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Abstract. We study a constrained joint replenishment problem with a multi-commodity refrigerated
road transport in cold chain logistics. Each truck may have multiple temperature zones, since products
in full truckload shipment may have different temperature requirements. In the proposed mathematical
programming model, we want to minimize the expected total cost that includes the inventory cost and
the transportation cost as well as the penalty cost if temperature violation occurs subject to the full
truckload constraint. Under the deterministic demand, the cycle time of each product, the temperature
of each zone in each truck and the allocation plan (the number of units of each product to be shipped in
each zone in each truck) are obtained from the mixed-integer nonlinear optimization model. Under the
stochastic demand, we assume that the inventory is controlled using a periodic review system, and the
order-up-to level is chosen to maintain the desired cycle service level of each product. In the case study
of one of the largest modern grocery retailers in Thailand, our model is applied to obtain the optimal
replenishment policy. Currently, the company’s fleet consists of single-temperature trucks. We estimate
the monetary benefit obtained by switching from a single-temperature truck to a multi-temperature
truck. We also estimate the cost reduction from reducing the lead time. Finally, our model can be used
to quantify the trade-off between the service level and the inventory cost to help the company choose
the appropriate service levels.
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commodity multi-temperature refrigerated transport.
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1. Introduction

Cold chain logistics is crucial to temperature-sensitive
products such as perishable products (e.g., fresh fruits,
vegetables, meats) and medical products (e.g., vaccines,
blood and plasma). The cold chain logistics market
worldwide is expected to exceed 585 billion USDs in
five years [1]. The cold chain consists of at least four
linked systems, namely precooling, warehouse refriger-
ation, refrigerated transport and marketing [2]. Since
different products have different temperature require-
ments, cold storage categories include high-temperature
(5 to 15 °C), medium-temperature (−5 to 5 °C), low-
temperature (−25 to −18 °C), quick-freezing (−40 to
−30 °C) and ultralow-temperature (−60 to −45 °C)
refrigerated warehouses. Rather than reducing the
cargo temperature, the main objective of the refriger-
ated transport is to maintain a stable and uniform tem-
perature during the delivery period. In this article, we
focus on road transport from a distribution center to re-
tailers via refrigerated vehicles. We optimize the coor-
dinated ordering decision of different products and the
shipping plan, which specify both volume and temper-
ature point in each temperature zone in each truck.
The literature review is as follows. The joint replen-

ishment problem (JRP) is surveyed in [3] and [4], in
which the latter considers the JRP under stochastic de-
mand. The basic JRP is extended to include various
resource constraints such as transportation capacities,
warehouse capacities and budget limitations. The JRP
with resource constraints is sometimes referred to as
the constrained joint replenishment problem (CJRP).
In [5], the CJRP has a single budget constraint, and the
model is solved using the genetic algorithm. [6] solves
the CJPR with a single constraint using a heuristic so-
lution from linear programming. Our CJRP model has
more than one constraint, stating that the total alloca-
tion to each zone in each truck cannot exceed its capac-
ity. The capacity constraints are included in [7] and [8].
The study of [9] considers the CJRP with stochastic de-
mand under the periodic-review inventory system, in
which the dynamic order-up-to levels are used to cre-
ate full truckloads. In [9], the CJRP with full truck-
loads is solved in two steps: The first step determines
the number of trucks, and the second step determines
the dynamic order-up-to levels in such a way that the to-
tal shipped volume leads to a full truckload. Unlike [9],
we solve for the shipping and ordering decisions simul-
taneously in one unified CJRP model. [10] formulates
the JRP as a mixed-integer linear programming prob-
lem, in which the setup (ordering) cost is stepwise and
depends on the number of trucks used. In [10], the plan-
ning horizon is finite, whereas in ours the planning hori-
zon is infinite. In [10], the demand is deterministic and

nonstationary, whereas in ours the demand is stochastic
and stationary.
Our model also has a stepwise ordering cost, which is

a function of the number of trucks used. Furthermore,
we consider refrigerated trucks and include the tempera-
ture penalty cost if the truck temperature is outside the
designated temperature range of each product. In our
model, the transport capacity is a hard constraint as in
the previous studies. Nevertheless, in ours the temper-
ature range is a soft constraint and a violation penalty
is included in the objective function. In the previous
deterministic JRP model, the average total cost includes
the average setup cost and the average holding cost. In
ours, the average total cost includes both the setup and
holding costs as well as the penalty cost associated with
temperature violation during refrigerated transport.
A comprehensive review of cold chain logistics can be

found in [2] for fresh agricultural products and in [11]
for food products. [12] studies the temperature man-
agement problem in refrigerated warehouse, and the
optimal target temperature is obtained for each multi-
commodity cold storage room in the warehouse. [12]
considers the temperature management for warehouse
refrigeration, whereas we consider that for refrigerated
transport. [13] studies the cold chainmanagement prob-
lem in the hierarchical hub network. Ours is a single
echelon, but we focus on the refrigerated transporta-
tion.
For perishable product, the JRP can be found in

[14] and [15], and their models account for non-
instantaneous deterioration and random lifetime, re-
spectively. [16] formulates a JRP for products with vary-
ing ages. [17] develops an inventory policy with micro-
periodic control, which allows delivery of a perishable
product several times daily. [18] compares different in-
ventory policies for perishable goods. [19] considers
the multi-echelon inventory optimization in the meat
supply chain. [20] studies the special case of the multi-
echelon inventory system with one warehouse and mul-
tiple retailers, and [21] considers a periodic-review in-
ventory policy in the two-echelon inventory problem
with seasonal demand. The pricing decision for perish-
able products is studied in [22], [23], [24] and [25]. [26]
studies both pricing and replenishment decisions with
expiration date dependent deterioration. [27] studies
both pricing and preservation technology investment
decision. These studies determine the prices of different
products so that the revenue is maximized, whereas in
ours, we determine the different temperatures of zones
in trucks so that the cost is minimized. Table 1 summa-
rizes the key attributes of the above literature. These
studies on the JRP for perishable products do not ex-
plicitly account for both the temperature control inside
the truck and the truck capacity, which are two key fea-
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tures in our model.

Our key contribution is formulating the CJRPmodel
with refrigerated delivery in a full truckload multi-
temperature refrigerated truck. Unlike the traditional
mono-temp (single-temp) truck, this so-called multi-
temp truck allows different temperatures in different
zones within one truck. The customized refrigeration
sections (zones) can be created using the thermal insu-
lated barriers called bulkheads; see Fig. 1. From Table 1,
none of the previous studies with temperature control
considers this multi-temp truck. In [13], the refreshing
and freezing operations are done in a hub node, and
items are transported in delivery vehicles with ambient
temperature. [24] introduces the cold-chain service level
to implicitly capture cold-chain operations such as pack-
ing, cooling facilities and temperature level during trans-
portation. The temperature point in the refrigerated ve-
hicle is not modeled explicitly. In [27], [25] and [12],
cold storage at warehouses or retailers are considered.
Ourmodel determines the temperature inside each zone
in each multi-temp truck. Since the mono-temp truck is
a special case of ours, our model can be used to evaluate
the monetary benefit from using the multi-temp truck.

We formulate the CJRP with refrigerated delivery.
Many products with different temperature targets are
transported in full truckload. In spite of the multi-temp
truck, the temperature inside each zone in each truck
may still exceed the upper bound of the target tem-
perature of one product, while falling below the lower
bound of another product. As in the goal programming
approach, when the zone temperature falls outside the
designated bound of each product, a penalty cost from
temperature violation is incurred. Our objective is to
minimize the average total cost. In our deterministic
model, the average total cost includes the average setup
cost that depends on the number of trucks used, the
average holding cost that depends on the cycle stock,
and the penalty cost from temperature violation. In our
stochasticmodel, the expected holding cost also depends
on the safety stock. Our stochastic CJRP is a mixed-
integer nonlinear optimization with a chance constraint
to ensure that the in-stock probability of each product
is at least its desired service level.

The rest of this paper is organized as follows: In
Section 2, we propose the CJRP with the temperature
control management and extend to account for demand
uncertainty. We identify conditions under which the
problem becomes convex programming in Section 3. A
case study is provided in Section 4. Concluding remarks
and a few extensions are given in Section 5.

2. Formulation

Consider a joint replenishment problem with a fam-
ily of n coordinated items, called items i = 1, 2, . . . , n.
These items can be delivered using m trucks. Let L be
the lead time, which is assumed to be constant. The lead
time is the period of time from which an order is placed
until it is received. The lead time includes the order
preparation time, the transit time from a supplier and
time for inspection after receiving the order. The input
parameters are given in the top part of Table 2. There
are three types of setup costs, namely the full truck-
load (FTL) cost of truck j denoted as Kj , the minor
setup cost of item i denoted as ki, and the other fixed
major setup cost Ko. The FTL cost Kj may depend
on the truck size; for instance, the 18-wheel truck may
have a larger FTL cost than the 6-wheel truck. Simi-
larly, the maximum and minimum temperature points,
yLj and yUj , may be different for each truck. The cost
Kj also includes the pre-trip cost associated with pre-
cooling trucks, which may take upto a few hours. The
minor setup cost of each item, ki, may include the pro-
curement cost such as the cost of order approval and
receipt, the billing cost and the cost of incoming inspec-
tion. In practice, the capacity κj is slightly below the
total truck volume, since the total truck volume may
be sufficient, but the shipments may not fit inside the
truck due to their different shapes. This is sometimes
referred to as stacking loss. In practice, the capacity κj
is approximately 80 percent of the total truck volume.
Throughout this article, let N denote the set of natu-

ral number, and let (x)+ = max(x, 0) denote the posi-
tive part of a real number x.

2.1. Deterministic Demand

Assume that demand is deterministic. Let di be the
demand rate of item i. Recall the standard JRP, we want
to determine the family cycle time or the base cycle T
and the cycle time of each item, so that the average total
cost is minimized. The cycle time of item i, the time
interval between two consecutive replenishment times
of item i, is Ti = miT where mi ∈ N. Under the
assumption that demand is deterministic, determining
the cycle time Ti is equivalent to determining the order
quantity qi since qi = diTi for each item i. The cycle
time Ti is the time supply of item i, since the replenish-
ment quantity, qi, will last for Ti time units. The family
cycle time is the time intervals between replenishments
of the family, and item i will be included in everymith
replenishment of the family. Also under the determin-
istic demand assumption, the zero inventory ordering
property holds: Every order is received precisely when
an inventory position drops to zero. If lead time is zero,
then an order is placed when a stock level becomes zero.
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Table 1. Key attributes of related literature (1=“Yes”; 0=”No”).

Article Multiprod. Temp. Aging & Stoch. Truck Pricing
Contr. Deteriorat. Demand Cap.

[22] 1 0 0 1 0 1
[23] 1 0 1 0 0 1
[13] 1 1 0 1 0 0
[19] 1 0 1 1 0 0
[24] 0 1 1 0 0 1
[18] 1 0 1 1 0 0
[25] 1 1 1 0 0 1
[26] 0 0 1 0 0 1
[27] 0 1 1 0 0 1
[28] 1 0 0 1 0 0
[7] 1 0 1 0 1 0
[17] 0 0 1 1 0 0
[8] 1 0 1 0 1 0
[29] 1 0 1 1 0 0
[14] 1 0 1 0 0 1
[15] 1 0 1 1 0 0
[30] 1 0 0 0 0 1
[12] 1 1 0 0 0 0
[16] 0 0 1 0 1 0
[9] 1 0 0 0 1 0
Ours 1 1 0 1 1 0
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Fig. 1. Insulated bulkheads in multi-temp truck.
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Table 2. Input parameters and decision variables.

Input parameter
n = number of items
m = number of trucks
p = number of temperature zones in each truck
di = demand rate of item i (unit/time unit)
hi = holding cost of item i (monetary unit/unit/time unit)
ki = minor setup cost of item i (monetary unit/delivery)
Kj = FTL cost of truck j (monetary unit/delivery)
Ko = other fixed major setup cost (monetary unit/delivery)
tUi = upper bound of item i’s target temperature (°C)
tLi = lower bound of item i’s target temperature (°C)
pUi = penalty cost from exceeding upper bound tUi (monetary unit/°C/unit)
pLi = penalty cost from falling below lower bound tLi (monetary unit/°C/unit)
vi = volume of item i (cubic meter/unit)
κj = capacity of truck j (cubic meter)
yLj = minimum temperature point on truck j (°C)
yUj = maximum temperature point on truck j (°C)
L = lead time (time unit)

Decision variable
T = base cycle or family cycle time (time unit)
mi = integer number of T intervals
Ti = cycle time of item i (time unit)
qi = order quantity of item i (unit)

xijk = allocation quantity of item i on truck j in zone k (unit)
yjk = temperature point of truck j in zone k (°C)
zjk = planned volume of zone k in truck j (cubic meter)
δU+
ijk = positive deviation from upper bound tUi of item i on truck j in zone k (°C)
δU−
ijk = negative deviation from upper bound tUi of item i on truck j in zone k (°C)
δL+ijk = positive deviation from lower bound tLi of item i on truck j in zone k (°C)
δL−ijk = negative deviation from lower bound tLi of item i on truck j in zone k (°C)
uj = binary variable equal to 1 if truck j is used and 0 otherwise
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If lead time is positive, then an order of size qi is placed,
when the inventory position of item i is less than or
equal to diL, the reorder point of item i.
We extend the standard JRP to include the shipping

plan and the temperature control inside each zone in
each truck. We consider a multi-temperature refriger-
ated truck, and the current practice of using a single-
temperature refrigerated truck is a special case of ours.
In the standard JRP, the average total cost includes the
average setup cost and the average holding cost, whereas
in ours, the average penalty cost from temperature vio-
lation is included as well. The temperature violation oc-
curs if the zone temperature falls below the lower bound
of the target temperature of each item, or if it exceeds
the upper bound of the target temperature of each item.
All decision variables are given in the bottom part of Ta-
ble 2. The mathematical programming model is given
as follows:

Min 1

T
(Ko +

m∑
j=1

ujKj)

+
n∑

i=1

(ki
Ti

+
hiqi
2

)
+

n∑
i=1

( 1

Ti

m∑
j=1

p∑
k=1

(pUi δ
U+
ijk + pLi δ

L−
ijk )xijk

)
(1)

subject to:

Ti = miT, ∀i (2)
qi = diTi, ∀i (3)

yjk − δU+
ijk + δU−

ijk = tUi , ∀i, j, k (4)
yjk − δL+ijk + δL−ijk = tLi , ∀i, j, k (5)

n∑
i=1

vixijk ≤ zjk, ∀j, k (6)

p∑
k=1

zjk ≤ κj , ∀j (7)

m∑
j=1

p∑
k=1

xijk = qi, ∀i (8)

p∑
k=1

zjk ≤ κjuj ∀j (9)

mi ∈ N, ∀i (10)
uj ∈ {0, 1}, ∀j

xijk, δ
U+
ijk , δ

U−
ijk , δ

L+
ijk , δ

L−
ijk ≥ 0, ∀i, j, k

yLj ≤ yjk ≤ yUj , ∀j, k

In the objective function (1), the first term is the aver-
age major setup cost, and the second term is the average
minor setup cost and the average holding cost. In the

third term, the second summation is the penalty cost
from violating the temperature target of item i on all
trucks in all zones; we multiply this by the average or-
der frequency of item i (1/Ti) to obtain the average to-
tal penalty cost per time unit. The cycle time of item
i is given in (2), where mi is the integer number of T
intervals that the replenishment quantity of item i, qi,
will last. The order quantity is equal to the demand
rate times the cycle time; see (3). Constraints (4)–(5)
together with the non-negativity constraint are used to
define the deviational variables. Note that δL+ijk (resp.,
δU−
ijk ) does not appear in the objective function, since we
do not get penalized from being over the lower bound
tLi (resp., under the upper bound tUi ). Constraint (6)
states that the total volume across all items in zone j in
truck k is at most its planned volume zjk. The truck
capacity constraint is given in (7). Constraint (8) states
that the sum of units of item i in all trucks and all zones
must be equal to the replenishment quantity qi. In (9),
the binary uj must be 1 if truck j is used. Since item
i will be included in every mith replenishment of the
family,mi needs to be a natural number as in (10).
In fact, the objective function in (1) is the upper

bound on the average total cost, since we assume that
the truck temperature remains the same for all replen-
ishment cycles. If mi = 1 for all i = 1, 2, . . . , n, then
all items are replenished in every cycle, and our objec-
tive function becomes an exact expression. In general,
at the optimal, the value ofmi may be different for each
item i, so the cycle time miT needs not be the same
for all items. In reality, the truck temperature could be
adjusted dynamically for each replenishment cycle, and
the penalty cost would be lower than that in (1). How-
ever, the exact penalty cost has no closed-form expres-
sion. Our model uses the upper bound as an approxi-
mation, served as the abstraction of the reality.
We assume that all trucks have identical pre-specified

routes. The distribution center or a regional warehouse
serves a fixed set of nearby retailers, each of which de-
mands all n items. (The demand rate di is the sum of
all demand rates from all retailers.) Each truck may de-
livery different items, but all trucks must deliver to all
retailers, so that each retailer receives all n items. All re-
tailers locate in one region. Each truck originates from
the distribution center, visits all retailers according to a
pre-specified route, and returns back to the distribution
center. The routing decision can be obtained from solv-
ing a Chinese postman problem, and it is beyond the
scope of this paper. The general vehicle routing prob-
lem is studied in, e.g., [31], [32] and [33]. In this paper,
we determine how to allocate demand on each item in
each temperature zone in each truck. Under the assump-
tion of pre-specified route, the total travel distance of
each truck becomes constant. The transportation cost
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associated with the total travel of each truck is included
in the fixed major setup costKj . This is found in previ-
ous literature such as [9] and [8].

2.2. Stochastic Demand

Assume that demand follows a continuous distribu-
tion, so that the cumulative distribution function (CDF)
is strictly increasing, and the inverse of the CDF is well
defined. Recall that for deterministic demand, the order
quantity for item i is constant among all cycles and equal
to qi = diTi, where Ti = miT is the cycle time of item
i. For stochastic demand, the order quantity for item i
needs not be equal among all cycles, and an order-up-to
level (OUTL), denoted Si is used to determine the order
quantity. If the inventory position of item i is IPi, then
the order quantity is (Si− IPi)+. The order quantity of
item i is equal to the random demand during one cycle,
denoted as Dr

i . In analogous to (3), the expected order
quantity of item i is

Q̄i = E[Dr
i ] = diTi.

In the steady state (equilibrium), the inflow during one
cycle must be equal to the outflow during one cycle.
The inflow is the expected order quantity and the out-
flow is the expected demand during one cycle.
We consider the periodic review system with control

parameters (Ti, Si), where the inventory position is re-
viewed every Ti time unit. This time interval Ti is called
the review period, which is the time that elapses be-
tween consecutive moments at which we know the in-
ventory position. Note that if the demand during every
review period is strictly positive, then an order is placed
at every review period, and the cycle time and the re-
view period are identical. If during a particular review
interval, there is no demand, then no order is placed
at the review period, and the cycle time could be longer
than the review period. We assume that the demand dis-
tribution is chosen such that the probability of the latter
(no demand during the review period) is negligible; this
is often found in practice. The protection period, i.e.,
the interval of time over which a stock-out is possible,
is equal to the sum of the lead time and review period.
For instance, for item i if an inventory position is re-
viewed every month (4 weeks), and it takes two weeks
from which an order is placed until it is received, then
the review period is Ti = 4, and the lead time L = 2;
thus, the protection period is Ti + L = 6, given that
one time unit is one week. The effective demand De

i is
the demand during the production period, Ti +L. The
OUTL Si is determined such that the in-stock proba-
bility is at least the desired cycle service level αi; i.e.,
Pr(De

i ≤ Si) ≥ αi. In each cycle, the expected on-hand

inventory is

Īi =
Q̄i

2
+ E[(Si −De

i )
+],

where E[(Si−De
i )

+] is the expected on-hand inventory
at the end of the cycle, and Q̄i/2 = E[Dr

i ]/2 is the av-
erage cycle stock. Let Fi(·; ℓ) be the CDF of demand
during ℓ time units. The demand in one cycle Dr

i has
the distribution Fi(·;Ti), and the effective demand De

i

has the distribution Fi(·;Ti + L). In each cycle, the ex-
pected number of backorders is

B̄i = E[(De
i − Si)

+] =

∫ ∞

Si

F̄i(t;Ti + L)dt.

Note that the expected on-hand inventory at the end of
the cycle can be expressed as

E[(Si −De
i )

+] = (Si − E[De
i ]) + E[(De

i − Si)
+]

= SSi + B̄i

where the safety stock (SS) is defined as the expected in-
ventory level at the end of cycle.
Additional input parameters are

αi = desired cycle service level of item i

γi = desired probability that the truck
allocation for item i is at least its random
order quantity

bi = backorder cost of item i

(monetary unit/unit/time unit)
gi = shipping penalty cost of item i if its

order quantity exceeds the truck allocation
(monetary unit/unit)

The additional decision variable is

Si = OUTL of item i (unit).

The mathematical programming model is given as fol-
lows:

Min 1

T
(Ko +

m∑
j=1

ujKj) (11)

+
n∑

i=1

(
1

Ti
(ki +

m∑
j=1

p∑
k=1

(pUi δ
U+
ijk + pLi δ

L−
ijk )xijk))

+
n∑

i=1

gi
Ti

E[(Dr
i −

m∑
j=1

p∑
k=1

xijk)
+] (12)

+
n∑

i=1

(hiĪi + biB̄i) (13)
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subject to:

Ti = miT, ∀i
yjk − δU+

ijk + δU−
ijk = tUi , ∀i, j, k

yjk − δL+ijk + δL−ijk = tLi , ∀i, j, k
n∑

i=1

vixijk ≤ zjk, ∀j, k

Pr(Dr
i ≤

m∑
j=1

p∑
k=1

xijk) ≥ γi, ∀i (14)

Pr(De
i ≤ Si) ≥ αi ∀i (15)
p∑

k=1

zjk ≤ κjuj ∀j

mi ∈ N ∀i
uj ∈ {0, 1} ∀j

xijk, δ
U+
ijk , δ

U−
ijk , δ

L+
ijk , δ

L−
ijk ≥ 0, ∀i, j, k

yLj ≤ yj ≤ yUj , ∀j

In the objective function, (12) is the expected penalty
cost if the truck allocation cannot accommodate the en-
tire order quantity, and (13) is the sum of the expected
holding and backorder costs. Constraints (14) and (15)
are chance constraints. In (14), for each item i, we are
100γi percent sure that the entire order quantity Dr

i

does not exceed the truck allocation. In (15), the in-
stock probability is at least αi; i.e., we are 100αi percent
sure that the stock-out does not occur. Let F−1

i (·; ℓ) be
the inverse of the CDF Fi(·; ℓ), i.e., the quantile of de-
mand during ℓ time units. Then, the chance constraints
(14)–(15) can be written as the following lower bounds:

m∑
j=1

p∑
k=1

xijk ≥ F−1
i (γi;Ti) (16)

Si ≥ F−1
i (αi;Ti + L). (17)

Specifically, if we assume that the demand of item i in
each time unit is independent and normally distributed
with mean µi and standard deviation σi. The con-
straints (16)–(17) can be written as

m∑
j=1

p∑
k=1

xijk ≥ µiTi +Φ−1(γi)σi
√
Ti (18)

Si ≥ µi(Ti + L) + Φ−1(αi)
√

Ti + L. (19)

Furthermore, the expected cost in (12) can be computed
using the standard normal loss function L(z) = E[(Z−
z)+] = ϕ(z) − z(1 − Φ(z)). The expected order size
that cannot be accommodated by the truck allocation is

E[(Dr
i −

m∑
j=1

p∑
k=1

xijk)
+] = σi

√
T i L (z)

where
z =

∑m
j=1

∑p
k=1 xijk − µiTi

σi
√
T i

.

3. Analysis

In general, our model is a mix-integer nonlinear opti-
mization problem. In this section, we will consider the
special case with stochastic demand, where we fix the
cycle time of each item Ti (i.e., mi and T ) and the tem-
perature in each zone in each truck yjk, and we optimize
the OUTL Si and the allocation plan xijk. This special
case can be viewed as an initial improvement of the cur-
rent situation, where we try to change only the OUTL
and the allocation plan, leaving the other variables as
currently stand. As a quick win, one can use a clus-
tering algorithm to group items by their minimum and
maximum temperature points. Items in the same cluster
(group) have similar minimum and maximum tempera-
ture points to each other than those in other clusters.
To employ a clustering algorithm, we need to specify
the number of clusters, which should be at most the
maximum number of temperature zones of all trucks.
Then, the temperature in each zone in each truck yjk
could be a “central” temperature point among all items
within the same cluster.

Proposition 1. In the special case wheremi, T and yjk are
fixed, if the binary constraint is relaxed (i.e., 0 ≤ uj ≤ 1
for all j), then the associated continuous optimization is a
convex programming problem.

Proof. Suppose thatmi, T and yjk are fixed for all i, j, k
and that the binary constraint is relaxed, i.e., 0 ≤
uj ≤ 1 for all j. Then, the deviational variables
δU+
ijk , δ

U−
ijk , δ

L+
ijk , δ

L−
ijk are no longer decision variables but

constants. The remaining decision variables are the
OUTL Si and the allocation quantity xijk.
For each item i, for shorthand notation, let xi =

(xijk : j = 1, . . . ,m, k = 1, . . . , p). Note that

E[(Dr
i −

m∑
j=1

p∑
k=1

xijk)
+] = fi(gi(xi))

where fi(z) = E[(Dr − z)+] and gi(xi) =∑m
j=1

∑p
k=1 xijk. Clearly, fi(z) is convex and nonin-

creasing in z, since (d − z)+ is convex and nonincreas-
ing for all d, and gi(xi) is linear (both concave and con-
vex). It follows from B-10 in [34] that fi(gi(xi)) is con-
vex in xi. Since the nonnegative weighted sum of the
convex functions is convex, the allocation penalty cost∑n

i=1
gi
Ti

E[(Dr
i −

∑m
j=1

∑p
k=1 xijk)

+] given in (12) in
the objective is convex in xijk.
Next, consider the sum of the expected holding and

backorder costs
∑n

i=1(hiĪi + biB̄i) given in (13) in the
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objective. For any real numbers x and a, (x − a) =
(x− a)+ − (a− x)+. Then,

hiĪi + biB̄i

= hi(
Q̄i

2
+ E[(Si −De

i )
+]) + bi E[(D

e
i − Si)

+]

= (hi + bi) E[(D
e
i − Si)

+] + hiSi + c̃i

where c̃i = hi(Q̄i/2 − E[De
i ]). Since E[(De

i − Si)
+] is

convex in Si, the sum
∑n

i=1(hiĪi + biB̄i) is also convex
in Si.
We have shown that (12) is convex in xijk and (13) is

convex in Si. In the special case, the other terms in the
objective are constant. Hence, the objective function is
convex in Si and xijk. Recall that the chance constraints
correspond to the lower bounds given in (16) and (17)
and that the other constraints are linear. We conclude
that the special case with the binary relaxation is a con-
vex programming problem.

In the special case with the binary relaxation, Proposi-
tion 1 ensures convex optimization; thus, a local min-
imizer becomes the global minimizer. In the general
case, convex programming cannot be guaranteed. For
instance, if we fix mi and T but determine yjk, xijk
and Si, then the deviational variables δL−ijk and δU+

ijk

would become decision variables. Note that δU+
ijk xijk (or

δL−ijk xijk) is quadratic but neither concave nor convex;
we cannot ensure convexity of the temperature penalty
cost term

∑m
j=1

∑p
k=1(p

U
i δ

U+
ijk + pLi δ

L−
ijk )xijk in the ob-

jective function. In practice, different initial solutions
should be tried multiple times. From our computa-
tional experiences in Section 4, the off-the-shelf opti-
mization solver such as BARON can be used to solve
a medium-sized problem within reasonable time (e.g.,
within an hour in all problem instances in Section 4).
Consider a large-scale problem where the number of

items n may be hundreds or thousands. One feasible
solution is the current policy that the company actually
uses in practice, and we know the review period of each
item Ti, the set of trucks used uj , the temperature of
each zone in each truck yjk and the allocation plan xijk
as well as the OUTL Si. We can construct another feasi-
ble solution by optimizing only the allocation plan xijk
and the OUTL Si while keeping the other as is. We
still have a large number of decision variables; specifi-
cally, if there are m trucks used, then the number of
decision variables are mnp + n = n(mp + 1). From
Proposition 1, it is a convex programming problem, for
which there are several available algorithms such as in-
terior point, gradient projection and ellipsoid methods.
The interior-point methods are reliable and “can solve
problems with hundreds of variables and thousands of
constraints on a current desktop computer, in at most

a few tens of seconds” ([35], page 8). To solve our orig-
inal problem, we could propose a simple heuristic ap-
proach, which consists of two procedures. In the inner-
most procedure, we solve the convex program to find
the allocation plan and the OUTL given the review pe-
riod, the set of trucks used and the temperature. In
the outer-most procedure, we determine these review
period, the set of trucks used and the temperature us-
ing a metaheuristic algorithm, e.g., an evolutionary al-
gorithm, tabu search and simulated annealing.

4. Case Study

In this case study, we consider a joint replenishment
problem of one of the largest modern grocery retailers
in Thailand. We consider n = 18 items sold in the re-
tailers in the Bangkok metropolitan region. Their loca-
tions include Serithai, Ladprao 101, KurngthepKreetha,
Keha Chalhongkrung, Soi Kamnan Yen-Uthid, On
Nuch 80, Phaholyothin 52, Sangkha Santisuk, Ta-
ladWongsakorn, Phetchakasem 114, Charan-Sanitwong
15 and Ramintra 67. These retailers are replenished
from the distribution center located in the outskirt of
Bangkok.
The input parameters for all items are given in Ta-

ble 3. The highest demand item, raw meat (RWM i =
14), has the daily demand of 2397 units, and each unit
requires 0.039 cubic meter, so the daily volume becomes
93.56 cubic meters. The minimum and maximum tem-
peratures of the raw meat are -2 and 4 °C, respectively.
The lowest demand item, chili paste (CHP i = 2), has
the daily demand of 10 units, and each unit requires
0.0033 cubic meter, so the daily volume becomes 0.03
cubic meter. The minimum and maximum tempera-
tures of the chili paste are 5 and 25 °C, respectively. Fig-
ure 2 shows the minimum and maximum temperatures
of all items; the size of each point corresponds to the
daily volume divi (given in cubic meter/day) for each
item.
The company has three 18-wheel (18W) trucks and

three 4-wheel (4W) trucks for the delivery from the dis-
tribution center to these retailers. Let the number of
trucks be m = 6. The three 18W trucks are called j =
1, 2, 3, and the three 4W trucks are called j = 4, 5, 6.
For each truck type, the dimension and the correspond-
ing volume as well as the FTL cost are shown in Table 4.
When an order is placed, the company incurs the other
fixed ordering cost ofKo = 200 THB. Assume that the
penalty cost associated with exceeding the temperature
upper bound pUi = 0.5 THB/°C/unit, and that with
falling from the temperature lower bound pLi = 0.5
THB/°C/unit.
The current policy is as follows: All items are re-

plenished at the same time; their cycle time is one day:
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Table 3. Input parameters for deterministic JRP.

Item Code Description
Min Max Daily Unit Unit Holding
Temp Temp Demand Volume Cost
(°C) (°C) (unit/day) (m3/unit) (THB/unit/day)

i tLi tUi di vi hi

1 CHO Chocolate 18 21 25 0.002044 0.1
2 CHP Chili Paste 5 25 10 0.003288 0.1
3 DES Dessert 5 15 135 0.002327 0.3
4 DRY Dry Goods 15 25 44 0.023501 0.1
5 EGG Egg 7 20 103 0.046069 0.1
6 FRO Frozen Food -20 0 169 0.032325 0.5
7 FRT Fruit 5 13 254 0.044995 0.3
8 JIC Juice 7 20 91 0.005463 0.1
9 MLK Milk 10 20 1477 0.007719 0.1
10 NOD Noodle 5 20 64 0.011067 0.1
11 PCM Processed Meat 5 15 889 0.007894 0.3
12 PST Pastry 20 25 878 0.005782 0.1
13 RDM Ready Meal 15 20 185 0.003072 0.1
14 RWM Raw Meat -2 4 2397 0.039030 0.5
15 SAU Sauce 15 25 37 0.005621 0.1
16 TFU Tofu 15 25 407 0.012181 0.1
17 VEG Vegetable 2 5 1573 0.026141 0.3
18 YOG Yogurt 1 5 1342 0.005849 0.3
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DRY

EGG
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FRT

MLKNOD

PST

RDM

RWM

VEG

0

10

20

-20 -10 0 10 20
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T
em
p

DailyVolume

25

50

75

Fig. 2. Minimum and maximum temperatures as well as daily volumes of all items. The unit of temperature is
°C, and that of the daily volume is cubic meter per day.

Table 4. Truck information.

Truck Width x Length x Height Truck Volume FTL Cost (Min,Max)
Type (m×m×m) No. (m3) (THB/truck) Temp. (°C)

κj Kj (yLj , y
U
j )

18W 2.50 x 12.00 x 2.00 j ∈ {1, 2, 3} 60 1022 (-5,15)
4W 1.70 x 3.12 x 1.70 j ∈ {4, 5, 6} 9 340 (-5,15)
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Ti = 1 for all i = 1, 2, . . . , n. Thus, their order size
is equal to their daily demand: qi = diTi. Currently,
one truck has one single temperature zone. In the case
study, we will quantify the monetary benefit from us-
ing the state-of-the-art “multi-temp” truck. In the pro-
posed policy, two bulkheads are used, and the multi-
temp truck has three different temperature zones; see
Fig. 1. We determine the temperature and the volume
of each zones as well as the cycle time of each item so
that the average daily total cost is minimized. In our
numerical example, we write all models using AMPL
and solve them using the BARON solver on the NEOS
Server.
We consider two current policies, called C1 and C2,

where the cycle times of all items are equal to one
day. C1 uses 5 trucks (three 18W and two 4W trucks),
whereas C2 uses 6 trucks (three 18W and three 4W
trucks). We propose three policies, called P1, P2 and P3.
For P1, the cycle times of all items are equal to one day,
but each truck can have up to three temperature zones.
For P2 and P3, we optimize the cycle time of each item.
Each truck has one temperature zone for P2, whereas
each truck can have up to three temperature zones for
P3.

Deterministic demand

Assume that the demand is deterministic. The aver-
age daily total cost and key performance measures of all
policies are provided in Table 5. The truck volume uti-
lization for C1 with 5 trucks is slightly higher than that
for C2 with 6 trucks. Since C1 uses one truck less than
C2, the average daily FTL (major setup) cost for C1 is
smaller than for C2. However, the average daily tem-
perature penalty cost for C1 is higher than that for C2,
since C2 has one more temperature zone (one truck),
compared to C1. In our proposed policy P1, the cycle
times of all items are equal to one day, but we allow each
truck to have at most three temperature zones. P1 uses
five trucks as in C1; thus, the FTL cost of P1 is identical
to that of P2. In both P1 and P3, multi-temp trucks are
used, their temperature penalties are the smallest. The
temperature in each zone is shown in the bottom part
of Table 5. For instance, for P1, the 1st 18-wheel truck
has two zones with temperatures of 15 and 5 °C, and the
2nd 18-wheel truck has two zones with temperatures of
15 and 4 °C, and so on. P1 improve the current poli-
cies (C1 and C2) by using the multi-temp trucks while
keeping the cycle time of one day for all items. Alterna-
tively, we can improve the current policies (C1 and C2)
by jointly optimizing the cycle times of all items while
a single-temp truck is used: In P2, the optimal base cy-
cle is T = 0.81 day, and the low-demand items (namely
CHO, CHP, RDM and SAU) have longer cycle times.

In the proposed policy P3, we optimize both the cycle
time and the number of temperature zones; thus, P3 has
the lowest average daily cost. For each policy, the cy-
cle time of each item is provided in Table 6. For policies
C1, C2 and P1, all items are replenished at the same time
(mi = 1 for all i), so its order size is equal to the daily
demand (qi = di for all i). In P3, the optimal base cycle
is 0.59 day or approximately 14 hours: For each item i,
its cycle time is Ti = miT . For instance, consider Item
i = 3 that has the lowest daily demand rate (di = 10
unit/day). It is replenished once every three base cy-
cles, and its optimal cycle time is Ti = 3(0.59) = 1.77
day, which is the longest. Its order size has to cover the
total demand during 1.77 day, i.e., qi = diTi ≈ 18 unit.
Table 7 shows the allocation plan, i.e., the volume

(given in cubic meter) and the temperature (given in
°C) in each zone (denoted after the . symbol) in each
truck for all five policies, namely C1, C2, P1, P2 and
P3. For example, in P1 #4.3 denotes truck j = 4 (the
first 4W truck) and zone 3, and #5.1 denotes truck j = 5
(the second 4W truck) and zone 1. For C1, C2 and P2,
each truck has a single temperature zone, so there is no
. symbol. The top three rows show the minimum and
maximum temperature of all items. These rows show
the input parameters, whereas the rest of the table show
the decision variables. The decision variable yjk, the
temperature point of truck j in zone k, is provided in
column Temp. The decision variable xijk, the alloca-
tion quantity of item i on truck j in zone k, is provided
in column Volume Allocation. We put * next to the
volume to indicate the temperature violation. For in-
stance, P3 uses two 18W trucks: the 1st truck has two
zones with temperatures 5 and 15 °C, and the 2nd truck
has two zones with temperatures 15 and 0 °C. In the 1st
truck and in the 2nd zone (denoted as#1.2), we allocate
x112 = 30 cubic meters for Item 1, x412 = 26 cubic
meters for Item 4, and so on. Item 1 incurs the temper-
ature penalty, since its minimum temperature is 18 °C,
but the temperature inside this zone is 15 °C.

Stochastic demand

For the stochastic demand, we consider the periodic-
review OUTL system. Assume that the daily demand
for item i is normally distributed with the mean of di
and the standard deviation of 0.025di; i.e., the standard
deviation is 2.5% of the mean demand. Assume that
backorder cost bi = 0; in other words, an optimistic
view is taken.
Suppose that the cycle time is fixed to one day for

all items. We vary the cycle service level from 90% to
99.9% under different scenarios as shown in Fig. 3.
The expected daily total cost is smallest, when the

lead time is negligible (L = 0), and the multi-temp
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Table 5. Summary of all policies for deterministic demand.

Policy
Cycle time = 1 day Optimal cycle time

Single-temp Multi-temp Single-temp Multi-temp
C1 C2 P1 P2 P3

Cycle time 1 1 1 Varies by items
Max temp zones per truck 1 1 3 1 3
18-wheel trucks used 3 3 3 3 2
4-wheel trucks used 2 3 2 0 0
Truck volume utilization 0.990 0.947 0.990 0.889 1.000
Total temp zones 5 6 11 3 4
Total cost 9476 8188 7815 8003 7210
Temp penalty cost 3894 2266 2233 2571 2233
FTL cost 3946 4286 3946 4028 3800
Minor setup cost 200 200 200 223 291
Holding cost 1437 1437 1437 1181 887
Base cycle 1 1 1 0.811 0.591
Temp in 18W truck (j = 1) 15 -2 (15,5) 15 (15,5)
Temp in 18W truck (j = 2) 2 5 (15,4) 4 (15,0)
Temp in 18W truck (j = 3) 0 2 (7,-2) 1 N/A
Temp in 4W truck (j = 4) 1.00 15 (15,13,-2) N/A N/A
Temp in 4W truck (j = 5) -2 10 (10,5) N/A N/A
Temp in 4W truck (j = 6) N/A 15 N/A N/A N/A

Table 6. Cycle time in all policies.

Input parameter C1,C2,P1 (T = 1) P2 (T = 0.81) P3 (T = 0.59)
Item i Code di qi mi Ti qi mi Ti qi mi Ti

1 CHO 25 25 1 1 81 4 3.24 30 2 1.18
2 CHP 10 10 1 1 57 7 5.68 18 3 1.77
3 DES 135 135 1 1 110 1 0.81 80 1 0.59
4 DRY 44 44 1 1 36 1 0.81 26 1 0.59
5 EGG 103 103 1 1 84 1 0.81 61 1 0.59
6 FRO 169 169 1 1 137 1 0.81 100 1 0.59
7 FRT 254 254 1 1 206 1 0.81 150 1 0.59
8 JIC 91 91 1 1 74 1 0.81 108 2 1.18
9 MLK 1477 1477 1 1 1198 1 0.81 873 1 0.59
10 NOD 64 64 1 1 52 1 0.81 76 2 1.18
11 PCM 889 889 1 1 721 1 0.81 525 1 0.59
12 PST 878 878 1 1 712 1 0.81 1037 2 1.18
13 RDM 185 185 1 1 300 2 1.62 219 2 1.18
14 RWM 2397 2397 1 1 1944 1 0.81 1416 1 0.59
15 SAU 37 37 1 1 90 3 2.43 44 2 1.18
16 TFU 407 407 1 1 330 1 0.81 241 1 0.59
17 VEG 1573 1573 1 1 1276 1 0.81 929 1 0.59
18 YOG 1342 1342 1 1 1089 1 0.81 793 1 0.59
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Table 8. Summary of all policies for stochastic demand.

Policy
Cycle time = 1 day Optimal cycle time

Single-temp Multi-temp Single-temp Multi-temp
C2′ P1′ P2′ P3′

Cycle time 1 1 Varies by items
Max temp zones per truck 1 3 1 3
18-wheel trucks used 3 3 3 3
4-wheel trucks used 3 3 0 0
Truck volume utilization 1.000 0.950 0.930 1.000
Total temp zones 6 15 3 7
Total cost 8469 8405 8358 7817
Temp penalty cost 2406 2342 2625 2438
FTL cost 4286 4286 4253 3787
Minor setup cost 200 200 218 200
Holding cost 1577 1577 1262 1392
Base cycle 1 1 0.768 0.862
Temp in 18W truck (j = 1) 5 (15,5) 0 (1,4,15)
Temp in 18W truck (j = 2) 4 4 15 (5,15)
Temp in 18W truck (j = 3) -2 (4,-5) 3 (4,15)
Temp in 4W truck (j = 4) 15 (15,-5) N/A N/A
Temp in 4W truck (j = 5) 15 (15,-5) N/A N/A
Temp in 4W truck (j = 6) 15 15 N/A N/A
∆ Total cost 281 590 355 607

8200
8300
8400
8500
8600
8700
8800
8900
9000

90.00% 91.00% 92.00% 93.00% 94.00% 95.00% 96.00% 97.00% 98.00% 99.00% 100.00%

Expected daily total cost

L = 0, single‐temp L = 0.5, single‐temp

L = 0, multi‐temp L = 0.5, multi‐temp

Fig. 3. Expected daily total costs under different scenarios.
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trucks are used. It is largest, when the lead time is posi-
tive (here, L = 0.5 day), and the single-temp trucks are
used. Reducing the lead time and using the multi-temp
truck can reduce the cost. In this case study, as we can
see from Fig. 3, the cost saving from multi-temp truck
(the yellow line) is larger than that of lead time reduc-
tion (the blue line). Furthermore, Fig. 3 clearly shows
the trade-off between cost and service level. As the cy-
cle service level increases, we need to keep more safety
stock, and the expected cost increases.
For the rest of this section, we assume that lead time is

zero and that the safety factor is 1.96, which corresponds
to the cycle service level of 97.5%. In analogous to C2,
P1, P2 and P3 in the case of deterministic demand, we
consider the current policy C2′ and propose three poli-
cies P1′, P2′ and P3′. As in C2, C2′ fixes the cycle time
to be one day for all items and uses single-temp trucks.
As in P1, P1′ fixes the cycle time to be one day for all
items but uses multi-temp trucks. As in P2, P2′ opti-
mizes the cycle time and uses single-temp trucks. As in
P3, P3′ optimizes both the cycle time and uses multi-
temp trucks. Recall that the truck utilization of C1 is
larger than that of C2, but the average total cost asso-
ciated with C1 is smaller than that with C2; thus, for
the case of stochastic demand, we do not consider C1,
and we will see that the truck utilization for C2′ is 100
percent.
We summarize the performance measures and tem-

perature points of all four policies in Table 8. For C2′,
the temperatures inside the 18W trucks are 5, 4 and -2
°C, and the temperature inside the 4W truck is 15 °C.
For P1′, the first 18W truck has two temperature zones,
where temperatures are 15 and 5 °C. The second 18W
truck has one temperature zone with 4 °C. The third
18W truck has two temperature zones, where tempera-
tures are 4 and -5 °C. The first two 4W trucks (j = 4, 5)
have two temperature zones, where temperatures are 15
and -5 °C, and the last 4W truck (j = 6) has one temper-
ature zone with 15 °C. In C2′ and P1′, the cycle time is
fixed to be 1 day, whereas in P2′ and P3′, the cycle time
is optimized. The optimal base cases in P2′ and P3′ are
0.768 and 0.862 day, respectively. In P2′ and P3′, we use
only 18W trucks (j = 1, 2, 3). For P2′, the temperatures
inside the 18W trucks are 0, 15 and 3 °C. For P3′, the
first 18W truck has three temperature zones, where tem-
peratures are 1, 4 and 15 °C. The second 18W truck has
two temperature zones, where temperatures are 5 and
15 °C. The last 18W truck has two temperature zones,
where temperatures are 4 and 15 °C. The last row in
Table 8 shows the increase in total cost due to demand
uncertainty. Suppose that the cycle time is one day and
that the single-temp trucks are used. Then, the increase
in total cost due to demand uncertainty is the difference
between the total cost for stochastic demand (Column

C2′ in Table 8) and that for deterministic demand (Col-
umn C2 in Table 5), 8469 − 8188 = 281. This is the
smallest increase among all four cases. The largest in-
crease of 607 occurs when the cycle time is optimized
and the multi-temp trucks are used; the difference be-
tween the total cost for stochastic demand (Column P3′
in Table 8) and that for deterministic demand (Column
P3 in Table 5) is 7817− 7210 = 607.

5. Conclusion

In summary, we propose a CJRP with refrigerated
FTL delivery. The truck capacity is formulated as a
hard constraint, whereas the temperature target is for-
mulated as a soft constraint. In the deterministic model,
we determine the cycle time of each product, the tem-
perature of each zone in each truck, and the alloca-
tion plan that specifies how many units of each prod-
uct would be delivered in each zone in each truck. For
each product with constant demand, the order quantity
remains the same for all cycles. When demand is ran-
dom, the order quantity of each product is determined
from the order-up-to level and its current inventory po-
sition. In our stochastic model, the order-up-to level is
chosen to maintain the desired in-stock probability of
each product. In the case study, our model is applied
to solve the joint replenishment problem at one of the
largest modern grocery retailers in Thailand. We quan-
tify the monetary benefit from using the multi-temp
truck and the lead time reduction initiative.
A few extensions are as follows. In the current model,

we assume that all units of each product are identical.
We could extend our model to capture aging products:
The old aging units may be more sensitive to the tem-
perature violation than the new units. Furthermore, the
customer demand, especially for perishable products,
usually depends on the product quality, which can be af-
fected by both the age and the temperature violation. In
the constrained JRP, items could be picked up from dif-
ferent locations, we could include the routing decision,
and the temperature would be dynamic, since the truck
temperature at the beginning of the journey (when only
few items have been picked up by the truck) could be
different from that at the end of the journey (when all
items have been picked up). We hope to pursue these or
related issues in the future.
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