12.411, and 68.831 

respectively. After that, the default value of 10 

was selected for both parameters: (i) ligand shape 

generations and (ii) decoding per shapes. After 

processing, a library of 91 compounds was 

generated in the SMILES [74] format. The output 
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also includes Gaussian cube files (a total of 50 

files) of each chemical property such as acceptor, 

aromatic, donor, hydrophobic and occupancy for 

each shape (1-10). 

The generated molecules in the SMILES 

format were docked in the protein’s binding 

pocket by another tool of PlayMolecule named 

SkeleDock [67,69]. SkeleDock [67] performs 

scaffold-based molecular docking of the 

congeneric compounds series. SkeleDock 

requires a protonated protein PDB file, a 

template ligand PDB file, and a congeneric series 

in SMILES format as query molecules in csv 

two-column file format with unique “code” of 

each molecule and “SMILES” string. It works by 

finding a match between the template and the 

query and according to that correspondence it 

tethers/restraints the atoms of the query to 

acquire positions similar to the template. The 

protonated protein, template ligand N3 (LIG) and 

list of query molecules were inputted. The option 

to optimize with RDock [75] was selected to 

perform further refinement of the tethered poses 

obtained from SkeleDock method. The docking 

simulation was performed without scaffold-

hopping to avoid local mismatches in the 

template-query alignment process. Tethering 

force was kept at default value of 1.0, to tether 

atoms of query molecules to their corresponding 

template atoms. Default value of 6 for probe 

radius was used, which defines the docking grid. 

Docking results include SkeleDock poses 

without RDock refinement and final poses which 

have undergone through RDock optimization; 

the docked poses of ligands obtained by both 

methods were in SDF formats. A total of 88 

molecules were obtained after docking; 3 

molecules were discarded. The output has two 

types of scores: one is SkeleDock score while the 

other is RDock score. The SkeleDock is the score 

assigned by SkeleDock, which evaluates the 

alignment of query molecule on to the template 

molecule. In SkeleDock, the score is only a 

positive integer; a larger number is relatively a 

better score, which demonstrates that query 

molecule aligns well with the template. Whereas, 

the RDock docking score is an estimate of 

binding energy of the final pose. More negative 

numerals are better which represent stronger 

binding. The criteria of both of the docking 

scores are different because one is based on 

molecular structure alignment while the other is 

an estimate of the binding energy; therefore 

limited correlation in docking scores obtained by 

the two criteria is quite rational and they thus 

require to be considered autonomously.  

 The docked poses of all ligands in SDF 

formats were visualized by PYMOL [76] 

software. The OPEN BABEL [77,78] software 

was used to convert compounds from SDF 

format to PDB format. The PDB files were 

visualized by VMD [79] and CHIMERA [73] 

softwares. The following single command was 

used to convert all SDF files into PDB files: 

obabel *.sdf -opdb -m 
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 The protein-ligand interactions were 

analyzed and two-dimensional diagram was 

generated by using PlexView module of 

PlayMolecule web application [69]. PlexView 

requires a protonated protein PDB file and a 

ligand mol2 file as input. The output includes 

protein-ligand interactions such as hydrogen 

bond and pi-pi stacking. However, besides 

PlexView; polar-contacts, hydrogen-bonds and 

all possible protein-ligand interactions were 

determined by using CHIMERA and PYMOL 

softwares.   

  The binding affinity of the set of ligands 

were also predicted by using KDeep [68] module 

of PlayMolecule which uses deep convolutional 

neural networks (DCNNs). Each ligand structure 

is voxelized into pharmacophoric properties 

namely aromatic, hydrophobic, hydrogen bond 

acceptor and donor, total excluded volume, 

metallic, negative and positive ionizable features. 

The input is used for DCNN model, which is 

already trained by employing PDB bind 

database. The input required for computing 

protein-ligand affinity is a pre-processed 

protonated protein PDB file obtained from 

ProteinPrepare and a single SDF file for all 

ligands. The following command was used to 

merge all 88 docked ligands (present in SDF 

format generated by SkeleDock) in a single 

output file (all_ligands.sdf):    

obabel *.sdf -O all_ligands.sdf  

The output generated in tabular form by 

KDeep comprising the molecular weight of each 

ligand in (g/mol), dissociation constant (pKd) and 

free energy of binding ΔG in (kcal/mol). 

Finally, the pharmacokinetic properties 

of the compounds were calculated by the pkCSM 

– pharmacokinetics web-server 

(http://biosig.unimelb.edu.au/) [80]. The IUPAC 

nomenclature of the five best compounds were 

generated via online webserver Convert- 

molecule file format conversion (via ChemAxon 

JChem version 19.3.0) by giving SMILES string 

as an input format [81]. The names generated 

were verified by using another web interface 

OPSIN: Open Parser for Systematic IUPAC 

nomenclature [82]. 

 

Results and Discussion 

The protein structure of the main protease 

(Mpro) of coronavirus SARS-CoV-2 (2019-

nCoV) from PDB ID: 6LU7 was protonated; and 

hydrogen-bond optimization was performed by 

ProteinPrepare web application of PlayMolecule. 

None of the titratable residues having pKa close 

to the pH 7.4 were found. The output files of 

ProteinPrepare PlayMolecule such as 

protonation table and protonation diagram are 

represented as Table 1** and Figure 1** 

respectively.   

The protonated PDB file was used for the 

drug design tool LiGANN. LiGANN generated 

shape-complementary small molecule library of 

92 compounds for binding pocket of the target 

protein as shown in the Figure 2**. 
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 The SkeleDock [67] tool performed 

scaffold-based molecular docking of the library 

of 91 congeneric compounds obtained by 

LiGANN [63], in the binding pocket of the main 

protease (Mpro) of coronavirus SARS-CoV-2 

(2019-nCoV). The Figure 3** represents 88 

docked compounds at the active site of the 

protein. The 88 docked poses of ligands were 

obtained separately by both SkeleDock with and 

without RDock refinement. The docked poses 

obtained by SkeleDock with RDock refinement 

were considered as final poses and the best ligand 

selection was based on RDock score. I selected 

five top-ranked ligands having high RDock 

scores and considered them as promising 

candidates. The Figure 4** shows the three-

dimensional structures and atom identifiers of the 

top five ligands: prot_mol00065, 

prot_mol00012, prot_mol00002, prot_mol00037 

and prot_mol00075.  

The compounds’ IUPAC nomenclature 

of the five best binders were generated via online 

webserver Convert- molecule file format 

conversion (via ChemAxon JChem version 

19.3.0) by giving SMILES string as an input 

format of the compounds [81]. The names 

generated were verified by using another web 

interface OPSIN: Open Parser for Systematic 

IUPAC nomenclature [82]. Following are the 

chemical (IUPAC) names of these five 

compounds: 

compound 65 (prot_mol00065): 

N-butyl-N-ethyl-5-(1H-pyrazol-4-yl)-4-

[(thiophen-2-yl)methyl]-4H-1,2,4-triazol-3-

amine 

compound 12 (prot_mol00012): 

N-methyl-N-(pentan-2-yl)-5-(1H-pyrazol-3-yl)-

4-[(thiophen-2-yl)methyl]-4H-1,2,4-triazol-3-

amine 

compound 2 (prot_mol00002): 

1-{3-[(4-methyl-1H-indol-3-yl)methyl]-1,2,4-

oxadiazol-5-yl}pentan-1-amine 

compound 37 (prot_mol00037): 

N,1-dimethyl-N-(2-{3-[(pyridin-4-yl)methyl]-

1,2,4-oxadiazol-5-yl}phenyl)piperidin-4-amine 

compound 75 (prot_mol00075): 

4-{3-[(5-methyl-1H-imidazol-4-yl)methyl]-

1,2,4-oxadiazol-5-yl}-N-[(1-

propylcyclopropyl)methyl]cyclohexa-1,3-dien-

1-amine. 

The ligand code “prot_mol00065” was 

top-ranked with RDock score of -19.28. The 

other four ligands amongst the top five ligands 

were prot_mol00012, prot_mol00002, 

prot_mol00037 and prot_mol00075 with RDock 

scores of -15.68, -13.81, -13.30 and -13.04 

respectively. The potential interactions between 

the protein and top-ranked ligands are 

represented in the Table 2** obtained by 

PlexView application tool of PlayMolecule; 

however, in order to get a clear view of polar-

contacts and hydrogen-bonds, all possible 

protein-ligand interactions were investigated by 

using CHIMERA and PYMOL softwares as 

discussed in the following section. The two-
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dimensional protein-ligand interaction diagrams 

generated by PlexView application tool of 

PlayMolecule are represented in Figure 10**.  

 The compound “prot_mol00065” 

interacts with the pocket residues of the main 

protease substrate binding site: HIS41, MET49, 

PHE140, LEU141, ASN142, GLY143, SER144, 

CYS145, HIS163, MET165, GLU166, HIS172, 

ASP187, ARG188 and GLN189 as reported in 

the literature [65]. The ligand “prot_mol00065” 

formed strong hydrogen bond interaction with 

backbone oxygen of PHE140 via its nitrogen 

(N14), with a distance of 2.98 Å between the 

heavy atoms. Another potential hydrogen bond 

interaction was observed between nitrogen (N13) 

of the ligand and side chain oxygen OG of 

SER144; found at a distance of 2.82 Å. The 

nitrogen (N9) atom of the ligand 

“prot_mol00065” was found at distances 3.4 Å 

and 3.8 Å from backbone nitrogen of GLU166 

and MET165 respectively. The nitrogen atom 

(N14) of the ligand is at 4 Å from the side chain 

OE2 atom of GLU166. On the other hand, 

nitrogen (N14) atom of the ligand might form a 

hydrogen bond interaction with backbone 

oxygen of LEU141; both are 3.6 Å apart. The 

backbone nitrogen atom of LEU141 is 3.4 Å far 

from nitrogen (N13) of the ligand. The nitrogen 

(N13) of the ligand in turn found at a distance of 

3.9 Å from the side chain ND1 atom of HID163. 

These potential interactions of the ligand 

“prot_mol00065”  are in good agreement 

with the existing data [65], might be responsible 

for the strong binding of the ligand at the 

active/catalytic site of the protein. The binding 

mode of ligand “prot_mol00065” in the catalytic 

site of protein is shown in the Figure 5**. 

 The Table 3** depicts protein-ligand 

affinities calculated by KDeep module of 

PlayMolecule. In the Table 4** SkeleDock and 

RDock scores of 88 docked ligands of the 

congeneric series have been reported. Table 5 

shows the SMILES and codes along with the 

pharmacokinetic properties of all the 

compounds. The predicted binding affinity (ΔG) 

of the top-ranked ligand code “prot_mol00065” 

(RDock score: -19.28) was found to be -7.91 

kcal/mol and pKd of 5.86. This compound has a 

molecular weight of 330.16 g/mol. The poses 

generated by SkeleDock having RDock score 

greater than 0 were not considered further for 

KDeep scoring. This is because the more 

negative numerals in RDock score are better 

representing the best-fit and the stronger binding; 

in the reverse scenario if the RDock score is 

positive, the peculiarity of best-fitting of the 

ligand inside the pocket is compromised. As for 

instance, the binding affinity predicted by KDeep 

of prot_mol00071 is -10.14 kcal/mol, which is 

the most negative ΔG value in the series, but 

since its RDock score is a positive value, 

therefore it was ruled out.  

 The predicted binding affinity of the other 

four ligands: prot_mol00012, prot_mol00002, 

prot_mol00037 and prot_mol00075 are -7.69 

kcal/mol with pKd of 5.70, -7.95 kcal/mol with 
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pKd of 5.89, -8.16 kcal/mol with pKd of 6.04, and 

-8.26 kcal/mol with pKd of 6.12. 

 The binding pattern of the ligand 

“prot_mol00012” in the active site of the protein 

is illustrated in the Figure 6**. The nitrogen N14 

of the ligand “prot_mol00012” is found at a 

distance of 3.55 Å from the backbone oxygen of 

ARG188. 

 The ligand “prot_mol00002” with the 

active site residues is depicted in Figure 7**. The 

nitrogen N5 of the ligand “prot_mol00002” is 

found at a distance of 2.7 Å from the backbone 

oxygen of HIE164 forming hydrogen bond 

interaction. The N5 nitrogen of the ligand is in 

turn 2.9 Å far from the side chain nitrogen NE2 

of HID41. The nitrogen N12 of the ligand is 2.8 

Å away from the backbone oxygen of PHE140. 

On the other hand, the nitrogen N12 of the ligand 

is present at a distance of 3.2 Å from the side 

chain oxygen OE2 of GLU166. The backbone 

nitrogen (N) atom of GLU166 is found at 

distances of 3.4 and 3.6 Å from nitrogen N20 and 

oxygen O21 of the ligand respectively. 

 The Figure 8** is the pictorial 

representation of the binding conformation of 

ligand “prot_mol00037” inside the pocket. The 

ligand “prot_mol00037” formed strong hydrogen 

bond interactions with CYS145. The backbone 

nitrogen (N) of CYS145 is at 2.7 Å and 2.8 Å 

distances from oxygen O24 and nitrogen N23 of 

the ligand “prot_mol00037” respectively. The 

oxygen O24 is 2.9 Å and 4.0 Å away from the 

backbone nitrogen (N) and side chain oxygen OG 

of SER144. The backbone nitrogen (N) atom of 

GLY143 is found at a distance of 3.1 Å from the 

oxygen O24 of the ligand. The backbone 

nitrogen (N) of GLY143 is in turn 3.1 Å and 3.9 

Å away from N23 and N14 nitrogen atoms of the 

ligand. The nitrogen N23 of the ligand 

“prot_mol00037” is at a distance of 3.1 Å from 

the backbone nitrogen of SER144. 

 The binding mode of ligand 

“prot_mol00075” inside the active site of the 

protein is exhibited in the Figure 9**. The 

nitrogen N5 of the ligand “prot_mol00075” 

formed strong hydrogen bond interaction with 

backbone oxygen (O) of ARG188; both heavy 

atoms were found at a distance of 3.3 Å. The 

backbone nitrogen (N) atom of MET165 formed 

polar contacts with nitrogen N20 and oxygen 

O21 of the ligand at 3.8 Å and 3.4 Å distances. 

The nitrogen N15 of the ligand is found at 3.7 Å 

and 3.9 Å distances away from the side chain 

oxygen OG of SER144 and backbone nitrogen 

(N) of Leu141. The backbone oxygen (O) of 

PHE140 formed close contact with nitrogen N17 

of the ligand at a distance of 3.3 Å. The nitrogen 

N17 of the ligand, in turn, formed polar contacts 

with OE1 and OE2 of GLU166 residue at 4 Å and 

3 Å distances respectively. The nitrogen N20 of 

the ligand formed a hydrogen bond interaction 

with SG donor atom of CYS145; both heavy 

atoms were 2.9 Å distance apart. 

 The high docking scores, well-estimated 

binding affinities and key interactions of the top-

five compounds: “prot_mol00065”, 
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“prot_mol00012”, “prot_mol00002”, 

“prot_mol00037” and “prot_mol00075”, 

describe the viability of the best-fit and the strong 

binding of these ligand at the active site of the 

protein; consequently revealing the potential of 

these compounds to serve as promising inhibitors 

of main protease (Mpro) enzyme of coronavirus 

SARS-CoV-2 (2019-nCoV).   

In the current work, LiGANN-

SkeleDock-KDeep protocol is used to optimize 

possible lead compounds against the Mpro 

enzyme of SARS-CoV-2. LiGANN generated de 

novo ligand design. The 3D ligand shapes 

complementary to the protease pocket of 

coronavirus were decoded into SMILES strings 

of the correct molecular structures. Molecular 

docking of small molecules and analysis of 

binding modes is followed by the binding affinity 

estimations. In this way, a library of 91 small 

compounds against the target main protease 

(Mpro) enzyme of SARS-CoV-2 was generated. 

Among the designed molecular series, 5 potential 

candidates were identified; compound 

“prot_mol00065” was identified as the best 

binder of the main protease. The binding free 

energies of the compounds range in between -5 

to -10 kcal/mol. The predicted binding free 

energy of the compound “prot_mol00065” is -

7.91 kcal/mol, which is in good agreement with 

the experimental value (delta ΔG = -7.98 

kcal/mol) of the most potent inhibitor (ML188) 

of 3CLpro of SARS-CoV reported in literature 

[66]. The results of the proposed study are also in 

good correlation with the work of 

Macchiagodena and co-workers [65]. 

Conclusion  

 In conclusion, I have generated a library 

of compounds for substrate-binding pocket of the 

main protease (Mpro) of coronavirus SARS-

CoV-2 (2019-nCoV) by using structure-based 

drug design tool LiGANN by PlayMolecule 

which is built upon multimodal generative 

neural-networks. The scaffold-based docking of 

the generated compound series at the protein’s 

active site was performed by using SkeleDock by 

PlayMolecule. The binding poses were evaluated 

on the bases of docking scores given by RDock. 

The binding affinity of the protein and docked 

ligands were estimated by KDeep predictor from 

PlayMolecule based on deep convolutional 

neural network. I inferred that the top-ranked 

compounds could have the potential to inhibit the 

main protease (Mpro) enzyme of coronavirus 

SARS-CoV-2 (2019-nCoV), so as to control viral 

replication and maturation. This study would be 

helpful in developing effective antiviral agents 

against the COVID-19 especially when the 

pandemic control is challenging due to various 

variants’ emergence.  

 

** All Tables and Figures are presented on Supplementary 

Information 
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