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Abstract. The new approach of the Weiner model for identifying drop test dynamics of a 
light amphibious airplane is presented in this paper. Unlike the traditional identification 
method of the Hammerstein model using LS-SVM with Gaussian radial basis serving as the 
kernel function, the small-signal excitation input is used to estimate the linear block of the 
Weiner model. Then, the static nonlinearity function of the model is identified through LS-
SVM. The RMSE of the proposed Weiner model is 0.48805 and 0.38246 for the strut and 
wheel of the landing gear. The proposed Weiner model has better identification 
performance than the Hammerstein model and the traditional governing equation of the 
landing gear. The drop experiment of the light amphibious airplane is carried out not only 
to prove standard airworthiness compliance but also to verify the identifiability, accuracy, 
and performance of system identification. 
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1. Introduction 
 
The technique of system identification is concerned 

with the creation of mathematical models for dynamic 
systems from the data they receive and produce [1]. This 
technique has a wide range of applications, including 
economics, communication, system dynamics, and control 
and data collecting systems. Through the use of 
mathematical models, it is possible to get a better 
knowledge of a system's features, which may then be used 
to explain, predict, and regulate its behavior. To get the 
best possible system identification, it is essential to have a 
comprehensive understanding of the system's historical 
behavior, as well as to use properly chosen representation 
models and a systematic approach to system identification. 

Nonlinearities exist to some extent in all real 
processes. When nonlinearities are weak, linear models 
can be used to forecast or design control systems. In 
today's literature [2–6], there are several methods for 
creating linear models. Linear models can only be used in 
a restricted range when nonlinearities are dominant. A 
nonlinear model identification should be employed if the 
process has a wide working range or behaves strangely. 
Using a rigorous first-principles formulation is an 
alternative to nonlinear system modeling [7–9]. Another 
technique for identifying processes is to use soft 
computing technologies. 

The selection of an appropriate model structure is one 
of the most difficult problems in nonlinear system 
identification. A variety of designs are now available, 
including neural networks [10], block-oriented models 
[11], Volterra series [12], NARMAX models [13-14], and 
fuzzy models [15]. The simplicity and flexibility of block-
oriented models make them attractive for modeling 
nonlinear dynamic systems [16–21]. Wiener and 
Hammerstein models have been shown to be capable of 
representing a paralyzed skeletal muscle [22], a limb reflex 
control system [23], a DC-DC converter [24], a heat 
exchanger system, and a superheater-desuperheater in a 
boiler system [26], as well as a thermal process [27]. Block-
oriented models are used to implement current control 
techniques [28–32], as well as the capacity to estimate 
parameters. 

The article investigates block-oriented models, a 
family of nonlinear representations composed of linear 
time-invariant (LTI) systems linked with nonlinear static 
functions (NL) [33]. The Wiener (LTI-NL), Hammerstein 
(NL-LTI), Wiener-Hammerstein (LTI-NL-LTI), and 
Hammerstein-Wiener (NL-LTI-NL) models are the most 
common in this category [34]. Numerous techniques for 
identifying these models are now available in the literature. 
Lopes dos Santos et al. [35] provide an intriguing 
categorization of contributions made during the past 
decade. 

In 1979 and 1995, Vapnik [36,37] developed support 
vector machines (SVMs), which have since become an 
important component of machine learning research across 
the globe [38]. It is a fundamental collection of supervised 
learning techniques used for data categorization and 

regression that is often referred to as the SVM. With the 
proper kernel function, the SVM is capable of essentially 
mapping a nonlinear training function to a high-
dimensional space and computing a hyperplane solution 
for the training function [39]. The hyperplane classifier 
may be able to segregate data in hyperplane without the 
need for real data transformation, which may save a 
significant amount of computing time and storage space 
over time. Consequently, the SVM can model any 
nonlinear function by mapping a nonlinear signal onto the 
hyperplane and solve for important parameters on the 
basis of a linear function using a nonlinear signal mapping 
technique [40-42]. 

Recently, Least Squares-Support Vector Machines 
(LS-SVM) have also been applied in the identification of 
Hammerstein and Weiner type systems.  Ressendiz et al. 
[43] investigated the online detection of nonlinear systems 
using the LS-SVM method.  Viana et al. [44] utilized 
nature-inspired optimization to find a nonlinear landing 
gear model in the frequency domain. Tarhouni et al. [45] 
developed a nonlinear identification method based on 
multi-kernel least support but restricted to just two kernel 
functions in the algorithm. Falck et al. [46] introduced 
Least-Squares Support Vector Machines for the 
identification  of Weiner-Hammerstein systems. Sjoberg et 
al. [47] proposed two algorithms based on the best slit of 
a linear model applied to Wiener-Hammerstein models. 
Ding et al. [48] investigated the discharge coefficient of 
landing gear using a dynamic equation of motion and a 
comparison of CFD results on a model with a dynamic 
drop. 

Several scholars have suggested a technique for 
identifying Hammerstein systems with limited memory 
using LS-SVM. Although many techniques are available in 
the literature for identifying Wiener type systems, one way 
suggested in some publications is to utilize a method for 
identifying Hammerstein type systems. It was found via 
simulations that this technique may provide inaccurate 
estimated results. Rather than that, this paper proposed a 
new approach for identifying Wiener type systems via the 
use of randomly small signal inputs. This method enables 
the estimation of the model's linear and nonlinear 
components independently, as well as the estimation of 
the system's overall parameters. 

This article is structured as follows: Section 2 
introduces the landing gear shock strut model of an 
amphibious aircraft. Due to the fact that the shock strut 
contained hydraulic fluid and nitrogen gas under pressure, 
the nitrogen gas functioned as a spring, and the hydraulic 
fluid flowed through the internal valve, creating resistive 
damping. The dynamics of shock struts in general are 
nonlinear and are seldom described by the governing 
equation of motion. Section 3 discusses block-oriented 
models of Hammerstein models as well as the 
mathematical foundations of the least squares supporting 
vector machine used to find the nonlinear model. Section 
4 introduces a novel approach for acquiring the Weiner 
model's linear parameters and nonlinear function through 
a random small input method. Section 5 demonstrated the 
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amphibious airplane's drop test experiment, 
demonstrating the dynamic reaction of the real drop and 
identifying models with discussion. The last part 
summarizes the findings and discusses possible future 
research studies. 

 

2. Model of a Shock Strut Landing Gear 
 

 
 
Fig. 1. A light amphibious airplane with a shock strut 
suspension. 
 

A retractable main landing gear with a shock strut as 
an absorption element has been designed and installed in 
a small amphibious aircraft in order to enhance safety and 
stability during routine or emergency landings on runways, 
as shown in Fig. 1. Figures 2 and 3 provide a schematic 
depiction of the shock strut. The primary construction of 
the shock strut is composed of aluminum alloy, which has 
the advantage of being lightweight and easy to manage. 
Nitrogen gas under pressure is contained in the lower 
chamber of the strut, while hydraulic fluid is contained in 
the upper chamber. Two flow control valves are in 
sequence at the tip of the piston. These valves control oil 
flow in both directions: the first valve's larger valve orifice 
controls retraction, while the second valve's smaller valve 
aperture regulates extension. The resulting hydraulic 
pressure decrease across the orifice opposes strut closure, 
and the resulting fluid turbulence absorbs and dissipates 
impact energy effectively [49].  

 
Fig. 2.  Diagram of a shock strut. 

 
The force generated inside the strut causes the 

fuselage body to accelerate, as well as the lower portion of 
the strut to accelerate and the tire to deflect [50]. It is self-
evident that the strut and tire have a reciprocal effect on 
one another's behavior, and this must be taken into 
account while evaluating the system.  

The total axial force owing to hydraulic resistance, 
nitrogen gas compression, and internal friction force is 
calculated as follows: 

𝐹𝑠 = (𝑝ℎ − 𝑝𝑎)(𝐴1 − 𝐴𝑝) + 𝑝𝑎𝐴2 + 𝐹𝑓 

     = (𝑝ℎ − 𝑝𝑎)𝐴ℎ + 𝑝𝑎𝐴𝑎+𝐹𝑓 

     = 𝐹ℎ + 𝐹𝑎+ 𝐹𝑓                                             (1) 

 

where 𝐴1  denotes the inner cylinder's internal cross-

sectional area, 𝐴2  denotes the inner cylinder's external 

cross-sectional area, 𝐴𝑝 denotes the rod's internal cross-

sectional area, 𝐴ℎ denotes the hydraulic area, 𝐴𝑎 denotes 

the pneumatic area, and 𝑝ℎ − 𝑝𝑎  denotes the pressure 
drop across the orifice. Thus, the total axial force is equal 

to the sum of the hydraulic force 𝐹ℎ , the pneumatic force 

𝐹𝑎 , and the friction force 𝐹𝑓 .  

The discharge coefficient ( 𝐶𝑑 ) equation and the 
telescoping velocity may be used to calculate hydraulic 

force. When both compression and expansion strokes (𝑠) 
are included, the hydraulic force may be represented as the 
following equation: 

 

  𝐹ℎ =
𝑠̇

|𝑠̇|

𝜌𝐴ℎ
3

2(𝐶𝑑𝐴𝑛)2
𝑠̇2                     (2) 

 
The pneumatic force in the upper chamber is defined 

by the initial strut inflation pressure, the area subjected to 
the air pressure, and the instantaneous compression ratio 
in line with the polytrophic law of gas compression, which 
may be stated as follows:     

 

              𝐹𝑎 = 𝑝𝑎0
𝐴𝑎 (

𝑉0

𝑉0−𝐴𝑎𝑠
)

𝑛
            (3) 

 

where 𝑝𝑎0
 denotes the gas pressure in the upper chamber 

of a completely expanded strut and 𝑉0  denotes the gas 
volume of a fully extended strut. The axial friction force 
in the shock strut is equal to the total of the friction forces 
produced by each bearing connected to the inner and 
outer cylinders, and may be written as follows: 
 

         𝐹𝑓 =
𝑠̇

|𝑠̇|
(𝜇1|𝐹1| + 𝜇2|𝐹2|)                  (4)    

 

When 𝜇1  is the friction coefficient for the upper 

bearing, 𝐹1 is the normal force on the upper bearing, and 

𝜇2 is the friction coefficient for the lower bearing, 𝐹2 is 
the normal force on the lower bearing. 

During the landing process, the vertical reaction force 
resulting from the tire compression can be expressed by: 

 

𝐹𝑣 = (1 + 𝐶𝑇𝛿̇)𝑓(𝛿)                     (5) 

 

where 𝐶𝑇 is the tire vertical damping coefficient, 𝛿 is the 

tire hub vertical displacement, 𝛿̇  is the tire hub vertical 

speed, and 𝑓(𝛿) is the tire static compression function. 
Without consideration of the wheel rotation, the 

landing gear equation of motion can be expressed by: 
 

𝑚1𝑧̈1 = 𝑚1𝑔 − (𝐹ℎ + 𝐹𝑎+ 𝐹𝑓) 𝑐𝑜𝑠 𝜃            (6) 
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𝑚2𝑧̈2 = 𝑚2𝑔 − (𝐹ℎ + 𝐹𝑎+ 𝐹𝑓) 𝑐𝑜𝑠 𝜃 − 𝐹𝑣    (7) 

 
             

 

 
 

Fig. 3.  Schematic diagram of landing gear. 
 

The entire axial force produced inside the strut 
accelerates the fuselage body, as well as the lower portion 
of the strut, which accelerates and causes the tire to deflect. 
However, since the hydraulic force, pneumatic force, 
friction force, and tire reaction force are all inherently 
nonlinear functions, the landing gear's dynamic response 
can only be determined to a limited extent and with great 
difficulty. A candidate nonlinear identification model is 
proposed to identify and validate the dynamic response of 
the landing gear, in addition to solving the equation of 
motion of the landing gear in Eq. (6) and (7). The 
candidate nonlinear identification model provides a 
significantly more accurate model response than the 
traditional governing equation of motion. 

 
3. Hammerstein Model Identification  

 
Assuming the Hammerstein Model composes of the 

static nonlinearity cascade with the linear system as shown 
in Fig. 4 , the dynamics of the whole structure can be given 
as:   

 𝑦𝑘 = ∑𝑎𝑖

𝑛

𝑖=1

𝑦𝑘−𝑖 + ∑ 𝑏𝑗

𝑚

𝑗=0

𝑓( 𝑢𝑘−𝑗) + 𝑒𝑘           (8)  

 

where 𝑢𝑘 and 𝑦𝑘 denote the input and measured output. 

𝑒𝑘  denoted equation error and assumed to be white. 𝑚 

and 𝑛  are the order of the numerator and denominator in 
the transfer function of the linear model. The model is so-
called “nonlinear Auto-Regressive model with 
eXogeneous inputs" (NARX), which is one of the most 
studied model structures in the system identification [51].  

 
Fig. 4.  Hammerstein Model. 

 

In order to apply the least square support vector 
machines (LS-SVM) function estimation into the model 
[52], we assume the following structure for the static 
nonlinearity. 

 
𝑓(𝑢) = 𝑤𝑇𝜑(𝑢) + 𝑑                                 (9) 

 

where 𝑤 ∈ ℝ and 𝑑 ∈ ℝ are unknown parameters to be 

found, and 𝜑(. ) is called the feature map; its role is to map 
the data into a higher dimensional feature space, then Eq. 
(8) becomes:   
 

𝑦𝑘 = ∑ 𝑎𝑖

𝑛

𝑖=1

𝑦𝑘−𝑖 + ∑ 𝑏𝑗

𝑚

𝑗=0

(𝑤)𝑇𝜑(𝑢𝑘−𝑗) + 𝑑 + 𝑒𝑘    (10) 

 

To estimate 𝑎𝑖, 𝑏𝑗 , and 𝑓 from a finite set of measurement, 

one can solve for the convex constraint optimization 
problem as follow: 
  

min 
𝑤, 𝑎, 𝑏, 𝑑, 𝑒

 ℱ(𝑤, 𝑒𝑘) =
1

2
‖𝑤‖2 +

𝛾

2
∑ 𝑒𝑘

2

𝑛

𝑘=𝑟

                   (11) 

  𝑠. 𝑡.          

𝑦𝑘 = ∑ 𝑎𝑖

𝑛

𝑖=1

𝑦𝑘−𝑖 + ∑ 𝑏𝑗

𝑚

𝑗=0

(𝑤𝑇𝜑(𝑢𝑘−𝑗) + 𝑑) + 𝑒𝑘        (12) 

 
where  𝑟 = 𝑚𝑎𝑥(𝑚, 𝑛) + 1, and 𝛾  is the regularization 
parameter. Ones can construct the Lagrangian to solve 
for the constraint optimization problem as follow: 
 
ℒ(𝑤, 𝑎, 𝑏, 𝑑, 𝑒𝑘 , 𝛼) 

= ℱ(𝑤, 𝑒𝑘) − ∑ 𝛼𝑘 (∑ 𝑎𝑖

𝑛

𝑖=1

𝑦𝑘−𝑖

𝑁

𝑘=1

+ ∑𝑏𝑗

𝑚

𝑗=0

(𝑤𝑇𝜑(𝑢𝑘−𝑗) + 𝑑)

+ 𝑒𝑘 − 𝑦𝑘) 

(13) 

The optimization Eq. (13) is highly nonlinear, and it is 
almost impossible to find the solution without the known 

value of  𝑏𝑗  . Therefore, the sub-optimization using 

collinearity constraint, by considering the coefficient 𝑏𝑗  as  

a part of the SVM parameters, can make Eq. (10) as: 
 

𝑦𝑘 = ∑ 𝑎𝑖

𝑛

𝑖=1

𝑦𝑘−𝑖 + ∑ 𝑤𝑇𝜑(𝑢𝑘−𝑗)

𝑚

𝑗=0

+ 𝑑 + 𝑒𝑘            (14) 

 
The new optimization problem become: 

min 
𝑤𝑗 , 𝑎, 𝑑, 𝑒𝑘

ℱ(𝑤𝑗 , 𝑒𝑘) =
1

2
∑𝑤𝑗

𝑇𝑤𝑗 +
𝛾

2
∑ 𝑒𝑘

2           (15)

𝑁

𝑘=1

𝑚

𝑗=0

 

𝑠. 𝑡.   

∑ 𝑎𝑖

𝑛

𝑖=1

𝑦𝑘−𝑖 + ∑𝑤𝑗
𝑇𝜑(𝑢𝑘−𝑗)

𝑚

𝑗=0

+ 𝑑 + 𝑒𝑘 − 𝑦𝑘   = 0   (16) 

f(.)

Static	
Nonlinearity

Linear	System

ek

ykuk
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 ∑ 𝑤𝑗
𝑇

𝑁

 𝑘=1

𝜑(𝑢𝑘) = 0                                                           (17) 

with 𝑘 = 𝑟,… , 𝑁 and  𝑗 = 0,… ,𝑚 
 

The constraint equation (17) is added up to the 
minimization problem to solve over parameterization, 
under the assumption that any set of constants can be 
added up to the nonlinear function as long as the sum of 
the constant is zero [53]. Now the corresponding 
Lagrangian can be written as: 

 

ℒ(𝑤𝑗 , 𝑎, 𝑑, 𝑒𝑘 , 𝛼, 𝛽) = ℱ(𝑤, 𝑒𝑘) 

                                 −∑ 𝛼𝑘 (∑𝑎𝑖

𝑛

𝑖=1

𝑦𝑘−𝑖 + ∑ 𝑤𝑗
𝑇𝜑(𝑢𝑘−𝑗)

𝑚

𝑗=0

𝑁

𝑘=1

+ 𝑑 + 𝑒𝑘 − 𝑦𝑘)

− ∑𝛽𝑗 ∑ 𝑤𝑗
𝑇

𝑁

 𝑘=1

𝜑(𝑢𝑘)                 (18)

𝑚

𝑗=0

 

     

using the Karush-Kuhn-Tucher (KKT) conditions, we 
obtain the following equations. 
 

𝜕ℒ

𝜕𝑤𝑗

 = 0 ⟹ 𝑤𝑗 = ∑ 𝛼𝑘

𝑁

𝑘=𝑟

𝜑(𝑢𝑘) + 𝛽𝑗 ∑ 𝜑(𝑢𝑘),   

𝑁

 𝑘=1

 

 𝑗 = 0,… . ,𝑚       (19) 

𝜕ℒ

𝜕𝑎𝑗

 = 0 ⟹ ∑ 𝛼𝑘

𝑁

𝑘=𝑟

𝑦𝑘−𝑖 = 0,             𝑖 = 1,… , 𝑛        (20)   

𝜕ℒ

𝜕𝑑
 = 0 ⟹ ∑ 𝛼𝑘

𝑁

𝑘=𝑟

= 0                                                    (21) 

𝜕ℒ

𝜕𝑒𝑘

 = 0 ⟹ 𝛼𝑘 = 𝛾𝑒𝑘 ,            𝑘 = 𝑟, … , 𝑁                  (22) 

𝜕ℒ

𝜕𝛼𝑘

 = 0 ⟹ 𝑦𝑘 = ∑𝑎𝑖

𝑛

𝑖=1

𝑦𝑘−𝑖 + ∑𝑤𝑗
𝑇𝜑(𝑢𝑘−𝑗)   

𝑚

𝑗=0

+ 𝑑

+ 𝑒𝑘 ,                  𝑘 = 1,… , 𝑁            (23) 

𝜕ℒ

𝜕𝛽𝑗

 = 0 ⟹ ∑ 𝑤𝑗
𝑇

𝑁

 𝑘=1

𝜑(𝑢𝑘) = 0,  

  𝑗 = 0, … ,𝑚           (24) 
From (19) and (24)  

𝑤𝑗
𝑇𝜑(𝑢𝑡) = ∑ 𝛼𝑘

𝑁

𝑘=𝑟

𝜑(𝑢𝑘)𝑇𝜑(𝑢𝑡) + 𝛽𝑗 ∑ 𝜑(𝑢𝑘)𝑇𝜑(𝑢𝑡),

𝑁

 𝑘=1

 

 𝑡 = 1, … , 𝑁         (25)  
Lemma: (Primal-dual derivation), given system (12), the 
LS-SVM estimates for the nonlinear functions 

𝑤𝑗
𝑇𝜑(𝑢𝑡): ℝ → ℝ,   𝑗 = 0, … ,𝑚  are given as: 

 

𝑤𝑗
𝑇𝜑(𝑢𝑡) = ∑ 𝛼𝑘𝐾(𝑢𝑘−𝑗 , 𝑢𝑡)

𝑁

𝑘=𝑟

+ 𝛽𝑗 ∑ 𝐾(𝑢𝑘 , 𝑢𝑡)   (26)     

𝑁

 𝑘=1

 

 

where the parameters  𝛼𝑘 , 𝑘 = 𝑟, … , 𝑁, 𝛽𝑗, 𝑗 = 0, … ,𝑚 , 

𝑎𝑖 , 𝑖 = 1, … , 𝑛, and 𝑑 can be obtained from the following 
set of linear equations: 
   

     

[
 
 
 
 0 0
0 0

1𝑁
𝑇                   0

𝑦𝑝                   0

1 𝑦𝑝
𝑇

0 0

𝐾 + 𝛾−1𝐼𝑁    𝐾0

𝐾0𝑇
1𝑁

𝑇 𝛺1𝑁𝐼𝑚+1]
 
 
 
 

[

𝑑
𝑎
𝛼
𝛽

]     

= [

0
0
𝑦𝑓

0

]                                                  (27) 

 

where    𝑦𝑓 = [𝑦𝑟 ⋯ 𝑦𝑁]𝑇 ,   

 1𝑁 = [1 ⋯ 1]𝑇 ,  

  𝑦𝑝 = [

𝑦𝑟−1 𝑦𝑟

𝑦𝑟−2 𝑦𝑟−1

⋯ 𝑦𝑁−1

⋯ 𝑦𝑁−2

⋮ ⋮
𝑦𝑟−𝑛 𝑦𝑟−𝑛+1

⋱ ⋮
⋯ 𝑦𝑁−𝑛

] 

𝛼 = [𝛼𝑟 ⋯ 𝛼𝑁]𝑇 ,  𝛽 = [𝛽0 ⋯ 𝛽𝑚]𝑇  

𝐾0(𝑝, 𝑞) = ∑ 𝛺𝑘,𝑟+𝑝−𝑞 ,

𝑁

𝑘=1

 

𝐾(𝑝, 𝑞) = ∑𝛺𝑝+𝑟−𝑗−1,𝑞+𝑟−𝑗−1

𝑚

𝑗=0

 

 
There are many distinct kinds of kernel functions, 

including polynomial, Gaussian Radial Basis Function, 
exponential radial function, multi-layer perceptron, and 
others. When these kernels are used to classify the 
hyperplane, each kernel represents the data relationships 
in a distinct manner. Because of the dynamic model's 
inherent inner-connection of nonlinear dynamic signal 
and measurement noise, it is expected to be Gaussian 
noise with zero mean and limited variance, as stated in (10); 
as a result, using the Gaussian Radial Basis function to 
separate and regress data will provide higher data 
classification than using other types of the kernel. The 
Gaussian Radial Basis kernel used in this study has the 
following representation: 

 

   Ω = 𝐾(𝑥𝑡 , 𝑥𝑘) = 𝑒𝑥𝑝 (−
‖𝑥𝑡 − 𝑥𝑘‖2

22
)             (28)  

 

where   is a deviation constant. 
 

4. Weiner model Identification 
 
Assuming the Weiner Model composes of the linear 

system cascade with the static nonlinearity as shown in Fig. 
5, the dynamics of the whole structure can be given as:  

 

𝑧𝑘 = ∑𝑎𝑖

𝑛

𝑖=1

𝑧𝑘−𝑖 + ∑ 𝑏𝑗

𝑚

𝑗=0

𝑢𝑘−𝑗                    (29)  

 
 𝑦𝑘 = 𝑓( 𝑧𝑘) + 𝑒𝑘                                                 (30)  

 



DOI:10.4186/ej.2022.26.1.25 

30 ENGINEERING JOURNAL Volume 26 Issue 1, ISSN 0125-8281 (https://engj.org/) 

 
Fig. 5.  Weiner Model. 
 

𝑢𝑘 = ∑ 𝑏𝑖

𝑚

𝑖=1

𝑢𝑘−𝑖 + ∑𝑤𝑗
𝑇

𝑛

𝑗=1

𝜑(𝑦𝑘−𝑗) + 𝑑 + 𝑒𝑘         (31) 

min 
𝑤, 𝑏, 𝑑, 𝑒𝑘

 ℱ(𝑤, 𝑒𝑘) =
1

2
‖𝑤‖2 +

𝛾

2
∑ 𝑒𝑘

2

𝑛

𝑘=𝑟

                     (32) 

  𝑠. 𝑡.          

𝑢𝑘 = ∑ 𝑏𝑖

𝑚

𝑖=1

𝑢𝑘−𝑖 + ∑𝑤𝑗
𝑇

𝑛

𝑗=1

𝜑(𝑦𝑘−𝑗) + 𝑑 + 𝑒𝑘         (33) 

  

     

[
 
 
 
 0 0
0 0

1𝑁
𝑇                   0

𝑢𝑝                   0

1 𝑢𝑝
𝑇

0 0

𝐾 + 𝛾−1𝐼𝑁    𝐾0

𝐾0𝑇
1𝑁

𝑇 𝛺1𝑁𝐼𝑚+1]
 
 
 
 

[

𝑑
𝑏
𝛼
𝛽

]     

= [

0
0
𝑢𝑓

0

]                                                  (34) 

 

where    𝑢𝑓 = [𝑢𝑟 ⋯ 𝑢𝑁]𝑇 ,   

 1𝑁 = [1 ⋯ 1]𝑇 ,  

   𝛼 = [𝛼𝑟 ⋯ 𝛼𝑁]𝑇 ,   

  𝑢𝑝 = [

𝑢𝑟−1 𝑢𝑟

𝑢𝑟−2 𝑢𝑟−1

⋯ 𝑢𝑁−1

⋯ 𝑢𝑁−2

⋮ ⋮
𝑢𝑟−𝑚 𝑢𝑟−𝑚+1

⋱ ⋮
⋯ 𝑢𝑁−𝑚

] 

𝛼 = [𝛼𝑟 ⋯ 𝛼𝑁]𝑇 ,  𝛽 = [𝛽0 ⋯ 𝛽𝑛]𝑇 ,  
𝑏 = [𝑏0 ⋯ 𝑏𝑚]𝑇  

 

𝐾0(𝑝, 𝑞) = ∑ 𝛺𝑘,𝑟+𝑝−𝑞 ,

𝑁

𝑘=1

 

𝐾(𝑝, 𝑞) = ∑ 𝛺𝑝+𝑟−𝑖−1,𝑞+𝑟−𝑖−1
𝑛
𝑗=0 ] 

𝛺𝑖,𝑗 , = 𝐾(𝑦𝑖 , 𝑦𝑖) = 𝜑(𝑦𝑖)
𝑇𝜑(𝑦𝑗) = 𝑒𝑥𝑝 (−

‖𝑦𝑖−𝑦𝑗‖
2

22
) (35) 

 
While constructing the kernel matrix in Eq. (35), the 

noise in the input is mapped to an infinite dimension, 
which is a highly nonlinear mapping. Small magnitude 
noise may lead to extremely different mappings from the 
case that there is noise. To identify the Weiner model, a 
novel approach based on random tiny signal excitation, or 
equivalently, linearization of nonlinear functions around 
some operational point, has been presented. Assume that 
a nonlinear function is a piecewise function defined by its 
break points and the slope of the function between them. 
If the linear part's output stays constant between these 
places, we may represent the nonlinearity using a linear 
function. The nonlinear function may therefore be treated 
as a constant gain function, and the whole structure 
becomes a linear system. By selecting a suitably tiny input 

signal, we may compel the linear part's output to be 
between the piecewise function's break points. As a 
consequence, the system will be treated as a linear model 
multiplied by a constant gain, and the linear component of 
the Weiner model may be estimated as indicated in Fig. 6. 

However, the issue of how tiny a magnitude signal is 
required to ensure that nonlinear is comparable to 
constant gain emerges. A strategy described in this study 
is to choose a tiny random signal and apply it to the system 
initially. This little random signal is amplified by constant 
K and applied to the system once again, while monitoring 
both output signals. If the amplitude of the second output 
signal of the recognized model is close to the K time of 
the first, we can most likely identify the linear portion; if 
not, we can further identify the model using just the input 
signal that remains in the margin of the final input signal. 
Once the linear component of the Weiner model is 
estimated using SVM, the nonlinear part may be 
recognized by feeding the output of the estimated linear 
part and the output of the original model into the SVM 
block to identify the nonlinear section, as illustrated in Fig. 
7. 

 

 
 
Fig. 6.  Estimated linear part of Weiner model by small 
input method. 

 

 
 
Fig. 7. Estimated static nonlinearity part of Weiner model. 
 
Step for computing the proposed Weiner model 
1. Apply a small amplitude signal randomly to the 

system and record the output. 
2. Multiply the signal from (1) by a constant and apply 

it to the system. 
3. The magnitude of the system's output signal was 

observed to see if it was close to the output from (1). 
If it is, keep applying the signal from (2) and 
recording the output. 

4. If it is not, stop the input and record the last output, 
then choose the magnitude of the input signal so that 
it remains within the margin of the last input signal 
step in (3).  

5. Use SVM identification method equations (15) to 
(27) to estimate the parameters of the linear part. 

f(.)

Static	
Nonlinearity

Linear	System

ek

yk
uk zk +

+
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6. Increase the amplitude of the input signal and apply 
it to the system, then record the output signal. 

7. Apply the same signal from (6) to the estimated 
linear part in (5). 

8. The signal from (7) and (6) becomes the 
input/output to identify the static nonlinearity using 
the SVM regression algorithm. 

9. Terminate the training of the SVM when the 
acceptable RMSE is achieved. 

10. The parameters in (5) and the SVM in (9) represent 
the Weiner system. 

5. Drop Test Experiment and Identification  
 
A drop test is conducted in the test rig without the 

wheel moving. Figure 8 shows the test apparatus used to 
test the landing gear construction. The structure is put to 
the test. An aircraft body is held in place by two rings' 
fixtures, and a frictionless sliding mechanism is attached 
to the rings' fixtures to perform the drop test. During the 
drop test, three tiny wheel platforms with load cells record 
the initial weight and impact force. Two light sensors 
measure the wheel and strut displacement from the 
ground for each main landing gear. The data logger gathers 
and analyzes the data gathered from the light sensor and 
load cell to determine the aircraft's motion [54]. 

   

 

 
Fig. 8.  Drop test rig. 
 

The drop height required to validate the landing gear's 

strength is ℎ = 3.6√(
𝑊

𝑆
) , where 

𝑊

𝑆
 is wing loading, 

according to ASTM F-2245's drop test section 5.8.1. The 

load factor is calculated using the equation 𝑛𝑗 =

ℎ+
𝑑

3

0.5∗𝑑𝑡𝑖𝑟𝑒+0.65∗𝑑𝑠ℎ𝑜𝑐𝑘
  , where 𝑑𝑡𝑖𝑟𝑒 is tire travel, 𝑑𝑠ℎ𝑜𝑐𝑘 is 

shock absorber travel, and 𝑑 is the sum of 𝑑𝑡𝑖𝑟𝑒 + 𝑑𝑠ℎ𝑜𝑐𝑘. 
The wing loading is equal to 10.54 lbs./sq.ft. for an 
airplane with a maximum takeoff weight of 1430 lbs. or 
650 kg and a wing area of 140.85 sq. ft., resulting in a 
maximum drop height of 11.69 feet (approximately 300 
mm.) and the landing gear must demonstrate compliance 
with the limited drop height without causing any damage.  

The full-body light amphibious aircraft drop test 
begins with the configuration shown in Table 1. The air 
pressure for both tires on the main wheel is 25 psig, while 
the air pressure for the nose wheel is 20 psig. The 650 kg 
light amphibious aircraft features a 10% nose gear and a 
90% main gear weight distribution. Both struts have a 100 
mm initial stroke when the amphibious plane's landing 
gear is on the platform. At each drop point – 200, 250, and 
300 mm – the amphibious aircraft is lifted by the hoist and 
free-falls to the platform. The results of each major 
landing gear drop test are shown in Tables 2 and 3. The 
peak load at the 200 mm drop height is 831.92 kgf on the 
left and 813.38 kgf on the right, resulting in a 2.53 G real 
impact load factor. With an actual impact load factor of 
3.85 G, the peak load for left gear is 1,222.05 kgf and for 
right gear is 1,282.90 kgf at 250 mm drop height. Finally, 
with an actual impact load factor of 4.8 G, the peak load 
on left gear is 1568.42 kgf and 1,555.09 kgf at 300 mm 
drop height. 

 

 
Table 1.   Drop initial test parameters. 
 

 
 

Table 2.   Drop test result measured at the left main landing gear. 

 
 

Platform with 

Load Cell  

Laser Sensors

Retractable 

Landing Gear

Magnetic 

Lifter

Effective	

Drop	Weight	

(We)

Design	Max.	

Strut	Stroke	

(Smax)

Design	Min	

Strut	Stroke	

(Smin)

Init.	Strut	

Stroke	

(Sint)

Init.	Gas	

Pressure		

(Pint)

Diameter	of	Strut	

Retracted	Oil-hole	

(Dr)

Diameter	of	Strut	

Extened	Oil-hole	

(De)

Wheel	

Diameter	

(D,wheel)
650	kg 200	mm 20	mm 100	mm 0.8	Mpa 12	mm 8.5	mm 240	mm

Test	

Number	

Drop	

Height	(H)

	Strut	Stroke	

Travel	 (d,strut)

Tire	Deflation	

Travel		 (d ,tire)

Peak	Vertical	

Load	 (Fp)

Strut	Energy	

Absorption	

(Es)

Tire	Energy	

Absorption	

(Et)

1 200	mm 56.12	mm 31.73	mm 831.92	kgf 596.72	J 172.67	J

2 250	mm 94.43	mm 47.01	mm 1222.05	kgf 1060.74	J 250.06	J

3 300	mm 97.85	mm 52.47	mm 1568.42	kgf 1305.97	J 356.36	J

Left	Main	Landing	Gear
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Table 3.  Drop test result measured at the right main landing gear. 

 
 

Based on the data collection system's sampling rate of 
1,000 Hz, the impact load of landing gear on a time scale 
at a drop height of 300 mm, as shown in Fig. 9, is the 
height required to pass the drop test standard. The total 
number of data points collected in the data logger is 2,000, 
and the drop test scenario was completed in 2 seconds. 
Because no absorption element is placed in the nose gear, 
there is no damp on the nose wheel. However, the peak 
load on the nose gear is very modest when compared to 
the peak force on the two main gears, indicating that the 
current nose gear design can certainly sustain the impact 
load during landing. 

The relative displacement of the wheel and strut on 
both landing gears is shown in Fig. 10 on a time scale 
starting with the commencement of the drop test. It 
indicates the entire stroke range of the strut and wheel, as 
well as the associated settling time, when the impact load 
is applied. Notably, the settling time for both the left and 
right struts is less than 2 seconds. This impact absorption 
settling time performance guarantees the design landing 
gear's safety and stability. Figure 11 illustrates the dropped 
airplane's step motion in order to demonstrate the 
rebound of the tire and shock strut before and after impact 
with the platform. At the 300 mm. drop height, the tire is 
almost flat by the time the impact force reaches its 
maximum, yet the rim is not damaged when the tire 
bounces back to normal. 

 
Fig. 9.  Impact load of the nose gear and the main gear at 
300 mm. drop height. 

 
Fig. 10. The relative displacement of strut and wheel of 
the main landing gear was measured at 300 mm. drop 
height. 
 

        
a) initial release    b) falling    c) first impact 

 

   
d) recoiled   e) extended 

Fig. 11.  Drop test motion in step. 
 

The initial 200 data points of impact force input and 
displacement of the strut and wheel outputs of the landing 
gear are utilized to train the Hammerstein model. It should 
be noted that the training data starts when the wheel 
begins to touch the platform, which corresponds to the 
relative drop time of 0.28 seconds in Fig. 9. The 
Hammerstein identification method addresses the convex 
constraint optimization problem by using Gaussian radial 
basis multi-kernel functions under the KKT condition. 

For the proposed Weiner identification method, start 
by exciting the model (strut and wheel) with a small force 
and observing the output. Then multiply the small force 
by K, excite the model, and observe the output. We can 
use these input and output signals to estimate the 
parameters of the linear part as mentioned in the algorithm 
steps. Once we can identify the linear part, then we can 
use the initial 200 data points of impact force input and 

Test	

Number	

Drop	Height	

(H)

	Strut	Stroke	

Travel	(d,strut)

Tire	Deflation	

Travel		(d ,tire)

Peak	Vertical	

Load	(Fp)

Strut	Energy	

Absorption	(Es)

Tire	Energy	

Absorption	(Et)

1 200	mm 55.53	mm 28.76	mm 813.38		kgf 587.92	J 146.55	J

2 250	mm 89.51	mm 39.19	mm 1282.9	kgf 1036.93	J 202.56	J

3 300	mm 87.78	mm 41.36	mm 1555.09	kgf 1174.71	J 251.29	J

Right	Main	Landing	Gear
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displacement of strut and wheel outputs to identify the 
nonlinear part as described in Fig. 7. Table 4 shows the 
estimated parameters of the Weiner model's linear part on 
both struts and wheels, and Fig. 12 and 13 show the static 
nonlinearity of the strut and wheel, respectively. 

From the estimated linear parameters given in Table 
4, one can observe that the linear identification on both 
strut and wheel is of order 6, which comes from trial 
numbers that gave the proper estimation of the output 
dynamic. However, one can achieve better estimation by 
increasing the model order, but it will consume more 
computational time and probably experience a slow 
convergence of the solution. 

The motion of the actual drop test of the right strut, 
the Hammerstein model identification, the proposed 
Weiner model identification, and motion from the 
equation of motion with regard to a time scale spanning 
from zero to one second are illustrated in Fig. 14. The 
RMSE from the equation of motion compared with the 
actual motion is 9.7364, which is quite high due to the 
poor approximated parameters used in Eq. (2), (3), and (4). 
The Hammerstein model and the Weiner model, however, 
have given better identification with an RMSE of 0.88522 
and 0.48805, respectively. Figure 15 also shows the 
measured displacement of the right wheel along with the 
Hammerstein model identification, the proposed Weiner 
model identification, and motion from the equation of 
motion with regard to a time scale spanning from zero to 
one second. The RMSE from the equation of motion 
compared with the actual motion is 11.3473. The RMSE 
of the Hammerstein model is 0.71204 and the RMSE of 
the Weiner model is 0.38246. Figure 16 illustrates the error 
of the Hammerstein model and the Weiner model relative 
to the actual strut motion, and Fig. 17 also shows the error 
of the Hammerstein model and the Weiner model relative 
to the actual wheel motion. There are lots of 
improvements in error reduction from the Hammerstein 
model to the Weiner model, which emphasizes that the 
new approach for estimating the Weiner model by small 
input technique works well in this landing gear drop test 
study. 

The intricacy of the strut's internal structural 
components, as well as the nonlinearity of the shock strut's 
axial force, leads us to infer that the strut's identifiability is 
less accurate than that of the wheel in this situation. 
However, the accuracy of the identified Weiner model is 
better than that of the identified Hammerstein model, and 
the errors of both identified models are within acceptable 
limits, making them useful for predicting the drop 
dynamics of the airplane in other landing circumstances 
than we described here. 

 

Table 4. Estimated linear parameters of Weiner model on 
both strut and wheel. 

 

 

 
Fig. 12.  Static nonlinearity of Weiner model on strut. 

 
Fig. 13.  Static nonlinearity of Weiner model on wheel. 
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Fig. 14.  Motion of the right strut from a 300 mm drop 
test, showing actual right strut motion, Hammerstein 
model identification, proposed Weiner model 
identification, and motion from the governing equation. 
 

 
Fig. 15.  Motion of the right wheel from a 300 mm drop 
test, showing actual right strut motion, Hammerstein 
model identification, proposed Weiner model 
identification, and motion from the governing equation. 
 

 
Fig. 16.  Relative error of Hammerstein's prediction with 
the actual right strut motion and relative error of Weiner's 
prediction with the actual right strut motion. 
 

 
Fig. 17.  Relative error of Hammerstein's prediction with 
the actual right wheel motion and relative error of 
Weiner's prediction with the actual right wheel motion. 
 

6. Conclusion 
 
This article presents a study of the drop test dynamics 

of an amphibious airplane using different identification 
models. With the Gaussian radial basis as a kernel function, 
the Hammerstein model may be recognized using the LS-
SVM identification approach. To identify the model 
parameters, a constraint convex optimization problem is 
built up and solved using the KKT condition. However, 
because the noise in the model input is translated into an 
infinite dimension, which is a very nonlinear mapping and 
thus leads to a drastically varied mapping in the hyperplane, 
this approach cannot be used to identify the Weiner model. 

A new approach for estimating the parameters of the 
Weiner model is proposed to determine the dynamic of 
the landing gear drop test. The linear parameters of the 
model could be estimated by utilizing inputs with small 
magnitudes. Then, using the same LS-SVM approach that 
was used for Hammerstein model identification, the static 
nonlinearity function can be determined from the output 
of the estimated linear portion and the output of the real 
model. The root mean square error (RMSE) of the 
suggested Weiner model is relatively low, indicating that 
the identification model has improved accuracy and 
dependability. 

A full-scale light amphibious aircraft drop test 
experiment is carried out in line with the ASTM F-2245 
standard. At a drop height of 300 mm, the maximum 
impact loading of 4.8 G is achieved. The main landing gear 
shock strut absorbs the impact force and balances the 
aircraft in less than 2 seconds. In terms of estimating strut 
and wheel displacement output, the proposed Weiner 
identification model outperforms both the Hammerstein 
model and the prediction from the governing equation of 
motion. Nonetheless, the investigation of the Wiener-
Hammerstein and Hammerstein-Wiener models for 
identifying drop dynamics is also intriguing, as is the on-
line identification application, both of which could 
potentially be future research topics to improve system 
identification performance and to determine whether or 
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not it is feasible to implement the control algorithm in the 
system. 
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