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Abstract We analyse a nonadiabatic self-consistent field method by means of an

exactly-solvable model. The method is based on nuclear and electronic orbitals

that are functions of the cartesian coordinates in the laboratory-fixed frame. The

kinetic energy of the center of mass is subtracted from the molecular Hamiltonian

operator in the variational process. The results for the simple model are remarkably

accurate and show that the integration over the redundant cartesian coordinates

leads to couplings among the internal ones.
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1 Introduction

Typical quantum-mechanical treatments of molecular systems are based on the

Born-Oppenheimer (BO) approximation that separates the motions of nuclei and

electrons [1]. One first solves an eigenvalue equation for the electrons in the field
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of nuclei clamped at some predetermined points in space and thus builds the

potential-energy surface (PES). Then one solves an equation for the nuclei moving

on that PES and obtains the allowed energies of the molecule. In many cases the

calculation is restricted to the neighborhood of the minimum of the PES in order

to determine the molecular geometry [2]. Accurate PES’s are useful for chemical-

kinetic studies [3].

There has recently been great interest on the calculation of molecular properties

by means of nonadiabatic approaches; i.e. without resorting to the BO approxi-

mation. Since the eigenfunctions of the Hamiltonian operator of the molecule Ĥ

are not square integrable with respect to the 3N coordinates that describe the N

particles (electrons plus nuclei) in the laboratory-fixed coordinate axes one has

to remove the unbounded motion of the molecular center of mass and the three

corresponding coordinates. Thus one is left with the Schrödinger equation for the

resulting molecular Hamiltonian operator in the molecule-fixed coordinate axes

HM that depends on 3N − 3 coordinates and momenta. For brevity, from now

on we call those coordinates absolute and relative (or internal), respectively. By

means of the variational method one obtains an approximate eigenfunction of HM

that should be also eigenfunction of the operators that commute withHM , such as,

for example, spin, angular momentum operator in relative coordinates, etc [4, 5].

There are several strategies for solving the Schrödinger equation without the

BO approximation. One of them is based on explicitly correlated Gaussian func-

tions of the relative coordinates of all the electrons and nuclei in the molecule

(for a comprehensive review see Bubin et al [6]). The trial function constructed

from those Gaussians satisfies the permutational symmetry of identical particles

and contains several parameters that are to be determined according to the vari-

ational method. If the Gaussians are located at one nuclei it is not difficult to

choose the variational wavefunction to be eigenfunction of the angular-momentum

operator. In some cases it is convenient to place the centers of the Gaussians on

different space points and it is more difficult to force the variational function to

be eigenfunction of the angular-momentum operator. In these calculations the au-

thors explicitly expressed the variational function and the Hamiltonian operator

in relative coordinates [6] (and references therein).
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Another widely spread strategy is based on uncorrelated functions and the

SCF approach. In this case the variational function is written as a product of one-

particle functions with the appropriate permutational symmetry. Since there are

nuclear orbitals in addition to electronic ones this approach has been termed nu-

clear orbital plus molecular orbital (NOMO) theory [7–12] and also (but no longer

in use now) dynamic extended molecular orbital (DEMO) method [13]. Since such

orbitals are expressed in terms of the 3N absolute cartesian coordinates one has to

be careful to avoid the spurious contribution of the kinetic energy of the center of

mass [14]. In order to avoid this problem Nakai et al [9–12] proposed to subtract

the kinetic energy of the molecular center of mass from the Hamiltonian operator

during the variational optimization of the trial wavefunction and developed the

translation-free NOMO (TF-NOMO).

Although the NOMO approach is a nonadiabatic method its implementation

is reminiscent of the BO approximation in that the orbitals are located at the

“experimental geometries” [12]. Note that such a concept is rather alien to the

nonadiabatic quantum-mechanical calculation just outlined (compare it with the

more rigorous approach described by Bubin et al [6]). The properly symmetrized

product of orbitals located at different points and expressed in terms of absolute

coordinates is not an eigenfunction of the angular-momentum operator [9–12]. For

that reason several rotational states are expected to contribute to the optimized

variational function.

In order to remove the contribution of rotational states with angular-momentum

quantum number J > 0 Nakai et al [9–12] proposed a rotation-free NOMO that

consists of subtracting also the rotational kinetic energy from the total Hamil-

tonian operator. The resulting approach is named translation- and rotation-free

NOMO (TRF-NOMO). However, the removal of the spurious rotational kinetic

energy in this way is not exact as in the case of the translation kinetic energy as

argued by Sutcliffe [15].

The purpose of this paper is the analysis of the performance of the TF-NOMO

and the effect of using absolute cartesian coordinates in the trial wavefunction.

Since the treatment of realistic examples may be rather cumbersome we apply the

method to a simple exactly solvable model.
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In order to make this paper sufficiently self-contained, and to facilitate the

discussion throughout, in Sec. 2 we outline the separation of the kinetic energy of

the center of mass and the construction of the molecular Hamiltonian in relative

coordinates. In Sec. 3 we apply the TF-NOMO to an exactly solvable model in

order to test the accuracy of this approach and the effect of using the absolute

coordinates instead of the internal ones. Finally, in Sec. 4 we discuss the results

and draw conclusions.

2 Molecular Hamiltonian

In this section we outline some general properties of the nonrelativistic Hamilto-

nian operator for a system of N charged point particles with only Coulomb inter-

actions. The results are well known and have been discussed by several authors in

different contexts (see, for example, the review by Fernández and Echave [5] and

the references therein). The nonrelativistic Hamiltonian operator for a molecule

can be written as

Ĥ = T̂ + V̂ ,

T̂ =

N
∑

i=1

p̂2i
2mi

,

V =
1

4πǫ0

N−1
∑

i=1

N
∑

j=i+1

QiQj

rij
(1)

where mi is the mass of particle i, Qi = −e or Qi = Zie are the charges of either

an electron or nucleus, respectively, and rij = |ri − rj | is the distance between

particles i and j located at the points ri and rj , respectively, from the origin of the

laboratory-fixed coordinate system. In the coordinate representation p̂i = −ih̄∇i.

Since the the uniform translation of all the particles Û(a)riÛ(a)
† = ri+a leaves

the Coulomb potential invariant Û(a)V Û(a)† = V , then the eigenfunctions of the

translation–invariant Hamiltonian operator (1) are not square integrable. For that

reason we separate the motion of the center of mass and define translation-invariant

internal coordinates by means of a linear transformation

r
′
j =

∑

i

tjiri (2)
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It is our purpose to keep the transformation (2) as general as possible so that it

applies to a wide variety of nonadiabatic approaches. We arbitrarily choose r′1 to

be the coordinate of the center of mass

t1i =
mi

M
, M =

∑

i

mi (3)

and r′j , j > 1 the translational-invariant coordinates

∑

i

tji = 0, j > 1 (4)

Note that if the coefficients of the linear transformation (2) satisfy equations (3)

and (4) then

Û(a)r′jÛ(a)
† = r

′
j + aδj1 (5)

The choice of the coefficients of the transformation (2) for the translational-

invariant variables r′j , j > 1 is arbitrary as long as they satisfy Eq. (4) (for a

more detailed discussion see [5]).

As a result of the change of variables, the total Hamiltonian operator reads

Ĥ = − h̄2

2M
∇′2

1 + ĤM

ĤM = − h̄2

2

∑

j>1

∑

k>1

(

∑

i

tjitki
mi

)

∇′
j∇′

k +
1

4πǫ0

N−1
∑

i=1

N
∑

j=i+1

QiQj

rij
(6)

where ĤM is the internal or molecular Hamiltonian operator. The explicit form of

the interparticle distances rij in terms of the new coordinates r′k may be rather

cumbersome in the general case but there are particular choices that are suitable

for the calculation of the integrals necessary for the application of the variational

method [5, 6]. The treatment of the simple model in Sec. 3 shows one of those

particular transformations.

For future reference it is convenient to define the center of mass and relative

kinetic-energy operators

T̂CM = − h̄2

2M
∇′2

1 (7)

T̂rel = − h̄2

2

∑

j>1

∑

k>1

(

∑

i

tjitki
mi

)

∇′
j∇′

k (8)
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respectively, so that T̂ = T̂CM + T̂rel, ĤM = T̂rel + V , and Ĥ = T̂CM + ĤM .

The inverse transformation t−1 exists and gives us the old coordinates in terms

of the new ones:

ri =
∑

j

(

t
−1
)

ij
r
′
j (9)

According to equations (5) and (9) we have Û(a)riÛ(a)
† =

(

t−1
)

i1
a + ri from

which we conclude that

(

t
−1
)

i1
= 1, i = 1, 2, . . . , N (10)

In order to understand the meaning of this result note that the momentum con-

jugate to r′i is given by the transformation

p̂
′
i =

∑

j

(

t
−1
)

ji
p̂j (11)

so that the linear momentum of the center of mass

p̂
′
1 =

∑

j

p̂j (12)

is precisely the total linear momentum of the molecule. We also appreciate that

TCM =
p̂′
1 · p̂′

1

2M
=

1

2M

N
∑

i=1

N
∑

j=1

p̂i · p̂j (13)

The eigenfunctions of the total Hamiltonian operator (1) are of the form

Ψ(r1, . . . , rN ) = eik·r
′

1ψ(r′2, . . . , r
′
N ) (14)

with the appropriate permutational symmetry for the electrons and nuclei. We

are of course interested in the wavefunction for the internal degrees of freedom

ψ(r′2, . . . , r
′
N ) that provides the relevant molecular properties. For this reason we

should use a trial function of the corresponding coordinates ϕ(r′2, . . . , r
′
N ) and

apply the variational method with the relative or molecular Hamiltonian operator

ĤM [6].

Nakai et al [9–12] proposed an alternative route based on a trial function of the

absolute cartesian coordinates ϕ(r1, . . . , rN ) and applied the variational method

to

W =
〈ϕ| Ĥ − T̂CM |ϕ〉

〈ϕ| ϕ〉 (15)
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More precisely, they resorted to the Hartree-Fock method with electronic and nu-

clear orbitals. In this equation one integrates with respect to dr1dr2 . . . drN (includ-

ing spin if necessary) and the trial function ϕ(r1, . . . , rN ) is square integrable with

respect to all those 3N electronic and nuclear variables. This approach is called

TF-NOMO method and is an improvement over the translation-contaminated

NOMO TC-NOMO method (like, for example, the DEMO [13]) that is based

on the variational method for Ĥ. Note that the domain of the NOMO trial func-

tion ϕ(r1, . . . , rN ) is R3N and that for the molecular wavefunction ψ(r′2, . . . , r
′
N ) is

R3N−3. Thus, from a quantum-mechanical point of view they belong to different

state spaces.

If we rewrite the arguments of the trial function in terms of internal coor-

dinates ϕ(r1, . . . , rN ) = ϕ̃(r1, r
′
2, . . . , r

′
N ) then we appreciate that the probability

distribution of the internal variables

ρ(r′2, . . . , r
′
N ) =

∫

ϕ̃(r1, r
′
2, . . . , r

′
N )2 dr1 (16)

may exhibit some degree of correlation even though the trial function ϕ(r1, . . . , rN )

is merely a product of nuclear and electronic orbitals with the appropriate permu-

tational symmetry [9–12]. The analysis of the effect of this particle correlation in

a realistic molecular system appears to be rather complicated; for this reason in

what follows we resort to a quite simple example.

3 Simple model

In order to have a clearer understanding of the TF-NOMO method [9–12] we apply

it to a simple exactly-solvable model. We are only interested in the removal of

the translational contamination because getting rid of the rotational one does not

appear to be so simple [15]. Therefore, a one–dimensional model with at least three

particles and a translation-invariant potential will suffice. Our model consists of

three particles of massesM1, M2 and M3 that move in one dimension and interact

through forces that follow Hooke’s law:

Ĥ = − h̄2

2M1

∂2

∂X2
1

− h̄2

2M2

∂2

∂X2
2

− h̄2

2M3

∂2

∂X2
3

(17)

+
1

2

[

K12 (X1 −X2)
2 +K13 (X1 −X3)

2 +K23 (X2 −X3)
2
]

(18)
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where Kij are the force constants.

In order to reduce the number of parameters to a minimum we first assume that

the three particles are identical, so that M1 = M2 = M3 = M and K12 = K13 =

K23 = K. We define dimensionless coordinates xi = Xi/L, where L = h̄/(mω) and

ω =
√

K/M and obtain the dimensionless Hamiltonian

Ĥd =
Ĥ

h̄ω
= −1

2

(

∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)

+
1

2

[

(x1 − x2)
2 + (x1 − x3)

2 + (x2 − x3)
2
]

(19)

and the dimensionless energy ǫ = E/(h̄ω).

We separate the motion of the center of mass by means of the transformation

q1 =
1

3
(x1 + x2 + x3)

q2 = x2 − x1

q3 = x3 − x1 (20)

where q1 is the coordinate of the center of mass and q2 and q3 are the coordinates

of particles 2 and 3 with respect to the coordinate origin located arbitrarily at

particle 1. These qj ’s are the r′j ’s of Sec. 2 and the transformation (20) satisfies

the equations discussed there. We thus obtain

Ĥd = T̂CM + Ĥr (21)

that is the sum of the dimensionless kinetic energy of the center of mass T̂CM and

the dimensionless Hamiltonian operator for the relative motion Ĥr (ĤM in the

general discussion of Sec. 2)

T̂CM = −1

6

∂2

∂q2
1

Ĥr = − ∂2

∂q2
2

− ∂2

∂q2
3

− ∂2

∂q2∂q3
+ q22 + q23 − q2q3 (22)

The eigenfunctions are of the form

Ψ(q1, q2, q3) = eikq1ψ(q1, q2) (23)

where ψ(q1, q2) is an eigenfunction of Ĥr and −∞ < k <∞. Note that Ψ(q1, q2, q3)

is not square integrable with respect to dx1dx2dx3 as expected from the fact that

the motion of the center of mass is unbounded. The total dimensionless energy
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is ǫT = ǫ + k2/6, where ǫ is the dimensionless energy of the relative motion (an

eigenvalue of Ĥr).

If we try the correlated gaussian function

ϕ(q2, q3) =
[(

4a2 − b2
)

/π2
]1/4

exp
[

−a
(

q22 + q23
)

− bq2q3
]

,

where 4a2 − b2 > 0, then we obtain the exact ground-state eigenfunction of Ĥr

ψ00(q2, q3) =
1√
π
exp

[

−
√
3

3

(

q22 − q2q3 + q23
)

]

(24)

with dimensionless energy ǫ00 =
√
3.

As uncorrelated variational function in the absolute coordinates we try

ϕ(x1, x2, x3) =
(

2a

π

)3/4

exp
[

−a
(

x21 + x22 + x23
)]

(25)

that is square integrable with respect to dx1dx2dx3. Note that there is a redundant

coordinate because we need just two variables to describe the bound states of

this model as shown in Eq. (24). This trial function is our simple version of a

NOMO one. The optimal value of the variational parameter a is determined by

the minimum of

W (a) =
〈

Ĥ − T̂CM

〉

(26)

as proposed by Nakai et al [9–12], where

T̂CM = −1

6

(

∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

+ 2
∂2

∂x1∂x2
+ 2

∂2

∂x1∂x3
+ 2

∂2

∂x2∂x3

)

(27)

is the kinetic-energy operator for the center of mass in the absolute coordinates.

Note that present T̂CM is what Nakai et al [12] call T̂T and approximate by T̂n,T

in their calculations, and present approach is the straightforward application of

the TF-NOMO to a simple one-dimensional model.

At first sight it is surprising that the variational function with the optimal

value a =
√
3/2 of the adjustable parameter yields the exact energy W (

√
3/2) =

√
3. However, it is not the only striking fact because the expectation values of

any function of x2 − x1 and x3 − x1 (like, for example, (x2 − x1)
2, (x2 − x1)

4,

(x2 − x1)(x3 − x1), etc) are exact too. In spite of this remarkable agreement the

exact and approximate wavefunctions are not the same as follows from the fact that

T̂CMψ00 = 0 and
〈

ϕ|T̂CM |ϕ
〉

=
√
3/4. We will explain these curious results later

on; for the time being note that the results of Nakai et al [12] for ETRC
tot −ETF

tot =

〈Φ0| T̂n,T |Φ0〉 ≈ 〈Φ0| T̂T |Φ0〉 yield the spurious contribution of the kinetic energy of
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the center of mass to the molecular energy. They state that this problem is due to

the fact that the Gaussian functions are unsuitable for describing the translational

energy but it is clear that a set of Gaussian functions in relative coordinates will not

exhibit such undesirable behavior. In other words, the translational contamination

is a consequence of adopting the absolute coordinates and not a result of the choice

of Gaussian functions. The same argument applies to the rotational contamination;

Bubin et al [6] show how to obtain Gaussian states with zero angular-momentum

quantum number (J = 0).

We may suspect that the unexpected success of the variational approach is

partly due to the symmetry of the problem (three identical particles). In order to

break it with the slightest modification of our model we choose K12 = K13 = K 6=

K23 and define λ = K23/K, so that

Ĥd = −1

2

(

∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)

+
1

2

[

(x1 − x2)
2 + (x1 − x3)

2 + λ (x2 − x3)
2
]

(28)

and

Ĥr = − ∂2

∂q2
2

− ∂2

∂q2
3

− ∂2

∂q2∂q3
+

1

2

[

q22 + q23 + λ(q2 − q3)
2
]

(29)

Since the masses remain the same the transformation from absolute to relative

coordinates and the form of TCM are still given by equations (20) and (27), re-

spectively.

The exact ground-state wavefunction and energy are given by

ψ00(q2, q3) =

(

4a2 − b2
)1/4

√
π

exp
[

−a
(

q22 + q23
)

+ bq2q3
]

a =

√
6
(√

6λ+ 3 + 3λ+ 2
)

√

3λ+ 2−
√
6λ+ 3

12 (3λ+ 1)

b =

√
6
√

3λ+ 2−
√
6λ+ 3

6
(30)

and

ǫ00 =

√
2
(

2
√
2λ+ 1+

√
3 (λ+ 1)

)

√

3λ+ 2−
√
6λ+ 3

2 (3λ+ 1)
(31)

respectively.
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As in the preceding example we consider an uncorrelated NOMO-like trial

function of the absolute coordinates

ϕ(x1, x2, x3) =
23/4

√
ba1/4

π3/4
exp

[

−ax21 − b(x22 + x23)
]

(32)

where the optimal values of a and b minimize W (a, b) =
〈

Ĥd − T̂CM

〉

. In this case

we have the following TF-NOMO parameters and energy

a =

√
3

2
, b =

√

6(λ+ 1)

4

W (a, b) =

√

6(λ+ 1)

3
+

√
3

3
(33)

In order to measure the effect of keeping the kinetic energy of the center of

mass we also choose the values of the variational parameters from the minimum

of W (a, b) =
〈

Ĥd

〉

, which yields

a =

√
2

2

b =

√
λ+ 1

2

W (a, b) =
√
λ+ 1+

√
2

2
(34)

From now on we refer to equations (33) and (34) as TF-NOMO and TC-NOMO

in order to make a connection with the approach of Nakai et al [12].

Fig. 1 shows the exact and approximate dimensionless ground-state energy

calculated in the two ways just outlined. As expected, TF-NOMO yields consid-

erably more accurate results because TC-NOMO is strongly contaminated with

the kinetic energy of the center of mass. This point was discussed earlier by

Fernández [14] with respect to the DEMO method [13]. Note that TF-NOMO

is remarkably accurate for all λ and yields the exact result for λ = 1 as discussed

above.

We may try and improve the TC-NOMO results by simply subtracting the

kinetic energy of the center of mass, thus producing a sort of corrected TC-NOMO

or CTC-NOMO:

WCTCNOMO =
〈

ϕTCNOMO
∣

∣

∣
Ĥd − T̂CM

∣

∣

∣
ϕTCNOMO

〉

(35)
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Figure 1 shows that the energy calculated in this way agrees quite well with the

exact and TF-NOMO ones. This result shows that most of the error in the energy

calculated by means of the TC-NOMO comes from the spurious kinetic energy

and just a relatively small contribution comes from the inadequate optimization

of the variational wavefunction with respect to Ĥd.

It is not difficult to explain why the uncorrelated trial function in absolute

coordinates yields such good results (even exact ones for λ = 1). It we substitute

x2 = q2 + x1 and x3 = q3 + x1 into equation (32) and integrate the square of

ϕ̃(x1, q2, q3) = ϕ(x1, q2 + x1, q3 + x1), with respect to x1, we obtain

ρ(q2, q3) =

∫ ∞

−∞

ϕ̃(x1, q2, q3)
2 dx1 =

2
√
ab

π
√
a+ 2b

exp

[

−2c (a+ b)

a+ 2b

(

q22 + q23
)

+
4b2q2q3
a+ 2b

]

(36)

Note that the use of the absolute coordinates in the trial wavefunction introduces

some sort of correlation between the translation-invariant coordinates q2 and q3

when we integrate with respect to the redundant variable. The resulting correlation

is reasonable because it is determined by the variational method, and, in particular,

when λ = 1 it yields (fortuitously) the exact probability distribution for the relative

coordinates

ρ(q2, q3) =
1

π
exp

[

− 2√
3

(

q22 + q23 − q2q3
)

]

= ψ00(q2, q3)
2 (37)

It is now clear why we obtained the exact energy and expectation values before for

this particular case. In fact, we expect to obtain the exact expectation values of any

observable in relative coordinates. We do not obtain the exact expectation value

of T̂CM because this operator contains a derivative with respect to the redundant

absolute variable that does not appear in the exact square-integrable wavefunction.

In order to compare the approximate and exact wavefunctions we write both

ρ(q2, q3) and ψ00(q2, q3)
2 as

[

(

4α2 − β2
)1/2

/(2π)
]

exp
[

−α
(

q22 + q23
)

+ βq2q3
]

(2α >

|β|). Figures 2 and 3 show that the exponential coefficients α and β, respectively,

given by the TF-NOMO agree remarkably well with the exact ones, whereas the

TC-NOMO coefficients are considerably less accurate. Note that the effect of keep-

ing the kinetic energy of the center of mass not only affects the energy (which is

expected) but also the form of the variational wavefunction. The agreement be-

tween the exact and TF-NOMO exponential parameters α and β explains why the
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approximate wavefunction yields so accurate expectation values of operators in

the relative coordinates q2 and q3. In particular, the TF-NOMO results are exact

for λ = 1, but, of course, such a result is not to be expected in a realistic case.

If we minimize 〈ϕ| Ĥr |ϕ〉 with an uncorrelated trial function of the relative

coordinates

ϕ(q2, q3) =

√

2a

π
exp

[

−a(q22 + q23)
]

(38)

we obtain the optimal variational parameter a =
√
2λ+ 2/4 and the resulting

approximate energy W (a) =
√
2λ+ 2 is considerably less accurate than that given

by Eq. (33). This result suggests that it is preferable to apply the NOMO method

with orbitals that depend on the absolute coordinates as long as we remove the

kinetic energy of the center of mass in the optimization process. That is to say, we

minimize the expectation value of Ĥr = Ĥ − T̂CM expressed, for simplicity, in the

same set of absolute coordinates chosen for the NOMO variational wavefunction.

Under such conditions the TF-NOMO-SCF method appears to take into account

part of the correlation energy that in the present simple model is given byW (a, b)−

W (a). This energy difference is quite similar for TF-NOMO and CTC-NOMO

according to Fig. 1.

4 Conclusions

We have tried to elucidate the effect of using absolute coordinates in the NOMO-

SCF variational method. Since such an analysis for an actual molecule, even as

simple as H2, is rather complicated we chose a simple model of three particles with

harmonic interactions in one dimension. Although rather oversimplified, this model

enables us to take into account the main ingredients of the NOMO-SCF method.

We have a translation-invariant potential-energy function and, consequently, we

have to remove the unbounded motion of the center of mass. In this case a corre-

lated Gaussian function of the relative coordinates yields the exact result that is

most convenient to test the approximate ones.

The NOMO-SCF wavefunction is simply a product of Gaussian functions (or-

bitals) for each of the particles. The integration of the square this uncorrelated

function with respect to the redundant absolute coordinate (three in a realistic

case as shown in Eq. (16)) gives rise to some kind of particle correlation. If the
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adjustable parameters in this trial function are optimized variationally with the

Hamiltonian Ĥr = Ĥ − T̂CM then the correlation just mentioned appears to im-

prove the calculation of the energy and expectation values considerably. Perhaps,

one should not expect such a remarkable success for an actual molecule, but,

however, there is no doubt that even in that case the NOMO-SCF will take into

account part of the correlation energy in spite of being based on uncorrelated

Gaussian functions. In order to verify this conjecture that is expressed in Eq. (16)

it is only necessary to calculate the energy with an uncorrelated NOMO trial func-

tion and Ĥr both in terms of relative coordinates (like present Eq. (38)). Note that

this interesting feature of the TF-NOMO has apparently passed unnoticed in the

applications of the method [9–12]. This fact reinforces our claim on the utility of

simple models for the study of rather complicated problems.

The simple model also shows that if we simply subtract the expectation value of

the kinetic energy of the center of mass then the resulting energy is quite accurate

(what we have called CTC-NOMO). However, in order to improve the calculation

of the expectation values of other observables it is convenient to apply the SCF

procedure with the relative Hamiltonian operator Ĥr = Ĥ − T̂CM that leads to

what is commonly known as TF-NOMO [9–12].
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Fig. 1 Exact (solid line, black), TF-NOMO (dashed line, red), TC-NOMO (points, blue) and

CTC-NOMO (circles, green) ground–state dimensionless energy
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Fig. 2 Exact (solid line, black), TF-NOMO (dashed line, red) and TC-NOMO (points, blue)

exponential coefficient α

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

λ

β

Fig. 3 Exact (solid line, black), TF-NOMO (dashed line, red) and TC-NOMO (points, blue)

exponential coefficient β
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