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Abstract: In the present contribution we investigate the images ofCW
diffusely reflected light for a point-like source, registered by aCCD cam-
era imaging a turbid medium containing an absorbing lesion. We show that
detection ofµa variations (absorption anomalies) is achieved if images are
normalized to background intensity. A theoretical analysis based on the dif-
fusion approximation is presented to investigate the sensitivity and the lim-
itations of our proposal and a novel procedure to find the location of the
inclusions in 3D is given and tested. An analysis of the noise and its influ-
ence on the detection capabilities of our proposal is provided. Experimental
results on phantoms are also given, supporting the proposed approach.
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1. Introduction

Diffuse reflectance from optically turbid biological tissue has been exploited for near infrared
spectroscopy (NIRS) and NIR diffuse optical imaging (DOI) relevant for several applications in
biomedical optics, [1–4]. Because of the diffusive character of photon migration in thick (∼ cm)
tissue, imaging of function, as e.g. revealed by local concentrations of biomarkers like oxy- and
deoxy-hemoglobin, is generally more reasonable than structural imaging. Contrast based on
tissue concentrations of these chromophores has been used e.g. to non-invasively detect and
characterize tumors in breast tissue [5–7] as well as tissue oxygenation in muscles [8] or the
brain [9–11].

An indispensable prerequisite for any quantitative diffuse optical tissue characterization and
imaging is the ability to separate signal damping due to absorption from that caused by light
scattering inside the turbid media. Optical methods allowing for that employ either spatially
and/or temporally modulated light sources together with photon detection schemes of appro-
priate spatial and/or temporal resolution [12–14]. However, most of these techniques measure
only a single, small area of tissue at a time, although such investigations would greatly benefit
from imaging a larger region of interest. Scanning or multiplexing can be used to overcome such
a disadvantage, but is typically slow and cumbersome to implement. To solve these problems,
several non-contact wide-field diffuse optical imaging methods have been developed during the
recent years to realize deep quantitative functional imaging of tissue based on spatially mod-
ulated light, i.e. structured illumination [14–18]. It has been shown that these methods may
overcome several limitations of conventional spatially resolved diffuse imaging arrangements
employing discrete multi-distance source-detector separations [12, 19]. In general, the reflec-
tion geometry is not suited for a tomographic reconstruction of tissue optical properties since
light sources and detectors are available on only one side of the tissue [20]. In order to estimate
optical properties of tumors under these conditions several authors have used prior knowledge
about the location and size of the tumor obtained from other imaging modalities [20,21].

In the present paper we introduce a novel non-contact wide-field continuous wave (CW)
optical imaging technique to localize a tumor from diffuse reflectance measurements. For this
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purpose, a point-like light source is used [14], and aCCDcamera images the spatial point spread
function across the whole field of view. This procedure is equivalent to a measurement of the
corresponding k-space modulation transfer function of the tissue [14]. It is shown that wide-
field imaging of a few spatial point spread functions in the vicinity of a lesion with enhanced
absorption inside a semi-infinite turbid medium allows localizing it in 3D if an appropriate nor-
malization procedure similar to the Rytov approximation is applied [22,23]. We have validated
our method with the help of theoretical calculations and experimental investigations on phan-
toms. Furthermore, the sensitivity of the imaging system in terms of detection limit is investi-
gated by statistical analysis of raw data to decide if lesions of a certain contrast and size cause
significant signals above background level taking into account experimental noise. The infor-
mation obtained with the described method could be used as input for estimating tumor optical
properties by reconstruction with a parameterized inversion model [20] or by utilizing solutions
of the diffusion equation for a localized heterogeneity in a homogeneous medium [24–26].

The paper has been organized as follows: In the next Section the theoretical analysis to
investigate the capabilities of the method as well as noise modelling are given. The results of
Section 2.1 are compared in Section 3 with those of experiments in theNIRspectral range using
a phantom with a tumor simulating object. Finally, we summarize the main conclusions of our
work.

CW - NIR
Diode laser

Zoom

Lens

CCD
CameraCrossed Linear

Polarizers

To host
computer

To controller
(Constant power)

Turbid medium
with inclusion

Z

X

Y

a

Fig. 1. Schema of the experimental setup. ACW NIRdiode laser illuminates a semi-infinite
turbid medium with inclusions. A small tilt angle,α, is used to avoid Fresnel reflections
and aCCDcamera images the medium.

2. Theoretical analysis

2.1. Description of the method

Our proposal to localize absorbing inclusions in a semi-infinte turbid medium is based on (mul-
tiple) point like CW illumination and non - contact wide field imaging of the spatial point
spread function in diffuse reflection. The method may be suitable for all kind of turbid media.
However, we are going to present it for values of the optical parameters which are common for
Biomedical Optics, involving radiation in theNIR range since this topic is of intense research
and growing interest.

The experimental situation is schematically drawn in Fig. 1. Information is acquired by imag-
ing the accessible face of the scattering medium by aCCD camera, resulting in a 2D picture of
the light being diffusely reflected. Each pixel in this image can be interpreted as the end point
of a photon banana which starts at the location of the light injection. An absorbing object in the
scattering medium will affect light propagation along particular bananas, as illustrated in Fig.
1. As a consequence, the remitted light intensity is perturbed at the end point of the banana. In
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order to make the perturbation visible we normalize the measured imageI(x,y) with absorbing
object to the background imageI0(x,y) without object. Similar concepts have been applied by
some of the authors to the case ofCW diffuse transmittance [23].

When the depth (z) location of the object is changed, different bananas will be affected and
the perturbed intensity will appear at other pixel positions in the camera image. Furthermore,
when we shift the illumination point to another location on the turbid medium, the perturbation
in the normalized image due to the absorber appears at a new position. As will be discussed
in the next sections we use these dependencies to localize the absorber in the x-y plane and to
derive itszcoordinate.

2.2. The diffusion model

In order to obtain a theoretical expression for the normalized image

P(x,y) = I(x,y)/I0(x,y) (1)

for typical values of optical properties and to analyze the limitations of the method we use a
theoretical model based on diffusion theory [24,27].

The turbid medium, of absorption coefficientµa and reduced scattering coefficientµ ′
s, is de-

scribed by the semi-infinite medium geometry employing the extrapolated boundary condition.
For a point source, and using the standard notation, the outward directed photon flux density
when no inclusions are present is given by: [28,29]

J0 (r s, rd) =
A0

4π

[(

κ +
1
r1

)

z0
exp(−κr1)

r2
1

+

(

κ +
1
r2

)

(2ze+ z0)
exp(−κr2)

r2
2

]

, (2)

with r1 = |rd− r s1| andr2 = |rd− r s2|. Hereκ =
√

3µaµ ′
s is the attenuation coefficient,r s=

(xs,ys,0) is the surface position of the impinging light beam andrd = (xd,yd,0) the detector
position.r s1 = (xs,ys,z0) andr s2 = (xs,ys,−2ze− z0) denote the positions of the original and
the image light source,ze is the extrapolated boundary position [30],A0 is a scaling factor
representing the number of photons per second in the incident beam, andz0 = 1/µ ′

s. In the
presence of an inclusion, centered atrInc, Eq. (2) is modified, resulting in

Jout (r s, rd, r Inc) = J0 (r s, rd)+ JInc(r s, rd, r Inc) (3)

whereJInc (r s, rd, r Inc) is the term corresponding to the perturbation due to the inclusion. In
order to fulfill the extrapolated boundary condition an image of the inclusion has to be added at
the locationr ∗Inc = (x,y,−2ze− zInc) , and the interaction of both sources with the original and
the image inclusion has to be taken into account. Thus, the photon flux densityJInc (r s, rd, r Inc)
can be constructed from four contributions:

(4)
JInc (r s, rd, r Inc) = Dc

∂
∂zd

{

Φin f
Inc (rs1, rd, r Inc)− Φin f

Inc (r s2, rd, r Inc) + Φin f
Inc (r s1, rd, r

∗
Inc)

− Φin f
Inc (rs2, rd, r

∗
Inc)
}

In case of a spherical inclusion (radiusa, attenuation coefficientκ ′) the needed infinite
medium fluence rateΦin f

Inc (r s, rd, r Inc) can be written as a multipole expansion in terms of the
modified spherical Bessel functions of the second kindkm and of Legendre polynomialsPm

according to

Φin f
Inc (r s, rd, r Inc) = ∑Bmkm(κ |rd − r Inc|)Pm(cosθ ) , (5)

#201907 - $15.00 USD Received 25 Nov 2013; revised 6 Feb 2014; accepted 21 Feb 2014; published 2 Apr 2014
(C) 2014 OSA 1 May 2014 | Vol. 5,  No. 5 | DOI:10.1364/BOE.5.001336 | BIOMEDICAL OPTICS EXPRESS  1340



Z X

Y

Dx

Imaged
area

Turbid Medium

Laser

Dy

2

Dy

2

Fig. 2. Geometry used (not to scale). We considered a thick slab, which can be taken as
semi - infinite. This schema is a front view of the slab, as seen from the camera. The laser
impinges at coordinates(x = 0,y = 0,z= 0). The camera is focused at the planez= 0,
which is the plane of the Figure, and a region of extensionDx × Dy is imaged onto the
CCD.

whereθ is the angle between the vectors joining the inclusion with the source and the de-
tector [28].

The expansion coefficientsBm ≡ Bm(κ ,κ ′, rInc,a) are determined from the boundary condi-
tions that require fluence rate and flux to be continuous across the surface of the sphere. The
explicit expressions for these coefficients can be found in Refs. [25] and [28]. It is important
to note that in many cases, including the experimental conditions presented in this work, the
previous equation can be reduced to the form [28]

Φin f
Inc (r s, rd, r Inc)≈

[

q
rd

+
p · rd

r3
d

(1+κ |rd − r Inc|)
]

exp(−κ |rd − r Inc|) (6)

where|q|= |B0/κ | and|p|=
∣

∣B1/κ2
∣

∣; rd − r Inc is the vector which aims from the center of
the small sphere to the observation point.

Note that a solution of the diffusion equation is available also for cylindrical inclusions [24]
which could be used for lesions strongly deviating from a spherical shape.

As discussed by Haskell et al. [30] the measurement of the remission from a turbid medium
has to be described by a combination of the fluence rate and the flux density. However, since we
consider source-detector separations larger than 1 cm the flux is a very good approximation for
the relative decrease of the intensity with increasing source-detector separation. The deviations
from the combined terms are smaller than 2%. Therefore, the flux (Eqs. (2) and (3)) is used in
the following simulations.

Figure 2 illustrates the geometry assumed for the calculations. The illumination point is taken
at the coordinaters= (0,0,0). The sphere is centered aty= 0 and both, its lateral position,xInc,
and its depth,zInc, will be varied in the different calculations.

2.3. Rationale

We illustrate how our proposal works in 1D with the help of Fig. 3. In terms of the previous
Equations the 1D profile, P(x), of the normalized image along thex axis passing through the
illumination point and the sphere is given by:

P(x) =
Jout (r s, rd, r Inc)

J0 (r s, rd)
= 1+

JInc(r s, rd, r Inc)

J0 (r s, rd)
(7)
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Fig. 3. Illustration of the principle of the method by theoretical calculations. An absorbing
(µaInc = 4µa0) spherical inclusion,φInc = 1.0 cmwas placed at a depthzInc = 1.0 cmand
at xInc = 5 cm from the laser illumination point.

with rd = (x,0,0), rInc = (xInc,0,zInc), rs = (0,0,0). Far from the inclusion the detected in-
tensities with or without inclusion are (nearly) equal, and thus it is expected thatP(x)→ 1. All
curves in Fig. 3 were obtained with the set of Eqs. (2) to (6). In this example, a host with the
optical parametersµa0 = 0.03 cm−1 andµ ′

s0
= 10 cm−1 is assumed. An absorbing spherical

inclusion withµaInc. = 4µa0, µ ′
sInc

= µ ′
s0

and diameterφInc = 1.0 cm is immersed in the host
placed atxInc = 5 cmfrom the laser, and at a depthzInc = 1.0 cm.

Figure 3(a) shows the light intensity emerging at different distances from the laser for both
cases: the medium without the inclusion (open circles) and the medium with the inclusion (solid
line). Please note that both curves cannot be distinguished by eye in a linear scale plot.

Figure 3(b) is a close up (log scale) of the region where the inclusion was placed. Subtle
differences between both curves can be seen in this representation. It is noticeable that the
intensity in this zone is several orders of magnitude lower than close to the laser.

Finally, the inset labeled as Fig. 3(c) shows the resulting profile after applying Eq. (7) to the
intensities of Fig. 3(a). The presence of the absorbing inclusion is now clearly evident as a dip
in the profile. The minimum of the profile does not occur exactly atxInc = 5 cm, but instead it
is shifted away from the illumination point. We will return to this later.

2.4. Modulation profiles and detectability of inclusions

In this Section we discuss the general behavior of the profilesP(x) obtained for different sets of
the parameters of the inclusion. In all cases, calculations for this Section were carried out con-
sidering a bulk medium withµ ′

s= 10cm−1 andµa0 = 0.03cm−1, and using spherical inclusions
which are more absorbing than the bulk (µaInc > µa0), but all havingµ ′

sInc
= µ ′

s0
= 10cm−1.

These values were chosen with the intention to represent a typical case for biomedical optics
experiments in theNIR range.
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Fig. 4. Theoretical profiles obtained using Eq. (1) for an absorbing spherical inclusion
(µaInc = 4µa0, φInc = 1.0 cm)located at different depths,zInc and at several distances from
the laser,xInc. a)zInc = 0.6cm, b)zInc = 1.0cm.

Due to the absorbing nature of the spheres a dip in the profiles is expected at those locations
where the inclusion is detected. Additionally, since profiles are normalized, their maximum
value is always unity. Thus we will refer to the modulation depth (or just the modulation) of the
profile asM = 1−P(x)min, beingP(x)min the minimum value given by Eq. (1). Larger modu-
lation valuesM correspond to better detectability of the inclusion according to the quantitative
analysis of this concept given in Fig. 5.

Figure 4 shows simulated profilesP(x) for inclusions at different lateral positions with re-
spect to the laser, namelyxInc = 1 cm(triangles), 3cm(squares), and 5cm(circles), leaving the
depth as a parameter. The diameter of the sphere was set toφInc = 1.0 cm. The absorption of
the inclusion is assumed to beµaInc = 4µa0 which is close to the clinically observed absorption
contrast for breast tumors in healthy tissue [31,32].

The minimum in the intensity profile indicates the detected lateral location of the inclusion
relative to the illumination point. It can be seen that the profiles corresponding to shallow in-
clusions(zInc = 0.6 cm)have their minimum slightly shifted away from the true position (Fig.
4(a)). For an inclusion placed atxInc we call this shift∆xInc. The shift is seen to be always
towards greater values ofx, that is, away from the laser. Deeper inclusions give profiles with
their minima also shifted towards greater values ofx but by larger amounts (see Fig. 4(b)). As
shown in Fig. 4(a), for a depthzInc = 0.6 cm this lateral shift does not exceed absolute values
of 0.3 cm for the inclusion placed atxInc = 1 cmand decreases forxInc = 3 cm to 5 cm. When
the depth of the inclusion is increased (Fig. 4(b)),∆xInc increases to∆xInc ≈ 1cmfor xInc = 1cm
and decreases to∆xInc < 0.5 cmfor xInc = 3 cmto 5cm, which implies a large improvement in
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Fig. 5. Modulation (M) map obtained by the theory as a function of both, the inclusion’s
radius (rInc) and the inclusion’s depth (zInc). The inclusion is assumed to be a sphere placed
at xInc = 2.0 cm from the illumination point. (a)µaInc = 4µa0; (b) µaInc = 2µa0.

the relative percent error.
The modulation of the profiles is only slightly affected by the distance of the inclusion to the

illumination point. For example, as shown in the first row of Fig. 4, for the case ofzInc = 0.6
cm the modulation varies fromM = 0.125 (12.5%) for xInc = 1.0 cm to M = 0.150 (15%) for
xInc = 5.0 cm.

Besides, it is shown in Fig. 4, that keepingxInc fixed and increasing the depth,zInc, of the
inclusion, produces noticeable changes inM. For example,M reaches values ofM = 0.150 for
an inclusion located atzInc = 0.6 cmdepth (Fig. 4(a)) and drops toM < 0.10 forzInc = 1.0 cm
(Fig. 4(b)). Clearly, in the case of noisy signals this modulation may be insufficient to detect
the inclusion (See Section 2.6).

Figure 5 explores the behavior of the modulation, and thus the detectability of the inclusion,
with respect to both, the depth and the size of the inclusion. For this example we have located
the inclusion atxInc = 2 cm from the illumination point; the choice ofxInc is not critical since
we have already shown in Fig. 4 that the modulation depends only slightly onxInc. In Fig. 5(a)
we assume a spherical inclusion with an absorption coefficientµaInc = 4µa0, whereas in Fig.
5(b) the absorption contrast is only twofold. The horizontal axis represents the sphere radius,
the vertical one is the depth of its center and the modulation is shown by isolines. We have
identified two particular invalid zones, shadowed in gray:i) the one for which the inclusion
depth is less than its radius (the inclusion itself would cross the boundary of the bulk medium),
and ii) the zone for which the inclusion is considered to be undetectable, corresponding to
modulation values less than a given threshold,T (see Sections 2.6 and 3).

Figure 5(a) shows that relative large inclusions(rInc ≈ 10mm)can be detected even at depths
of aboutzInc & 30 mm. On the contrary, small inclusionsrInc . 3.0 mmare only detected if
they are shallow (zInc . 5 mm). Objects with twofold absorption contrast (Fig. 5(b)) have to be
larger to be visible from the same depth as objects with fourfold contrast. Roughly, the decrease
in absorption has to be compensated by a corresponding increase in the volume of the sphere
to reach the same modulation depth. Since the absorption contrast for real biological cases is
expected to be in the considered range, Fig. 5 establishes a quantitative criterion for the limits
of detectability of the proposed technique. These results are in agreement with the criterion
given by Ripoll et. al. [34] which, for the optical parameters considered in Fig. 5(a), estimates
a maximum penetration depth of the photons ofzlimit ∼ 3

√

D/µa ∼ 32mm.
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2.5. 3D location of the inclusion

The main idea for getting the in-plane location of the inclusion is based on taking a few im-
ages with varied illumination points. For a particular laser positionL1 the absorbing inclu-
sion becomes visible in the normalized camera image as a blurred region centered at position
P1 = (xd1,yd1). If the laser is then moved to a new position,L2 the dark zone related to the in-
clusion appears at another positionI2 = (xd2,yd2,0). The situation is sketched in Fig. 6(a) for a
generic laser position. This experiment can be repeated for several,N, laser positions perform-
ing a coarse scanning of the surface. As the inclusion is fixed, all lines joining a laser position
with the center of its corresponding image pass through the actual inclusion. Thus for each pair
of laser-image lines, their intersection gives the in plane location of the inclusion(xInc,yInc).
Taking several of these intersections and averaging the resulting coordinates provide a better
in-plane location of the inclusion:

(xInc,yInc) =

(

∑N
j=1xIncj

N
,

∑N
j=1yIncj

N

)

(8)

Standard deviations in this expression vary as 1/
√

N. We will present later, in Table 1, a
quantitative example using 6 intersections.

The information about the xy-plane location of the inclusion can now be used to retrieve its
depth,zInc. To this end we consider the photon banana connecting a selected illumination point
rs with the related image positionrd of the inclusion (see cross section in Fig. 6(b)). The object
is located at the intersection of the banana with the vertical line in Fig. 6(b) drawn from the
above derived position(xInc,yInc) of the object on the surface of the turbid medium parallel to
thezaxis. Along this line we determine the profileB(z) =B(xInc,yInc,z) of the banana. The first
moment of this probability distribution is taken as the depthzInc of the inclusion. The procedure
can be repeated for each of theN images to obtain an average depth value

zInc =
N

∑
j=1

zIncj

N
. (9)

To derive the required theoretical expression for the photon bananaB(r , r s, rd) we follow the
idea of Feng et al. [28]. Instead of the zero boundary condition employed by Feng we use the
extrapolated boundary condition here. For the geometry of the semi-infinite medium we obtain
(the normalization factor is omitted):

(10)
B(r , r s, rd) =

[

exp(−κ |r − r s1|)
|r − r s1|

− exp(−κ |r − r s2|)
|r − r s2|

]

×
[

exp(−κ |rd − r |)
|rd − r | − exp(−κ |rd − r∗|)

|rd − r |

]

.

Vector r ∗ = (x,y,−2ze− z) denotes the mirror position of the considered coordinater =
(x,y,z) of the banana with respect to the extrapolated boundary plane.

At this point it is important to mention that the attenuation coefficientκ of the turbid medium
is needed to calculate the banana function (Eq. (10)) and to derive its first moment. Furthermore,
the vectorsrs1, rs2 andr∗ with the first two representing the positions of the original and the
image point source depend onµ ′

s (cf. Eq. (2)). In general,κ andµ ′
s cannot be derived from our

CW measurement simultaneously [33]. However, the influence ofµ ′
s on the shape of the banana

function is weak, i.e. we can use an approximate valueµ ′
s,typ for the particular tissue type. Cal-

culations of the first moments ofB along thez axis for reduced scattering coefficients between
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Fig. 6. Illustration of the approach used to locate the inclusion in 3D. a) Illustrates the
principle for finding thein plane location of the inclusion for the illumination point at
coordinates(xs,ys). This produces at(xd,yd) a blurred image of the inclusion, which is
actually located at(xInc,yInc). b) Shows how to retrieve the depth of the inclusion once the
average values of thein planecoordinates,(xInc,yInc), are known. The plane of this Figure
is the one defined by thez axis and the line joining the illumination point and the image.
See text for a detailed explanation.

5cm−1 and 20cm−1 show that the error close to the source position scales approximately with
∣

∣1/µ ′
s−1/µ ′

s,typ

∣

∣, i.e. the error in the determination of thez position of the object can reach
0.5mm to 1mm. When the in-plane (x,y) position of the object is at least 1cm apart from the
source position, the error is always smaller than 0.5mm.

The needed attenuation coefficient can be determined from a fit by considering the de-
cay of the measured intensityI(x,y) with increasing distance from the source in a region of
the turbid medium which can be assumed to be homogeneous. Generally, the correspond-
ing theoretical photon flux density given in Eq. (2) depends on bothκ and µ ′

s. However,
similar to the discussion for the banana function, for sufficiently long distances between
source and detector position the lengthsr1 andr2 in Eq. (2) become approximately equal to
ρ =

√

(xd − xs)2+(yd − ys)2, and the photon flux density can be approximated as

J0(r s, rd)≈
A0

4π
2(ze+1/µ ′

s)(1+κρ)
exp(−κρ)

ρ3 . (11)

In this term (ze+1/µ ′
s) acts as a scaling factor only, i.e. Eq. (11) can be used to deriveκ from
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the measured intensity profile.

2.6. Noise analysis

In this Section we will discuss the main effects of noise on the results presented. We will adopt
an approach similar to that proposed by Ziegler et al. [36]. The intensity detected by the camera
at pixelk can be written as

IN
k = Ik+Nk+ Io f f , (12)

with Ik being the intensity without noise,IN
k the actual detected signal, including all contri-

butions of noise, andNk the noise component, all taken at pixelk. The quantityIo f f accounts
for the baseline level of the camera obtained without any light. Commonly, this offset is com-
pensated by subtracting a dark image measured separately. However, in our case it is advanta-
geously to skip this correction for the following reason: Due to the point-like illumination we
get images covering the full dynamic range of the camera. Far away from the illumination point
the light level is too small to give a significant contribution and the pixel values scatter around
the offset value,Io f f . After background subtraction these intensities will scatter around zero.
Hence, calculating ratio valuesP(x,y) of two images according to Eq. (1) will result in very
noisy data far away from the illumination point. In contrast, without background subtraction
such ratio values approach toIo f f/Io f f = 1. This reduction in noise far away from the illumina-
tion point is paid by a slight reduction in the modulation depth which will hamper the detection
of inclusions at larger distances from the illumination point. On the other hand, the modulation
profile becomes sharper as will be shown in the next section

Investigations of the intensity dependence of the noise in our camera images have shown, that
the standard deviation of the measured intensities can be described by the following equation:

σI =

√

n2
a+

(

np

√

IN
k − Iof f

)2

+
(

nr
(

IN
k − Io f f

))2
. (13)

The first contribution to the noise,na, is independent from the detected signal. It accounts
mainly for the readout noise of the camera. The second term, describes the contribution of
the photon noise (shot noise) which is significant at low intensities and weighted bynp. The
third contribution is a noise component proportional to the measured signal which is typical for
linear signal calibration curves. It dominates at high intensities wherenr describes a constant
coefficient of variation.

To derive a detectability criterion we consider a medium with inclusion and note the position
with the strongest modulation of the ratio signalP(x) asxI . We know that without an inclusion
repeated measurementsP1, ..,Pk at this position are normally distributed with meanθ0 = 1 and
varianceσ2, whereby the later is given by Eq. (13). When an absorbing inclusion is present, we
expect to obtain a meanθI < θ0. Since the modulation depth is small, we can assume that the
variance of the distributionPi with inclusion is nearly the same as for the homogeneous case.

As a criterion for object detection we use the Neyman - Pearson test [37] which yields the
following relation between a given significance levelαFP of false positive detection and the
threshold valueT(αFP) for the ratio signalP(x)

T(αFP) = θ0−
√

2
k

σer f−1(1−2αFP). (14)

3. Phantom experiments

We present now an experiment to test our proposal under laboratory conditions using a solid
phantom with a known absorbing inclusion. It is mainly intended to test the capability of our
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Fig. 7. Schematic representation (at scale) of the solid phantom used in the experiment. The
inclusion is located at(xInc,yInc,zInc) = (9 cm,9 cm,1 cm). The dark spot indicated by ”L”
is the illumination point and the phantom can be rotated around the point indicated by ”C”.

proposal to locate inclusions in 3D. Additionally, it will be used to compare the modulation
profile with that produced by the theory. As a corollary, a fair estimation of the diameter of the
inclusion is retrieved.

The phantom, which mimics a compressed breast, was designed and manufactured atPTB,
Berlin to test and optimize different optical mammographs. It is made of Epoxy resin and
contains one absorbing spherical inclusion of 1.0 cm diameter, also made of Epoxy [38, 39].
The phantom is 15cmwide, 15cm long and 5cmthick. With reference to Fig. 7, the inclusion
is located at coordinates(xInc,yInc,zInc) = (9 cm,9 cm,1 cm). Thus, when viewing the phantom
from the face ”A”, the inclusion is at 1cmdepth from the surface.

The optical properties of the phantom are known from measurements of time-resolved trans-
mittance with a femtosecond Ti:Sapphire laser and time-correlated single photon counting.
At 780 nm the properties for the homogeneous background amount toµ ′

s0
= 9.46cm−1 and

µa0 = 0.047cm−1. The optical properties of the inclusion were measured from a block of
the base material previous to the proper machining to obtain the sphere [39]. The results are
µ ′

sInc
= 7.7cm−1 andµaInc = 0.2cm−1. Thus, the absorption contrast between bulk and inclusion

is 4.25. Accordingly to Figs. 4 and 5 this inclusion should be detected with a modulation depth
of about 8% to 10%.

Images of the phantom were acquired with the setup shown in Fig. 1 using a 14 BitEMCCD
camera (Andor Luca, 658x496 pixels), equipped with a wide field lens (Fujinon 1 : 1.26mmFL)
imaging an area of approximate dimensionsDx = 9cm×Dy = 7cmof face ”A” of the phantom
(Figs. 2 and 7). Illumination was provided by a pulsed (80MHz) diode laser operating atλ =
783nm, with average power of 3mW. The illumination point is indicated by ”L” in the Fig. 7.
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Fig. 8.a) Raw image of the phantom at positionj = 180◦ as seen by the camera.b) Result
of dividing the image ina) by the average of all 18 images.c) Same as inb) after Fourier
filtering.

Table 1. Result of applying our algorithm to the solid phantom. Nominal values for the
inclusion location are(xInc,yInc,zInc) = (9 cm,9 cm,1 cm). Errors are given as the standard
deviation of the measured values.

j1- j2 j1- j3 j1- j4 j2- j3 j2- j4 j3- j4 Averages[cm]
xInc [cm] 9.01 9.10 9.23 9.09 9.13 9.07 xInc = 9.10±0.07
yInc [cm] 9.06 9.06 9.04 9.19 9.13 9.16 yInc = 9.11±0.06

Crossed polarizers, one in front of the laser and the other in front of the camera, were used to
suppress the detection of photons that exit the medium very close to the illumination point after
only a few scattering events, i.e. before losing their original polarization. Additionally a small
stop was placed in the field of view close to the lens to block out the over-exposure region at the
illumination point. In this way the 14 Bit dynamic range of the camera enabled us to detect the
spatial decrease of the diffusely scattered light up to a distance of about 3cm from the source.
Possible blooming effects are also minimized with this stop. In order to calculate the ratio image
according to Eq. (1) we have to generate a suitable background image, ”without” inclusion. In
general, we do not know where a possible inclusion is located in the medium. Under these
circumstances one can take a set of images with the scattering medium being shifted or rotated
relative to the setup of the laser and the camera. When averaging these images the influence of
the inclusion is suppressed due to blurring. We applied this procedure by rotating the phantom
in steps of 20◦ resulting in 18 points of view after a complete rotation. The 18 images were
averaged to obtain the (homogeneous) background image. Finally, each of the 18 measured
images was normalized to this background image.

At those angular positions for which the inclusion is situated inside the zone reached by
the laser light, an image of the inclusion can be seen. As an example, we show in Fig. 8 the
raw camera image and the normalized image obtained forj = 180◦. The center of rotation, the
starting point of the rotation, i.e. 0◦, the rotation direction as well as the illumination point are
shown in Fig. 7. The dark round spot in Fig. 8(a) is the stop mentioned above. In Fig. 8(b) the
darker blurred region reveals the presence of the inclusion. As illustrated in Fig. 8(c) the high
frequency noise can be reduced by Fourier filtering.

To measure the in - plane coordinates of the inclusion, after division by the background,
the processed images obtained from Eq. (1) are counter rotated by the same angle used during
acquisition to keep the inclusion stationary; the laser appears now at different positions, provid-
ing different points of view. As explained in Section 2.5, the intersection of two of these lines
gives the in plane location of the inclusion. Using these pairs for four points of view, namely
j1 = 160◦, j2 = 180◦, j3 = 200◦ and j4 = 220◦ we applied Eq. (8) for getting thexInc andyInc
of the inclusion.Table1 summarizes the results of the entire procedure.
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Finally, the depth of the inclusion,zInc was calculated, as explained above in Section 2.5.
First, Eq. (11) was used to fit a radial intensity profileI0(x) of the background image for valuesx
between 1.5 cmand 4cmwith respect to the source position to derive the attenuation coefficient
κ . The obtained value of 1.16cm−1 is in excellent agreement with the value calculated from the
known reduced scattering and absorption coefficient of the phantom (κ = 1.158cm−1). Then,
using this value together with the averaged coordinatesxInc, yInc, given in Table 1, we estimated
the depth of the inclusion to bezInc = 0.81cm. In this step the reduced scattering coefficient of
the phantom known from the time-resolved measurements (µ ′

s0 = 9.46 cm−1) was used. As
mentioned above, this value has little effect on the final result forzInc. In general, it is sufficient
to use an approximate value representative for the particular type of tissue.

In order to determine the noise components introduced in Eq. (13) for theCCDCamera used
in this work we measured the intensity dependence of the noise. The factors characterizing the
three noise contributions were found to bena = 7.9, np = 0.88, andnr = 0.012. Accordingly, for
the background image obtained from 18 single images, these values must be divided by

√
18.

Additionally, the offset value estimated from a dark picture wasIo f f = 497±9.7. As expected,
the standard deviation of this value meets approximatelyna given above. We used Eqs. (12)
and (13) to study the influence of the dark offset and of the noise on the theoretical quotient
P(x) (cf. Eq. (7)) for the experimental situation atj = 180◦. Calculations were based on the
true distanced = 1.1cm of the sphere from the laser. In order to add noise to the theoretical
curves the standard deviationσP(x) of P(x) was derived from the noise values given above by
error propagation:

σP(x) = P(x)

√

n2
a+n2

pAJout+n2
r A2J2

out

(AJout+ Io f f)2 +
n2

a+n2
pAJ0+n2

r A2J2
0

(AJ0+ Io f f)2 . (15)

SinceσP(x) is intensity dependent, the photon flux densitiesJ0 andJout calculated from Eqs.
(2) and (3) were scaled by a factorA such that the integral along directionx fits to the integral
of the measurement, whereby the region covered by the beam stop was excluded. Fig. 9 shows
the theoretical profilesP(x) with and without background correction and the corresponding
standard deviations from Eq. (15) together with the experimental profile.

As already mentioned in section 2.6, when adding a dark signal offsetIo f f to the simulated
intensities the modulation profile becomes smaller, and its depth is slightly reduced compared
to the simulation without offset. In this way the experimental curve is well described by the-
ory. The standard deviation of the simulated profile fits well to the experimental noise, too.
When comparing the standard deviations plotted for both simulated profiles it is remarkable
that the profile with offset yields a much better signal-to-noise ratio at larger distances from the
illumination point than the calculation performed without any offset.

In order to apply the Neyman - Pearson criterion described previously, we must verify that the
assumptions are correct, i.e. the obtained image must follow a normal distribution with mean
1 and unknown variance, and that the presence of an inclusion does not change the variance.
Normality was confirmed by a Jarque-Bera test yielding ap value of 0.47. Then, a T-test showed
that the sample comes from a normal distribution with mean 1 (p value of 0.43). And, finally,
an F-test was run for variances, taken from 2 samples (one with inclusion and the other without
it) to verify that both samples come from a normal distribution with same variance (p value of
0.79).

The Neyman-Pearson criterion can now be applied if we also approximate the deviation at
each level of intensity by the maximum one found throughout the whole ratio image, i.e. we
fix σP = max{σP(xk)}, wherexk is thekth pixel of the image. We illustrate the application of
the criterion to two selected ratio images shown in Fig. 10, namely for the inclusion at rotation
position 180◦ and 140◦. For both images we would like to decide about the presence of a lesion
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Fig. 9. Comparison of the experimental profile with theory using the camera offset value
Iof f = 497. In addition, the theoretical profile is shown for the situation of background
correction (Io f f = 0). For both simulations the standard deviation intervals are indicated by
the black solid and dashed lines

in the region of interest indicated by the dashed rectangle whereby we discard any previous
knowledge about the true position of the lesion indicated by the white dots in the gray scale
images. As a simple approach we have calculated the average horizontal profile from all pixel
rows of the rectangular area for each case. These profiles are shown in the upper graphs of
Fig. 10 together with the corresponding detection thresholds determined from Eq. (14). For
both cases in Fig. 10 we show two significance levels,αFP, namelyαFP = 10−2, resulting in
a threshold valueT(αFP = 10−2) = 0.998 and the very small levelαFP = 10−4, resulting in a
threshold valueT(αFP = 10−4) = 0.996.

In Fig. 10(a) the minimum of the profile is considerably smaller than both thresholds thus
clearly indicating the presence of an inclusion in the selected rectangular region. The position
of the dip corresponds to the horizontal coordinate of the inclusion. By analyzing the second
dimension of the ratio image in a similar way, the inclusion can be localized along the vertical
direction, too. In the right example of Fig. 10 the threshold for the 1% significance level is
touched only by the small dip aroundxInc = 3cm. As can be seen from the white dot in the cor-
responding gray scale image, this dip fits to the true position of the inclusion in the experiment.
Hence, detection of the inclusion which has a distance of 3cmfrom the laser in this case is at
the limit.
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Fig. 10. Result of applying the criterion of Section 2.6 to two ratio images.a) Correspond-
ing to the case of the phantom rotated by 180◦ andb) corresponding to the phantom rotated
by 140◦. Values of the profiles are obtained by averaging all pixels in each column of the
region delimited by the dashed contour. Threshold values,T, for different significance lev-
els, are shown as horizontal lines. Inclusion is considered to be “detected” at positions at
which the average values are below threshold. White crosses indicate the true position of
the laser, and the white dots indicate the actual position of the inclusion inside the phantom.

By reducing the number of lines taken to calculate the average profile to a value which fits
approximately to the extension of an expected inclusion the contrast in the resulting profile
is optimized. Results of this type of analysis with the region for averaging chosen along the
straight line between laser position and the known inclusion position are shown in Fig. 11.
Besides the two situations discussed in Fig. 10 (180◦ and 140◦ rotation of the phantom), we
also added the rotational position in between (160◦). The distances between laser spot and
true position of the inclusion amount to approximately 1cm, 2cmand 3cm. The experimental
profiles in Fig. 11(a) were obtained by averaging 25 lines of the 2D ratio images. Since this
number enters threshold calculation by Eq. (14) the threshold values for the two significance
levelsαFP = 10−2 andαFP = 10−4 are more far away from the baseline levelP(x) = 1 than
the thresholds plotted in Fig. 10. However, the detection of the most challenging inclusion at
xInc = 3cm is improved now compared to Fig. 10. The signal dip is clearly below the threshold
for αFP = 10−2. This result is confirmed by the theoretical profiles given in Fig. 11(b) which
were calculated for the parameters of the experimental situation. When applying the smaller
significance level ofαFP =10−4 the inclusion atxInc =3cmis not detected even in the noise free
simulation. In contrast, the inclusion is clearly visible at distancesxInc = 1cmandxInc = 2cm
in both the experiment (Fig. 11(a)) and the (noise-free) simulation (Fig. 11(b)).
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Fig. 11. Line profiles for three different distances (1cm, 2cmand 3cm) of the 1cmspheri-
cal inclusion from the illumination spot. a) Experimental result for a depth ofzInc = 1cm
obtained by averaging 25 lines of the ratio image. The dashed and the dotted line show
the corresponding detection thresholds for significance levels ofαFP = 10−2 and 10−4,
respectively. b) Theoretical result for the parameters of the experiment in a). c) Theoretical
result for an increased depth of the inclusion (zInc = 1.5cm).

For comparison, Fig. 11(c) represents the hypothetical situation of the same inclusion (that
is, same size and same absorption contrast that the one in the experiments) and at the same three
distances from the laser but at 1.5cmdepth. Now the inclusion at 3cmdistance from the laser is
beyond the detection limit for both proposed thresholds, the inclusion at 2cm from the laser is
only seen ifT(αFP = 10−2) is taken, and the inclusion at 1cmfrom the laser is detected by both
thresholds. Hence, lesions with a diameter of about 1cmand a 4-fold absorbing contrast should
become visible in ratio images within a circular area of 2cm to 3cm radius around the laser
illumination spot. In order to scan a larger tissue area, the grid of illumination points should
have a step size not larger than 3cmto 4cm.

Note that if most of the profile,P(x), is clearly below the detection thresholds plotted in 10,
this information can be used for a rough estimation of the maximum diameter of the inclusion.
To this end, we determine the full width at half minimum of the dip in Fig. 10 taking the most
conservative threshold level as a baseline. According to this estimate, we retrieve a diameter of
about 1.5cmas an upper limit for the size of the inclusion having a true diameter of 1.0cm.

Our phantom experiment describes one particular configuration of a tumor in a homogeneous
background. However, the threshold levels determined from the experiment can be used to de-
rive the detection limits for objects of smaller or larger size as well as for other depth positions.
From Fig. 11 we get a minimum modulation depth of 0.02 as a conservative estimate for object
visibility. The corresponding contour line graphs in Fig. 5(a) and 5(b) permit us to determine
the range of object size and depth position in which the object will be visible in the camera
image with sufficient contrast, and, hence, the analysis to obtain its depth position can be suc-
cessfully applied. From Fig. 5(a) we see, e.g., that a sphere of 4-fold absorption contrast with a
radius of 2mmcan be detected up to a depth of about 4mm, whereas an object with a radius of
e.g. 8mmcan be seen even for a depth of more than 35mm. The contour level 0.02 in Fig. 5(b)
illustrates the corresponding detection limit for an object with a twofold increased absorption.
It is shifted towards larger object size compared to the fourfold absorption contrast. At this
point we should mention that we had performed another phantom experiment with a spherical
inclusion of the same contrast and size as described above, but placed at a depth of 2.5cm. This
sphere could not be detected, which is in accordance with the data shown in Fig. 5(a).

In general, the investigated phantom as well as the data in Fig. 5 present the situation of a
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single object hidden in a homogeneous background medium. For biological tissue the back-
ground can be heterogeneous which typically decreases the contrast of a lesion. In order to
obtain a suitable background image one follows the same procedure as applied in the phantom
experiment, i.e. recording a set of images by simultaneously moving the camera and the source
position with respect to the tissue. When overlying these images the contribution of one or
more lesions as well as of heterogeneities with large extensions will be averaged. The single
images represent the coarse scanning of the tissue. In order to detect and localize a lesion it
must have sufficient contrast with respect to background heterogeneities. This requirement is
not a particular problem of the proposed method. It is present in planar scanning geometries
and in tomographic geometries as well. Finally, when several lesions are present in the tissue,
they can be analyzed as long as they appear as separate objects in the ratio image.

4. Conclusions

We developed a method that allows to locate absorbing inclusions in turbid media using the
CW reflection geometry in a semi - infinite medium. The method is based on taking a set of
2D images of the diffuse reflection from the medium thereby varying the position of the point
- like laser source and the camera with respect to the medium. Inclusions in the medium be-
come visible after normalizing the images to a suited background image which is calculated
as the average of all images recorded. In general, since 2Dimages of the surface are acquired,
a coarse set of illumination points is sufficient, if compared to approaches that need a dense
scanning grid on the medium surface. Using a theoretical model based on the diffusion approx-
imation we showed that, for host media similar to biological tissues, tumor - like inclusions,
havingµaInc . 4µa0 can be detected. Detection contrast depends on the inclusion’s depth and
its diameter. Accordingly with data in the bibliography, [40–42] actual tumors may present ab-
sorptions coefficients of this order or less. However, for in-vivo investigations, absorption could
be enhanced by adding a contrast agent like indocyanine green, thus improving the chances of
detection [43].

To locate the inclusions in plane we proposed and tested an algorithm based on analyzing
a subset of the acquired images. Having this information derived, the depth of the inclusion
was also retrieved by taking the most probable paths of the photons (bananas) into account. To
this end, the attenuation coefficient of the medium was derived from theCW measurements.
To validate our approach we performed experiments on a solid phantom. The inclusion for this
case was an absorbing sphere (µaInc ≈ 4µa0) with a diameter of 1.0 cm located at a depth of
1.0 cm. We showed that the approach works very well, finding the inclusion in 3Dwith errors
about 10% for the in-plane coordinates and about 20% in the depth coordinate. We derived a
detection criterion to determine the detection threshold taking the experimental noise into ac-
count. Additionally, using the detection criterion, we could set an upper bound for the diameter
of the inclusion.

In conclusion, the proposed method is capable of both, locating a lesion in 3D and establish-
ing its more absorbing nature. This information constitutes valuable prior knowledge, since it
can be used to feed some inversion algorithms in order to retrieve the optical properties of the
inclusion.
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