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Abstract. Gear meshing stiffness is commonly determined by the analytical method or the 
finite element method (FEM). Both methods can be used to determine the meshing stiffness 
but the calculation for the analytical method is more complicated, while the FEM is 
impacted by the tooth contact setting and large computation time. Thus, both methods have 
limitations for practical use. Here, an empirical formula was proposed to calculate meshing 
stiffness of a spur gear pair with gear ratio 1:1 in moderate to large load conditions. The 
formula was divided into two parts as 1) an equation used to calculate the stiffness of the 
gear cylinder derived from the elasticity equations, and 2) an empirical formula to determine 
the meshing stiffness of the tooth pair based on FEM solutions. The second part of the 
formula was constructed by selecting the related parameters, finding the appropriate formula 
pattern, and determining the relation between these parameters and tooth stiffness at any 
meshing position. Meshing stiffness of the gear pair was determined by combining the 
stiffness of two parts connected in series.  Accuracy of the empirical formula was verified 
by comparing the calculated meshing stiffness with previous research and indicated that the 
calculated meshing stiffness conformed well with other studies. Our proposed empirical 
formula can be applied to any spur gear pair with gear ratio 1:1 to accurately determine gear 
meshing stiffness. 
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1. Introduction 
 
The meshing stiffness of a spur gear pair is an 

important parameter that is used to study gear dynamics 
and vibration. If known, meshing stiffness can be used in 
a vibration model to accurately predict gear vibration 
characteristics. Methods used to study gear meshing 
stiffness can be classified into the analytical method [1-12], 
the finite element method (FEM) [13-19], experimental 
methods [20-21], and methods that combine analytical 
method and FEM [22-25].  

For the analytical method, a gear tooth is normally 
modeled as a cantilever beam fixed at its base circle or root 
circle. The meshing stiffness of the gear pair is calculated 
from the bending stiffness and the Hertzian contact 
stiffness. Some researchers attempted to improve the 
accuracy of their methods by including the effect of shear 
stiffness, axial stiffness, and stiffness of the fillet-
foundation in the calculations. The stiffness of each part 
was frequently calculated based on the theory of elasticity 
[1, 3-4] or the energy method [2, 6-12]. Advantages of the 
analytical method are that it can be applied to the gear pair 
easier than the other methods, and can be modified to 
include the effects of gear modifications, cracks, or other 
gear defects in the calculations [4-11]. However, methods 
to derive the equations and the calculation of the necessary 
parameters are complicated and require computer 
simulation.   

Besides the analytical method, FEM is also a powerful 
method to determine the stiffness of gear teeth. Since the 
model used in the FEM was constructed to match with 
the actual gear pair, the result from FEM was more 
accurate compared to the analytical method. However, the 
FEM also has problems resolving the tooth contact 
settings in the modeling stage, and requires large 
computation time. This is because the gear contact 
problem is non-linear and requires a small mesh element 
size near the contact point and also an iterative calculation. 
To solve this problem, some researchers used the linear 
FEM for the tooth deflection and the Hertzian contact 
theory at the contact area [22, 25]. This reduced the 
computational effort compared to the conventional FEM. 
Another important disadvantage of the FEM method is 
that the result of a specific gear pair cannot be applied to 
other gear pairs having different parameters. The 
calculation must be performed for each new gear pair. 
This makes the FEM unsuitable for practical use. 

 For the reasons stated above, a formula that relates 
directly to gear parameters and can be easily applied in 
practice is required. Here, we propose a method to 
construct an empirical formula to calculate spur gear 
meshing stiffness for the gear ratio 1:1 in moderate to large 
load conditions. The formula is divided into two parts as 
an equation to calculate the stiffness of the gear body that 
is derived based on elasticity equations, and an empirical 
equation of tooth meshing stiffness that is constructed 
based on FE solutions. We verified our proposed 
empirical formula against the gear meshing stiffness 
results reported by previous researchers. 

2. Meshing Stiffness of a Spur Gear Pair 
 
The meshing stiffness of a spur gear pair is attributed 

to the deformation of many gear parts that include the 
cylindrical body, gear tooth bending and contact area as 
shown in Fig. 1. Total gear meshing stiffness (k) can be 
calculated by connecting the stiffness of each part in series 
as shown by equation 
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The subscript “C” means the cylindrical body, “b” 
means the gear tooth bending, “h” means the tooth 
contact, “1” and “2” means the driving side and the driven 
side. Although the contact stiffness (kh) is affected by the 
material properties and geometries of both driving and 
driven gears, it can be divided to the individual tooth as 
the apparent contact stiffness kh,1 and kh,2. This 
consideration is suited to the finite element solution that 
the calculated displacement at the contact point of each 
gear already includes the deformation of the whole part 
including the tooth contact. To simplify the calculation, 
we considered the stiffness attributed to gear tooth 
bending and gear tooth contact area together. Hence the 
gear stiffness model used in this paper is composed of the 
stiffness of the cylindrical body of the driving and driven 
gear and the meshing stiffness of the driving and driven 
gear tooth as shown by equations 
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           (3), 
where the subscript “T” means the gear tooth. 

For single tooth pair meshing, kT is the stiffness of 
only one tooth pair and can be calculated directly from Eq. 
(3). However, for double teeth meshing, kT is calculated 
by connecting the stiffness of each tooth pair meshing at 
the same time in parallel as shown by equation 

  ndTstTT kkk 21 )()( +=         (4), 

where the subscripts “1st” and “2nd” mean the first and 
the second meshing pair, respectively. 

 
Fig. 1. Meshing stiffness of a spur gear pair. 
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To calculate the gear meshing stiffness, the stiffness 
of the cylindrical part and the stiffness of the gear tooth 
are considered separately. The shape of the cylindrical 
body is much simpler than the shape of the gear tooth and 
can be determined analytically. Moreover, the shape of the 
cylindrical body can be designed with various hub or hole 
sizes, even if the tooth parameters are fixed. Therefore, 
the method to determine the cylindrical part and the gear 
tooth separately can be applied to any gear pair having the 
same tooth parameters but different cylindrical shape. On 
the other hand, the geometry of the gear tooth is much 
more complicated than the cylindrical body. Determining 
the meshing stiffness of this part analytically requires 
complicated calculations that are not suitable in practice. 
Thus, an empirical formula for determining the meshing 
stiffness of the gear tooth is required. Here, we 
constructed this empirical formula based on data from the 
finite element analysis. 
 

3. Stiffness of The Cylindrical Body 
 
The gear cylindrical body was modeled as a simple 

hollow cylinder. The cylinder is fixed at the inner surface 
and moment is applied at the outer surface. The equation 
for calculating the stiffness of this part can be derived 
based on the basic stress-strain-displacement equations in 
cylindrical coordinates. The stress function of this 
problem was shown in Ref. [26]. By substituting the stress 
function into the stress equation and using the stress-
strain relation and strain-displacement equation with the 
boundary condition that the displacement at the fixed 
surface equals to zero, the displacement in radial direction 
u and circumferential direction v can be determined. The 
deformation in this case will occur only in the 
circumferential direction. There is no deformation in the 
radial direction. The stiffness of the cylindrical body can 
be calculated by  
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where ir  is the radius of the inner cylinder, r  is the radius 

at the cylinder where the displacement v is calculated, b is 
the width of the cylinder and G is the shear modulus. 

To verify the accuracy of Eq. (5), the calculated results 
were compared to the finite element solutions as shown in 

Table 1. From the table, the stiffness of a smaller cylinder 
is higher than a larger cylinder. Stiffness results calculated 
from the analytical equation were very close to those 
calculated from the finite element method, with maximum 
error less than 0.5%. Thus, Eq. (5) is very accurate to use 
for calculating the stiffness of the cylindrical body. 
 

4. Effects of Loads and Gear Parameters on 
Tooth Meshing Stiffness 

 
4.1. Gears Used for Investigation 

 
To construct the empirical formula for calculating the 

gear tooth meshing stiffness, it is necessary to know the 
effects of gear parameters. Parameters that may affect gear 
tooth meshing stiffness are module, pressure angle, 
number of teeth, face width, modulus of elasticity, 
magnitude of applied force, and meshing position. Table 
2 shows different gear sets with various parameters. The 
gear considered in this paper was the standard gear that 
was conjugate with the standard basic rack profile in ISO 
53 without any modification. The gears with pressure 

angle 14.5 and 25 that are widely used were also included 
in this study. Meshing stiffness of these gear sets was 
calculated by the finite element method (FEM) and results 
were used as the database for constructing the empirical 
formula. 

From Table 2, gears A, B, C and D have modules 2, 3, 
4 and 5 mm, respectively while the other parameters are 
identical. These were used to study the effect of gear 
module and the effect of force applied along the line of 
action. The effect of the number of teeth was determined 
by comparing gears A, E and F that have numbers of teeth 

at 30, 45 and 60. The effect of pressure angle was known 

from the results of gears A, G and H and gears C, I and J. 
 

4.2. Finite Element Calculation 
 

Finite element analysis in this study was performed 
using the ANSYS program. Since the contact problem was 
non-linear, the required calculation time was considerably 
more than for a normal linear problem and some 
assumptions were necessary to simplify the calculation. 
These assumptions were 1. Force is distributed uniformly 
along the face width direction hence the problem can be 

Table 1. Stiffness of the cylindrical body calculated from the analytical method and FEM. 
 

Model  

Shear 
modulus, 
G  (GPa) 

Inner 
radius, ri 

(mm) 

Outer 
radius, r 

(mm) 

Width, 
b  

(mm) 

Stiffness 
Anal. cal. 
(MN/m) 

Stiffness 
FEM 

(MN/m) 

Error 
% 

A 76.92 15 27.55 20 8146.51 8149.00 0.03 

B 76.92 15 41.35 20 2929.71 2931.14 0.05 

C 76.92 15 55.15 20 1544.47 1548.97 0.29 

D 76.92 15 68.95 20 960.46 965.24 0.50 

E 76.92 15 42.55 20 2743.66 2745.98 0.08 

F 76.92 15 57.55 20 1409.14 1409.19 0.01 
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considered to be a two-dimensional plane strain, 2. Sliding 
friction is neglected in the calculation, 3. The gear rotates 
at low velocity, therefore a quasi-static condition is 
assumed.  

The calculation procedure is briefly described as 
follows. First, the spur gear model was drawn by a 
computer aided design (CAD) program, and then the spur 
gear pair was set to mesh at a specific position. The line of 
action was set to align along the vertical direction as shown 
in Fig. 2(a), hence deformation along the line of action 
used to calculate gear stiffness can be simply read from 
displacement in the y-direction. The type of contact 
between driving and driven gear was set as frictionless. 
This allows the contact surfaces to slide but they cannot 
overlap.  

The element type was set to be all triangles. Sizes of 
elements varied depending on their positions. Element 

size at the contact area was about 5 m and small enough 
compared with the size of the gear tooth as shown in Fig. 
2(b). The boundary condition at the hole of the driving 
gear was set to be frictionless support, while the support 
at the driven side was set as fixed support. The distributed 
force corresponding to applied torque was applied at the 
keyway of the driving gear. 

When the calculation was completed, the pattern of 
stress distribution and the surface displacement on the 
gear teeth was checked. Around the contact area, the 
driven surface curvature was smooth, and the maximum 
displacement value in the y-direction occurred at the point 
crossing the line of action. The displacement at this point 
was measured, and the meshing stiffness of the driven gear 
was calculated from 

   


F
k =2

        (6), 

where F is the equivalent force applied along the line of 

action and  is the displacement at the measured point of 

the driven tooth. It should be noted that 2k  in Eq. (6) is 

the stiffness attributed to the deformation of both 
cylindrical body and driven gear tooth. The stiffness at the 
other meshing positions was determined by setting the 

new meshing position and then following the same 
calculation method. 

 The graph of the stiffness k2 of the driven gear at 
various meshing positions is shown in Fig. 3. For the gear 
ratio 1:1 focused here, the stiffness of the driving gear at 
the same position on the gear tooth must be equal to the 
stiffness of the driven gear, hence the stiffness k1 was 
plotted as the duplicate of the stiffness k2 with mirror 
symmetry around the pitch point. The stiffness of the gear 
pair k can be calculated by connecting the stiffness of the 
driving and driven gears in series as shown in Eq. (2). 

Table 2. Gear parameters. 
 

Parameter 
Model 

A B C D E F G H I J 

Tooth number z  30 30 30 30 45 60 30 30 30 30 

Module m mm 2 3 4 5 2 2 2 2 4 4 

Pressure angle  deg 20 20 20 20 20 20 14.5 25 14.5 25 

Face width b mm 20 

Gear ratio   1:1 

Shaft diameter  mm 30 

Young’s 
modulus 

E GPa 200 

Poisson’s ratio   0.3 

Applied force F N 
2364.8, 3547.3, 4729.7, 5912, 

7094.6 
5912 5912 5912 5912 5912 5912 

 

 
(a) 

 
(b) 

Fig. 2. Gear model and boundary condition for FEM 
calculation. 

Frictionless 

support 

Fixed support 

Line of action 
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In Fig. 3, meshing position n is a dimensionless 
parameter calculated from the distance along the line of 
action measured from the pitch point to the contact point 
divided by the base pitch. The parameter n is used instead 
of the distance from the pitch point or the rotating angle 
because the parameter n of any gear pair is almost the same, 
even for gear pairs that have different parameters, tooth 
size, or shape. On the other hand, if the distance from the 
pitch point or rotating angle is used, these values change 
when the gear parameters are varied, making it more 
difficult to compare the results obtained from gear pairs 
with different parameters. 

The ranges of n are from -1 to 1; n is equal to zero at 
the pitch point and has a negative value at the meshing 
position before the pitch point. The position of n close to 

-1 represents the position close to the point where 
meshing starts and the tooth root of the driving gear 
meshes with the tooth tip of the driven gear. After the 
pitch point, n becomes a positive value. Meshing will finish 
when n is close to 1 as the position where the tooth tip of 
driving gear meshes with the tooth root of the driven gear. 
Since the tooth root is thicker than the tooth tip, the 
stiffness at this portion is larger than the stiffness at the 
tooth tip. 

The stiffness of only gear tooth or only meshing part 
can be calculated by subtracting the stiffness of the 
cylinder part from the overall stiffness by using Eqs. (2) 
and (5). 

 
4.3. FEM Results 

 
4.3.1. Meshing stiffness of the gear pair subjected to 

various loads 
 
The contact of gear pairs is a non-linear problem, 

hence the effect of the applied load on the stiffness also 
required investigation. The effect of applied load on 
meshing stiffness is shown in Fig. 4. In Fig. 4, the stiffness 
of the gear pairs A, B, C and D at some meshing positions 
were plotted against load. Numbers in the graph represent 
the position along the meshing position from the point 
where meshing starts (#1) to the pitch point (#6).  

 Since moderate and large loads were used in the 
calculation here, stiffness was almost unchanged with load. 
These results agree with ISO 6336-1 [27] that implies the 

 
(a) Gear A (module 2 mm) 

 

 
(b) Gear B (module 3 mm) 

 
(c) Gear C (module 4 mm) 

 

 
(d) Gear D (module 5 mm) 

  
Fig. 4. Meshing stiffness of gear pairs subjected to various loads. 
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Fig. 3. Meshing stiffness of driving gear, driven gear 
and total stiffness of a gear pair. 
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stiffness does not change with load when applied load is 
large enough, and the method to determine the tooth 
stiffness in ISO 6336-1 can be applied when the specific 
loading (load per face width) is more than 100 N/mm. For 
the results in Fig. 4, the specific loads in all cases were 
more than 118 N/mm that were slightly larger than the 
value 100 N/mm in ISO 6336-1. 

For the other gear pairs in Table 2, since the specific 
loads were larger than 118 N/mm, it is expected that the 
stiffness is almost unchanged with load. Hence the 
empirical formula that will be described further can be 
considered to be applicable when the specific load is larger 
than 118 N/mm. 

 
4.3.2. Effect of gear parameters 

 
Results obtained from the FEM reveal the effects of 

gear parameters on gear and tooth stiffness. Figures 5-7 
show the effect of module, number of teeth and pressure 
angle, respectively. In these figures, subfigures (a) are the 
stiffness of the driven gear calculated from Eq. (6). By 
connecting the stiffness of the driving gear to the stiffness 
of the driven gear, the stiffness of the gear pair is obtained 
as shown in subfigures (c). If the stiffness of the cylinder 
part is subtracted from the stiffness of the driven gear in 
subfigures (a), the stiffness of only the driven tooth is 
obtained in subfigures (b). In the same way, the stiffness 
of only the tooth pair part is known by connecting the 
stiffness of the driving and driven tooth in series, or by 
subtracting the stiffness of the cylinder part from the 
stiffness of the gear pair in subfigures (c). The stiffness of 
the tooth pair part is shown in subfigures (d). 

4.3.2.1. Effect of module 
 

In Fig. 5(a) and (c), the gear having a smaller module 
had greater stiffness than the gear having a larger module. 
The slopes of the stiffness line in Fig. 5(a) increased when 
the module decreased. The shapes of the stiffness curve 
of the gear pair in Fig. 5(c) tended to be slightly flatter for 
the larger module gear. Differences in slope and 
magnitude of stiffness were smaller when the module 
became larger.  

On the other hand, when considering only the gear 
tooth in Fig. 5(b) and (d), tooth stiffness was larger than 
the gear stiffness. The module does not affect gear tooth 
stiffness as expected. Since varying modules without 
changing any other parameters will affect only the size of 
the gear tooth, but the shape of the tooth profile remains 
the same. Based on the similarity in mechanics, the 
stiffness should be unchanged. These results also confirm 
the correctness of the calculation. Thus, the difference in 
gear stiffness resulted from the cylindrical body part, or in 
other words, the stiffness of the cylindrical part 
significantly affected the stiffness of the whole gear. The 
effect of the cylindrical body on the gear stiffness agrees 
well with the results reported in the refs. [15] and [22]. 

 
4.3.2.2. Effect of number of teeth 

 
The effect of number of teeth on stiffness is shown in 

Fig. 6. Results in Fig. 6(a) and (c) show that gears having 
fewer teeth had higher stiffness than gears with more teeth. 
The slopes of the stiffness graphs in Fig. 6(a) changed 

 
(a) Stiffness of the driven gear 

 
(b) Stiffness of the driven tooth 

 
(c) Stiffness of the gear pair 

 
(d) Stiffness of the tooth pair 

 
Fig. 5. Effect of module on meshing stiffness. 
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when the number of teeth varied. The tooth stiffness of 
these gears are shown in Fig. 6(b) and (d). In contrast to 
gear stiffness, the tooth stiffness of gear having fewer 
teeth was lower than gears with more teeth. Since the ratio 
between the diameter of the root circle and the base circle 
varies with number of teeth, and affects the shape of gear 
tooth, the tooth root portion of the gear having more 
teeth is thicker than the gear with fewer teeth. This 
affected the stiffness at the tooth root in Fig. 6(b) of the 
gear with more teeth to be higher than the gear with fewer 
teeth. However, the shapes of stiffness curves of the tooth 
pair in Fig. 6(d) were similar. The amounts of stiffness in 
Fig. 6(b) and (d) were close together comparing with those 
in Fig. 6(a) and (b). This indicates that the stiffness of the 
cylindrical body part also significantly affects the stiffness 
of the whole gear. 

 
4.3.2.3. Effect of pressure angle 

 
Figure 7 shows the stiffness of gears having different 

pressure angles. The gear sets G-A-H (square mark) and 

I-C-J (triangle mark) have pressure angle 14.5, 20 and 

25, respectively, but the gears G, A and H have module 
2 mm, whereas the gears I, C and J have module 4 mm. 
When considering only the tooth stiffness in Fig. 7(b) and 
(d), it is obvious that the module did not affect the gear 
tooth stiffness. The stiffness of the gear set G-A-H almost 
completely identical with the gear set I-C-J. The stiffness 

of gear with pressure angle of 25 (grey mark) was larger 

than gear with pressure angle of 20 (black mark) and gear 

with pressure angle of 14.5 (white mark), respectively. 
Differences in meshing stiffness at the tooth root and 

tooth tip, shown by the slope of the lines in Fig. 7(b), were 
larger when the pressure angle increased. This result 
agreed with the shape of gear teeth. The difference 
between the thickness at the tooth root and tooth tip of 
gears having a higher pressure angle was larger than for 
gears having a smaller pressure angle. For this reason, in 
Fig. 7(d), the stiffness of the gear pair with larger pressure 
angle had more convex shape than the gear pair with 
smaller pressure angle. 

 

5. Empirical Formula for Gear Tooth Meshing 
Stiffness 
 

5.1. Form of the Empirical Formula 
 

In the previous section, the effects of gear parameters 
on tooth meshing stiffness were already known. However, 
to construct an empirical formula to calculate tooth 
meshing stiffness, it is necessary to know which 
parameters should be added into the formula, and the 
relation among these parameters. By comparing a spur 
gear tooth with a rectangular cross section cantilever beam, 
it is expected that the gear tooth meshing stiffness at a 
specific meshing position will be the product of the 
modulus of elasticity E, face width b, and also the ratio of 
tooth thickness at the contact point s and the length from 
the tooth root to the contact point L. However, at a 
specific point, the ratio s/L is constant for the standard 
gears having the same pressure angle and teeth number 
regardless of the size of gear tooth or module. This is also 
supported by the results in the section 4 that the module 
does not affect the tooth stiffness.  

 
(a) Stiffness of the driven gear 

 
(b) Stiffness of the driven tooth 

 
(c) Stiffness of the gear pair 

 
(d) Stiffness of the tooth pair 

 
Fig. 6. Effect of number of teeth on meshing stiffness. 
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At different meshing positions, the ratio s/L changes, 
hence tooth stiffness is a function of meshing position n. 
From the result of the driven tooth in Figs. 5-7(b), tooth 
stiffness had a linear relation with the meshing position n, 
hence the empirical formula can be written in the form 

   ( )BAnEbkT +=2,
      (7), 

where A and B are constants. 
The stiffness of the driving tooth and the driven tooth 

at the same position on the gear tooth must be equal; 
however, at a specific meshing position, the contact 
positions on the driving tooth and driven tooth are 
different but mirror-symmetrical around the pitch point. 
Therefore, the value of n in Eq. (7) must be substituted by 
–n for the driving tooth stiffness. The meshing stiffness of 
the driving tooth is 

   ( )BAnEbkT +−=1,
          (8). 

The stiffness of the tooth pair can be calculated by 
connecting the driving and driven tooth meshing stiffness 
in series, hence the stiffness of the tooth pair is 

    22 )(
2

AnB
B

Eb
kT −=           (9). 

It is known from Eq. (9) that the stiffness of the tooth 
pair can be approximated as a quadratic function. The 
ratio s/L will change for gears having different number of 
teeth and pressure angles. Therefore, for these gears, the 
corrections were added into the formula. The number of 
teeth affects the amount of the stiffness. On the other 
hand, the pressure angle affects both amount of the 
stiffness and the shape of stiffness curve. Since only the 

pressure angles of 14.5, 20, and 25 are widely used, the 
pressure angle correction of each pressure angle was used 

specifically, and was designed to be the function of 
meshing position n.   From Eq. (9) and the above 
description, the empirical formula used to calculate the 
meshing stiffness of the tooth pair can be written in the 
form     

  BnAEbCCk zT
+= 2

 , 

or in the term of dimensionless groups as 

     BnACC
Eb

k
z

T += 2

           (10), 

where 
zC  is the number of teeth correction, C  is the 

pressure angle correction, and A  and B  are constants. 
 
5.2. Constants in the empirical formula 

 

To find the constants A  and B  in Eq. (10), tooth 
stiffness values of all gears having the same number of 
teeth and the same pressure angle were considered. Here, 

the gear having 30 teeth with pressure angle of 20 was 
chosen as the reference. The FEM results of all gears 

having 30 teeth with pressure angle of 20 (Gear A-D) are 
shown in Fig. 5(d). The stiffness curves of all results 
almost completely identical. Here, the result of gear A that 
was calculated at the highest loading condition among all 
gears comparing with their maximum loading capacity was 
chosen to find the constants in Eq. (10), since its stiffness 
was convinced to be calculated from the linear elastic 
region. 

Figure 8 shows the stiffness of the tooth pair of gear 

A. The vertical axis in this figure is )(EbkT , and the 

 
(a) Stiffness of the driven gear 

 
(b) Stiffness of the driven tooth 

 
(c) Stiffness of the gear pair 

 
(d) Stiffness of the tooth pair 

 
Fig. 7. Effect of pressure angle on meshing stiffness. 
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horizontal axis is the meshing position, n. In this step, the 

correction 
zC  has not been considered. The pressure 

angle correction C  was set to be 1 in this case, since a 

pressure angle of 20 was selected to be the reference. 
From the figure, the data were arranged to from a convex 
curve. Using the polynomial regression method, the 
representative quadratic equation can be shown by

222

REF

105527.7)106337.2( −− +−=







n

Eb

kT   

      (11). 
Equation (11) represents the basic formula used to 

calculate tooth meshing stiffness. However, the accuracy 
of this formula can be increased by adding the number of 

teeth correction, 
zC  and the pressure angle correction, 

C . The method to calculate these corrections will be 

described in the next section. By substituting the basic 
formula in Eq. (11) into Eq. (10), the empirical formula 
used to calculate gear tooth meshing stiffness can be 
written as 

 222 105527.7)106337.2( −− +−= nCC
Eb

k
z

T


           (12). 
 
5.3. Number of Teeth Correction 
 

The effect of the number of teeth on the amount of 
tooth stiffness had been expressed in the formulae used to 
calculate the bending and contact torsional stiffness of the 
teeth in the Ref. [15] and the single stiffness in the Ref. 
[27]. Here, the formulae in the Ref. [15] were used to 
determine the tooth stiffness for the gear pair having 1:1 
ratio with various teeth numbers. The correction Cz is 
defined as the ratio of the tooth stiffness and the tooth 
stiffness of the gear pair having 30 teeth. Figure 10 shows 
the values of the correction Cz at various teeth numbers z. 
The relation between these two parameters can be 
calculated by the polynomial regression method and 
shown by the equation 

2355.1)106422.1(

)105555.3()103130.2(

2

2436

+−+

+−=

−

−−

z

zzCz

          (13).  
    

5.4. Pressure Angle Correction 
 
The method used to calculate the pressure angle 

correction begins by plotting the values of )(EbkT  at 

various meshing positions as same as Fig 8. From Fig. 7(d), 
the stiffness curves of the gear pairs having the same 
pressure angle almost identical. Here, the gear pair G and 
H that have module 2 mm were used as the representative 

of the gear pair having a pressure angle 14.5 and 25, 
respectively. Quadratic equations representing the values 

of )(EbkT  and the meshing position n can be written as: 

222

14.5

107305.5105717.1 −−

=

+−=







n

Eb

kT



    for  = 14.5     (14), 
and 

222

52

108033.8105036.6 −−

=

+−=







n

Eb

kT



 

     for  = 25     (15). 

Curve shapes of pressure angle 14.5 and 25 

obviously differ from the curve of pressure angle 20 as 
shown in Fig. 7(d), indicating that the pressure angle 
correction should be a function of the meshing position n. 

The pressure angle correction C  at meshing position n 

is defined as the ratio between )(EbkT  of the pressure 

angle 14.5 or 25 calculated from Eqs.(14) or (15) and 

 
REF

)(EbkT  calculated from Eq. (11), and can be 

written as  

  

n

TT

Eb

k

Eb

k
C 
























=

REF

        (16). 

The values of C  calculated from Eq. (16) for 

pressure angles of 14.5 and 25 were plotted in Fig. 10. 

 
Fig. 8. Stiffness of the tooth pair of gear A.  
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Fig. 9. Number of teeth correction Cz. 
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From these graphs, the equations used to calculate the 

pressure angle correction for pressure angles 14.5 and 25 
can be determined by the polynomial regression method 
and are shown by equations 

 
122 105742.7102740.7 −− += nC  

    for  = 14.5     (17), 
and 

1762.1108553.5 21 +−= − nC   

     for  = 25     (18). 
 

6. Summary of The Procedure to Calculate 
Meshing Stiffness of a Gear Pair 

 
The procedure to calculate the meshing stiffness of a 

spur gear pair can be summarized by the diagram in Fig. 
11. First, the gear parameters as number of teeth, module, 
pressure angle, face width, root diameter and radius of 
shaft hole and material parameters as modulus of elasticity, 
shear modulus and Poisson’s ratio must be known. The 
next step is to calculate the stiffness of the cylindrical body, 
kC of both driving and driven side by Eq. (5). 

Then the stiffness of the tooth pair is calculated by the 
empirical formula. There are four steps to calculate the 
stiffness of the tooth pair. The meshing position, n is 
calculated first, next the number of teeth corrections and 
the pressure angle correction are computed. When all 
parameters are known, the gear tooth stiffness can be 
determined by Eq. (12). By connecting the stiffness values 
of the cylindrical bodies of driving and driven side and the 
tooth stiffness, the stiffness of the spur gear pair can be 
obtained. 

 

7. Verification of The Empirical Formula 
 

The empirical formula was validated by calculating the 
meshing stiffness of the gear pairs and comparing the 
results with previous research of Hui Ma [6] and A. 
Fernandez del Rincon [22]. The stiffness was also 

compared with the stiffness determined by the method in 
ISO 6336-1 [27].  

 
7.1. Comparison with Hui Ma’s Research 
 

Hui Ma presented an analytical method to calculate 
meshing stiffness by the potential energy principle and the 
results were validated with the FEM results. The 
parameters of gear pairs in Hui Ma’s research used for 
comparison are shown in Table 3, with calculation results 
shown in Fig. 12. Hui Ma calculated the results for two 
analytical methods as the traditional method (TM) in 
which the gear tooth was modelled as a cantilever beam 
on a base circle, and an improved method (IM) in which 
the gear tooth was considered as a cantilever beam on the 
root circle. The stiffness determined by the method in ISO 
6336-1 was also plotted in this figure.  

The stiffness calculated from the empirical formula 
fitted well with the results from the IM and FEM for both 
gear pairs. The stiffness estimated from the formula was 
slightly larger than the IM and FEM results in the single 
tooth contact zone. The parabolic shapes of the stiffness 

 
 
Fig. 11. Diagram of calculation procedure. 
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Fig. 10. Pressure angle correction C at various 
meshing positions. 
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from the empirical formula were similar to the Hui Ma’s 
results. The maximum errors compared with FEM in both 
cases were around 10% and 6%, respectively. The RMS 
percentage errors of all positions were less than 7%. 
Results from the empirical formula were better than 
results from the TM in both cases. 

Comparing with the stiffness from ISO 6336-1, 
although the stiffness from ISO 6336-1 were close to the 
FEM results in the single tooth contact zone of the gear 
pair 1 and in the double teeth contact zone of the gear pair 
2, the large error occurred in the other zones. The 
maximum errors were around 20% and 14% for the gear 
pair 1 and the gear pair 2 respectively. 

 
7.2. Comparison with Fernandez del Rincon’s 

Research 
 

Fernandez del Rincon et al proposed a model for 
calculating meshing stiffness based on a combination of 
the finite element model and an analytical approach 
derived from Hertzian contact theory. The parameters of 
the gear pair in this research are shown in Table 4. 
Although the results reported in this paper show that the 
gear meshing stiffness varied with load, at high load the 
meshing stiffness was almost constant, hence the result in 
the case of transmitted torque at 100 Nm as the largest 
load was picked for comparison. Stiffness values 
calculated using the methods proposed by Kuang’s model 
and Cai’s model and compared in Fernandez’s paper and 

the stiffness calculated by ISO 6336-1 method were also 
used here to compare with the result of the empirical 
formula.  

Comparison of the meshing stiffness calculated by the 
empirical formula and results reported by Fernandez are 
shown in Fig. 13. Stiffness values calculated by the 
Fernandez model in this figure refer to the case when the 
deformation due to contacts on the adjacent teeth pairs 
were neglected. The stiffness calculated by the empirical 
formula agreed well with the results from the Fernandez 
model and Kuang’s model in both single tooth contact 
zone and double teeth contact zone. The parabolic shape 
of the stiffness from the empirical formula was more 
similar to results calculated by Fernandez than results 

 
(a) Gear pair 1 

  

 
(b) Gear pair 2 

  
 

Fig. 12. Meshing stiffness of the gear pairs in Hui Ma’s research. 
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Table 3. Parameters of the spur gear pairs used in Hui Ma’s research 

 

Parameter 
 Gear pair 1  Gear pair 2 

Pinion Gear Pinion Gear 

Number of teeth  22 22  62 62 
Young’s modulus GPa 206 206  206 206 
Poisson’s ratio  0.3 0.3  0.3 0.3 
Module mm 3 3  3 3 
Tooth width mm 20 20  20 20 
Pressure angle deg 20 20  20 20 
Hub bore radius mm 11.7 11.7  35.7 35.7 

 

 
Table 4. Parameters of the spur gear pair used in 
Fernandez’s research. 
 

Parameter   Value 

Number of teeth   28 
Gear ratio   1:1 
Module mm  3.175 
Pressure angle Deg  20 
Face width mm  6.35 
Shaft radius mm  20 
Modulus of 
elasticity 

GPa  210 

Poisson’s ratio   0.3 
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from the Kuang and Cai models. The stiffness calculated 
from the empirical formula was much closer to the 
Fernandez’s results than the stiffness calculated from the 
ISO 6336-1 in both single and double teeth contact zone. 

 

8. Conclusions 
 

Results confirmed that the empirical formula 
proposed here can be practically used to calculate gear 
meshing stiffness of the gear pair with gear ratio 1:1. The 
calculation is simple compared with other previously 
proposed analytical methods. The accuracy of our 
proposed empirical formula is high compared with the 
other analytical methods and the FEM. Maximum errors 
in most cases shown here were around 10%. The method 
to calculate the stiffness of the cylindrical body separately 
also makes the method proposed here can be applied to 
any gear pair having various cylindrical shapes and shaft 
radius. In contrast, the effect of shaft radius was not 
included in ISO 6336-1 calculation, hence the stiffness 
calculated from ISO 6336-1 will be constant for all solid 
disc gears having the same number of teeth. This will lead 
to the large amount of error when using the method in 
ISO 6336-1 in some cases. 

Since this method is based on the curve fitting of the 
FEM results, the accuracy of the formula was significantly 
affected by the database results. Increasing the stiffness 
database and investigating the effect of other parameters 
that have not covered in this paper are suggested to further 
improve the accuracy of the empirical formula. Some of 
them are the application in the case of various gear ratios 
and the application at low load conditions. More data 
about the effect of number of teeth, pressure angle, and 
gear modifications should also be increased to improve 
the empirical formula. 

Finally, it is worth mentioning that the use of FE 
solutions to construct an empirical formula using the 
method proposed in this paper can also be applied to 
other engineering applications where analytical methods 
or experiments are difficult to perform.   
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