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Abstract: In this work it was prepared nanocomposites of high density polyethylene (HDPE) with 

different loads of modified organoclay with polyvinylalcohol (PVA). Modified organoclay was 

obtained by “in situ” polymerization of vinyl acetate with an organoclay and the nanocomposites were 

prepared by melt blending. The structure and morphology of nanocomposites were studied by XRD, 

SEM and TEM. The heat stability was measured by TGA and DSC. The barrier properties were 

evaluated by testing of cyclohexane pervaporation and the surface properties were obtained by 

determination from the contact angle using three solvents at ambient atmosphere. TEM results showed 

the different types of nanocomposite structures that were obtained with clay layers in the polymer 

matrix depending on the load of clay incorporated into the polymer matrix. The permeation 

experiments confirmed that the barrier properties evaluated by cyclohexane pervaporation were 
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remarkably improved and increased in the thermal resistance for HDPE/ organoclay modified with 

PVA materials compared with pristine HDPE.  Results from all studies showed that the addition of 

modified organoclay has changed the macroscopic properties of nanocomposites, as compared to that 

pure HDPE.  This can be attributed to the different interaction of PVA with HDPE/filler. 

Keywords: nanocomposites; pervaporation; HDPE; PVA. 

 

1. Introduction 

The preparation of polymer-clay nanocomposites by melt blending has been 

extensively reported [1-6]. This method involves the mixing of the layered silicate 

with the polymer and heating the mixture above its softening point. Under certain 

conditions, if the clay layer surfaces are sufficiently compatible with the polymer 

chains, the polymer can enter between the interlayer spaces, forming an 

intercalated/exfoliated structure [7-9]. The incorporation of small amounts ( 10 wt %) 

of clay showed a remarkable influence on the permeability and barrier properties of 

composite membranes [10]. 

The excellent barrier, with significant reduction of solvents and vapor permeability, is 

an attractive property and deeply explored for commercial applications. By improving 

the barrier properties of polymer/clay nanocomposites, potential applications for the 

material, are including the reinforcement of protective coating layers in civil plastic 

structures. In addition to the improvement of barrier properties, the addition of 

organoclays in polymers can also improve the thermal and mechanical properties of 

polymers [11, 12]. 

The dispersion/exfoliation of the clays in the polymer matrix and the chemical 

interaction between polymer and clay are the main factors to enhance the 

nanocomposite properties. For example, in the case of polyamides and some types of 

clay, the surface forces are very large due to hydrogen bond type interactions and the 

exfoliation is not a complex process. However, in the case of non-polar polymers like 

high density polyethylene (HDPE), there is poor interaction between hydrophilic clays 

and polymer and the adhesion between them is very weak, resulting in final materials 
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with mechanical and rheological properties well below the pristine polyethylene [13]. 

Several publications were reported  associated with the study of improve interaction 

with hydrophobic polymers such as HDPE and clay organophilized, increasing 

polymer/clay affinity and the ability of forming exfoliated nanocomposites [7, 11, 13, 

14 and 15]. However, preparation and properties of HDPE with organoclay modified 

with polyvinyl alcohol (PVA) have not been reported. 

In this work, nanocomposites of HDPE and organoclay (exchanged with 

hexadecyltrimethylammonium-MMTHDTMA) and MMTHDTMA modified with PVA by 

in situ polymerization (MMTHDTMA/PVA), were prepared by melt blending. 

The aim is to investigate the influence of different filler content (0.6 wt%, 1 wt% and 

2 wt %) of PVA-modified organoclay on the structure, barrier, and surface properties 

of nanocomposites with HDPE. 

2. Materials and Experimental  

A HDPE, 40055L from Polisur S. A with a melt flow index of 10g/10min (290 °C, 

21.6 kg) was chosen as the matrix. 

Sodium montmorillonite (MMT) clay supplied by Minarmco (CEC = 70 meq (100 

g)-1 and particle size <325 Mesh), was organically modified with a 

hexadecyltrimethylammonium bromide salt (MERCK) (HDTMA), following the 

modified technique of Yeh et al [16]. The organoclay was modified by in situ 

polymerization: the vinyl acetate monomer (vinyl acetate (VETEC, Brazil) was 

intercalated into the layers of MMTHDTMA and followed by a free radical 

polymerization with benzoyl peroxide as a reaction initiator. The polyvinyl acetate/ 

MMTHDTMA solution was saponified by alcoholysis with a NaOH solution to obtain 

polyvinyl alcohol modified organoclay (MMTHDTMA/ PVA). 

Mixing 

HDPE/MMTHDTMA/PVA nanocomposites varying clay content (0.6 wt%, 1 wt% and 2 

wt%) were prepared using a mixing chamber Rheomix 600, coupled to a HAAKE 

Rheocord 9000 torque rheometer with roller type rotors. The temperature and speed 

were 190 °C and 90 rpm respectively. 

3. Characterization 
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Films of nanocomposites were prepared in a Carver Model 2086 hydraulic press, at a 

pressure of 27.6 MPa and 190 °C for 5 minutes. 

X-ray diffraction (XRD) analyses were performed in a Rigaku Miniflex DRX 600 

diffractometer, using nickel filtered CuKradiation operating at 30 kV and 15 mA. 

The data were recorded at 2 rate of 2° min
-1

. 

Optical microscopy observations were made on a sample prepared by melting in a hot 

plate, using an Olympus microscope, model BX50 with polarized light. 

The surface morphology of the obtained samples was observed by SEM in a JEOL 

JSM-6480 LV microscope with an accelerating voltage of 15kV, after gold coating. 

In order to analyze the morphology of the nanocomposites, samples were observed by 

TEM in a Jeol JEM 2000FX microscope operating at 200 kV. The ultra thin sections 

of specimens were cut by cryo-ultramicrotome, RMC Power Tome XL, using a 

diamond knife. Thin sections of 60 nm were transferred into a copper grid.  

4. Materials Properties 

4.1 Thermal Properties 

The thermal behaviour of the compounds was carried out using a TA Instrument TGA 

model Q500 from 30 °C to 700 °C with a heating rate of 10 °C min
-1

, operating under 

N2 flow of 60 ml min
-1

. The melting point and fusion enthalpy were obtained by 

differential scanning calorimeter, DSC, model Q100, TA Instrument. Samples were 

heated from 20 °C to 200 °C at a rate of 10 °C min
-1

, then cooled back to 20°C and 

heated again at the same rate to 250 °C under N2 atmosphere. The crystallinity data 

were obtained from the second heating run. 

4.2 Properties physicochemical and of Transport  

Solubility measurements of the membranes were carried out in test tubes with 

cyclohexane and submerged in a water bath to maintain the temperature at 50 °C. 

Previously, the membranes were weighed and exposed for 97 hours to cyclohexane, 

they were then dried quickly and weighed at intervals of 24 hours to obtain the 

solubility/time curve. 

Transport properties were performed in standard pervaporation equipment at 40°C 

using the composite films of        mm thic ness   acuum at the downstream side was 
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maintained using a vacuum pump. Liquid nitrogen was used as cooler in order to 

collect all permeated vapors. A peristaltic pump was used to make circulate the 

solvent used (cyclohexane). The permeability was obtained from a gravimetric 

method. 

4.3 Properties of Surfaces 

Surface properties were obtained from measurements of contact angles, which were 

measured in digital standard-hart Ramé Model 200 goniometer, using three solvents: 

deionized water, anhydrous ethylene glycol (purity 99.75%) and diiodomethane, 

reagentplus (99% purity) supplied by Sigma-Aldrich at ambient atmosphere. All the 

contact angle values presented in this paper were averaged over five different 

positions. 

5. Results and discussion 

5.1 Morphology and Structure 

XRD is a technique used to identify intercalated structures of nanocomposites. The 

Figure 1 shows XRD of unmodified organoclay (MMTHDTMA) and the modified clay 

mixed with HDPE. The peak at low angle of 4.6 degrees in Figure 1 corresponds to 

the basal reflection (001) of the organoclay (MMTHDTMA), for the 

HDPE/MMTHDTMA/PVA materials, with load of 0.6 wt% and 1 wt%, were observed 

peaks 2= 3.76 degrees indicating a intercalated structure, however when the load 

was higher, 2 wt%, no peaks were observed on the diffraction curves between 2-5 

degrees,  either because of a much too large spacing between the layers (i.e. 

exceeding 8 nm in the case of ordered exfoliated structure) or because the 

nanocomposite does not present ordering anymore [7].   
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Figure 1. X-Ray diffraction curves of (a) HDPE, HDPE/MMTHDTMA/PVA with clay 

content (b) 0.6 wt%, (c) 1 wt%, and (d) 2 wt% and (e) MMTHDTMA. 

In this case, transmission electronic spectroscopy (TEM) was used to characterize the 

nanocomposite morphology [5]. Figure 2 shows the TEM micrographs with 

completely different structures corresponding to two different loads of 

MMTHDTMA/PVA in the polyethylene polymer matrix. For a load of 0.6 wt% (Figure 2a), 

the presence of two types of structures was observed, some larger tactoids could also 

be identified, and others in which the clay layers were intercalated in the polymeric 

matrix, this result was consistent with the micrographs obtained by XRD. However 

when a clay load of 2% was added, a mixed structure intercalated and or exfoliated 

was observed, Figure 2 (b). Thus, were considered XRD and TEM complementary 

techniques to each other for the characterization of materials such as polymer/clay 

nanocomposites and to confirm the type of structure formed therein [7]. 

 

Figure 2. TEM images of HDPE/MMTHDTMA/PVA containing 

 (a) 0.6 wt% and (b) 2 wt% of clay. 
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SEM micrograph of the Figure 3 (a) presents the typical morphology of a binary 

mixture of HDPE and PVA which are incompatible polymers. It shows large PVA 

particles with poor interfacial adhesion and dispersion in the polyethylene matrix. The 

morphology improves when the load organoclay in the polymer matrix was increased, 

especially when were high the loads, Figure 3 (c), indicating that a much more 

homogeneous material and a better dispersion had been obtained. These results were 

consistent with those obtained by TEM. 

 

 

 

Figure 3. SEM images of HDPE/MMTHDTMA/PVA containing:  

(a) 0.6 wt%, (b) 1 wt% and (c) 2 wt% of clay. 

5.2 Thermal Properties 

Figure 4 shows the weight and the derivate of weight with respect to time of HDPE 

and composite versus temperature, in general terms, the thermal stability of the HDPE 

composite materials obtained by TGA is enhanced with respect the pristine HDPE 

when the filler load increases. The presence of MMTHDTMA/PVA changes the profile of 

polyethylene DTGA shows the decomposition of PVA (dehydration: 200°C- 400°C) 

and decomposition of the ammonium salt (HDTMA) of the organically modify clay in 

the HDPE matrix in the same temperature range (Figure 4). 

(a) 

PVA 

(b) 

PVA 

(c) 
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Figure 4. TG and DTG curves of (a) HDPE and HDPE/MMTHDTMA/PVA containing (b) 

0.6 wt%, (c) 1 wt% and (d) 2 wt% of the clay. 

Table 1 shows the weight loss to the maxim temperature of decomposition and 

materials with higher thermal resistance were those with lower clay load (0.6wt % and 

1wt %). 

Table. 1. Maxim temperature of weight loss and weight 

 loss of HDPE and PVA in composites. 

Sample Tmax. weight 

loss  (°C) 

PVA weight 

loss (wt %) 

HDPE weight 

loss (wt %) 

HDPE 458 - 60 

HDPE/MMTHDTMA/PVA 0.6 wt% 471 0.78 58.79 

HDPE/MMTHDTMA/PVA 1 wt% 474 2.854 70 

HDPE/MMTHDTMA/PVA 2 wt% 461 2.465 72.84 
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DSC traces of HDPE and HDPE/MMTHDTMA/PVA nanocomposites are shown in Figure 

5. The melting point (Tm) of the nanocomposites did not change with regard to the Tm 

of pristine HDPE. 

 

Figure 5. DSC curves of: (a) HDPE and HDPE/MMTHDTMA/PVA containing: 

 (b) 0.6 wt%, (c) 1 wt% and (d) 2 wt% of the clay. 

The polymers to be semi-crystalline materials are heterogeneous systems, where 

ordered crystalline regions are surrounded by amorphous regions, so the properties are 

influenced by the degree of crystallinity and the size and shape of the crystals. The 

crystallinity values were calculated using the total enthalpy method [17] from the 

equation (1), using melting enthalpy values (Table 2) of each material Hm), obtained 

from the area under the curve of heat versus temperature, Figure 5. 

            
0

m

m

C
H

H




             (1) 

Where: Hm
0
: crystalline fusion enthalpy to 100% crystalline polyethylene (Hm

0
 = 

288 J g
-1

) [18]. 

Hm: material fusion enthalpy. 

The results in Table 2 show that the crystallinity degree of the nanocomposites 

decreases regard to pure polymer favouring the increase of the amorphous phase in 

the polymer [19]. This decrease may be attributed to higher interfacial area and 

adhesion between the HDPE matrix and modified organoclay, which would act to 

reduce the mobility of HDPE crystallines chain segments [13]. 
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Table. 2. Fusion enthalpy and crystalline degree of the materials. 

 

 

 

 

 

 

5.3 Properties physicochemical and of Transport  

Pervaporation results at 40 °C were used to obtain the permeability factor (P); these 

values are shown in Table 3. Lower P with respect to pristine HDPE was obtained for 

the composite membranes (around 90%). When the organoclay-modified PVA was 

incorporated as filler, the barrier properties with respect to hydrocarbons were 

dramatically improved as compared to pristine polymer. This was attributed to the 

clay which acted as a barrier to the transport of matter, however the factor that most 

affects the permeation is the presence of PVA in the clay, a polar molecule, able to 

interact through hydrogen bridge bond formation, causes decreased permeability by 

the low affinity for permeant solvent (cyclohexane). In the work of Erdmann et al. [20] 

were reported values cyclohexane permeation in HDPE /clay modified with molecules 

of different polarity, but with no or little ability to hydrogen bond formation links, and 

showed an effect on barrier properties far below those achieved with PVA. 

Table 3. Permeability factor (P) and P decrease. 

Sample P[g.mm.h
-1

.m
-2

] 

(40°C) 

P decrease [%] 

HDPE 17.76 - 

HDPE/MMTHDTMA/PVA 0.6 wt% 0.59 97 

HDPE/MMTHDTMA/PVA 1 wt% 1.03 94 

HDPE/MMTHDTMA/PVA 2 wt% 0.58 97 

 

 

Sample m (J g
-1

) C (%) 

HDPE 156.1 54.2 

HDPE/MMTHDTMA/PVA 0.6 wt% 131.8 50 

HDPE/MMTHDTMA/PVA 1 wt% 140.7 49 

HDPE/MMTHDTMA/PVA 2 wt% 142.0 49.3 
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Vapor permeation in a membrane is a process in which molecules are initially 

adsorbed on the membrane surface and then diffuse through the membrane. During 

adsorption, the vapor molecules are placed in the holes of the polymer (free volume) 

that are created by Brownian movements of the chains or by thermal perturbations. 

The diffusion process occurs by jumps through neighbouring holes. Thus, this process 

depends on the number and size of these (static free volume) and the frequency of 

jumps (dynamic free volume). The static free volume is independent of the thermal 

motions of the macromolecules and is related to the solubility of vapor, while the 

dynamic free volume originates from the segmental motions of polymer chains and is 

related to the diffusivity of the vapor. Thus, the diffusion coefficient is a kinetic factor 

that reflects the mobility of vapor molecules in the polymer phase, while the solubility 

coefficient (S) is a thermodynamic factor, related to the interactions between the 

polymer and vapor molecules. 

The solubility coefficient (S) was calculated using equation (2): 

            

. 1 0 0
W

WW
S ( % )

s

si










 
          (2) 

Where: 

Wi: mass of the swollen membrane. 

Ws: mass of dry membrane. 

Table 4 shows the percentages of solubility at 40 ° C and 50 ° C. Comparing polymer 

blends with different clay loadings can be seen that adding 2 wt% of clay, the 

solubility decreases with regard to pure polyethylene approximately 4%, which was 

favourable in reducing cyclohexane permeability, this is verified with pervaporation 

results (Table 3), having accounted for the dependence of the permeability factor to 

the solubility given in equation (3). In nanocomposites the solubility decreases with 

respect to a pure polymer, due to the reduction in the volume of polymer matrix as the 

decrease in diffusion due to the tortuous path, caused by the clay sheets to the diffused 

molecules [21]. 

Also verified is that the solubility as a function of temperature follows the Arrhenius 

law and that increasing the temperature the percentage solubility of the membranes 



12            M. CARRERA, E. ERDMANN, J. PASTOR
 
AND H. DESTÉFANIS 

also increased by about an order of magnitude over the lower temperature. 

Table 4. Solubility in cyclohexane to 40°C and 50°C. 

 

Sample 

S (wt %) 

40°C 50°C 

HDPE 8.48 9.37 

HDPE/MMTHDTMA/PVA (0.6 wt%) 8.48 9.24 

HDPE/MMTHDTMA/PVA (1 wt%) 8.56 9.50 

HDPE/MMTHDTMA/PVA (2 wt%) 8.17 9.17 

The experiments of adsorption/desorption, served to estimate the solubility and the 

diffusion coefficient, which allow calculation of permeability using the equation (3): 

SDP .              (3) 

Where: P: permeability coefficient, D: diffusion coefficient and S: adsorption 

coefficient or solubility. 

The fractional mass adsorption is presented as a function of time. Assuming a flat 

membrane of thickness "d" and the uniform concentration of cyclohexane in the 

membrane, one of the possible solutions of equation (4) is the equation (5) [22]. 

 
 
t

trc
trcD






,
,2         (4) 

      

 
  



























 



 0 2
12

..4

.
1.2

1.
.8

m

mt

tD

dm
i e r f c

d

tD

M

M


      

(5) 

Where Mt and M are the mass adsorbed at time t and infinite time, respectively. Also 

ierfc is the error integral function. 

Equation (5) converges rapidly for short times and is as follows: 

2
1

2
2

1

.
.

8










 d

tD

M

M t


         (6) 

Plotting Mt / M and t
1/2

/d (Figure 6) results in a straight line until t
1/2

, the average 

lifetime when Mt/ M=1/2. The diffusion coefficient is calculated from the slope of 

that line [23]. 
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Figure 6. Diagram of experimental measurements of adsorption/desorption: HDPE / 

MMTHDTMA / PVA with different clay loadings (0 wt%, 0.6 wt%, 1 wt% and 2 wt %). 

Table 5 shows that decreases the diffusion coefficient (D), reaching a minimum to a 

clay loading of 0.6 wt% compared to HDPE, but when the load increases, the 

coefficient (D) begins to rise until it reaches the value corresponding to pure 

polyethylene. 

Table 5. Diffusivity coefficient for HDPE/MMTHDTMA/PVA materials  

with different clay loadings (0%, 0.6 wt%, 1 wt% and 2 wt%). 

Sample D.10
10

 

(cm
2
s

-1
) 

HDPE 1.24 

HDPE/MMTHDTMA/PVA (0.6 wt%) 0.887 

HDPE/MMTHDTMA/PVA (1 wt%) 1.13 

HDPE/MMTHDTMA/PVA (2 wt%) 1.22 

 

5.4 Properties of Surfaces 

From contact angles were obtained both adhesion work and surface tension. 

To calculate the adhesion wor , Young and Dupree’s Equation 7 was ta en into 

account. The surface tension can be obtained according to Figure 7. 

     
)c o s1(c o s 1111221  aW        (7) 
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Wa: work of adhesion 

1: surface tension (air/substance) 

2: surface tension (air/film) 

12: surface tension (substance/film) 

: contact angle 

 

Figure 7. Contact angle and superficial tensions. 

The materials surface energy was obtained from the method proposed by Rabel [24]. 

DROP image Surface Energy (Multi Liquids) tool of goniometer was used for this 

calculation. 

Figure 8 shows the decrease in surface tension when clay loads different were 

incorporated into the polymer matrix. 

This results, showing the same tendency as the permeability factor (P) obtained by 

pervaporation, which was consistent, because when it comes to establishing a barrier 

to the hydrocarbon permeability, the low affinity between of PVA (clay) /hydrocarbon 

results in a decline of surface tension. 

This correlation between permeability and surface tension was associated with the 

pervaporation mechanism that involves three stages. The first: interaction between the 

liquid and the surface of the membrane, governed by the nature of the solid 

(membrane) and liquid (hydrocarbon). The more hydrophilic surface of the 

nanocomposites repels hydrocarbon molecules, becoming the controlling step and 

most important of the pervaporation process, as it was the stage of contact with the 

hydrocarbon membrane which is then countered with what is proven with the surface 

phenomenon associated with this stage which reduces the surface tension reflected in 

Figure 8. 
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Figure 8. Correlation of surface tension and permeability vs. clay content. 

The experimental results allow formulating a possible mechanism of interaction 

between the PVA-modified organoclay and HDPE polymer matrix. Different types of 

interactions are present in this polymer system and considering the chemical nature of 

the types involved at different stages, the mechanism shown in Figure 9 was 

proposed. 

Using the above experimental results a possible mechanism can be formulated of 

interaction between the organoclay modified with PVA and the polymer matrix of 

HDPE in response to the different interactions that can be supposed present and the 

chemical nature of the species involved, at different stages of the proposed 

mechanism in Figure 9. There are hydrogen bond type interactions outside of 

MMTHDTMA layers between the silicate oxygen and the PVA hydroxyl groups. The 

same type of interaction occurs between the hydroxyl groups in the interior and at the 

edges of the clay layers. 

In the 2
nd

 stage of the process of nanocomposites preparation, during the melting of 

polyethylene in presence of the PVA-modified organoclay, HDPE interacts with the 

aliphatic moieties of PVA outside the clay layers and aliphatic chains on the inside of 

the clay can bind to the hydrocarbon chains of polyethylene, ie both inside and out the 

clay layers are dispersive type interactions, finally reaching the breaking of the 

ordered structure of the clay galleries to achieve a homogenous dispersion of the same 
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in the HDPE polymer matrix to form a nanocomposites as shown in the 3
rd

 stage of 

Figure 9. PVA chains surrounding clay sheets retain polar hydroxyl groups that are 

responsible for conferring a hydrophilic polymer surface, repelling the hydrocarbon 

molecules and decreasing its permeability. 

 

 

Figure 9. Proposed interaction mechanism between HDPE and MMTHDTMA/PVA. 
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