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Parametrization of gamma-ray production cross-sections for pp interactions in a broad

proton energy range from the kinematic threshold to PeV energies
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Using publicly available Monte Carlo codes as well as compilation of published data on p–p inter-
actions for proton kinetic energy below 2 GeV, we parametrize the energy spectra and production
rates of γ-rays by simple but quite accurate (≤ 20%) analytical expressions in a broad range from
the kinematic threshold to PeV energies.

I. INTRODUCTION

Gamma-ray production through p–p inelastic collisions
plays an important role in our understanding of both fun-
damental physics and high energy astrophysical phenom-
ena. The main source of these γ-rays is the decay of light
mesons, such as, π0 → 2γ, η → 2γ, etc. Heavy particles
that are produced through p–p inelastic collisions will
decay quickly and produce lots of pions. Therefore, the
main source of γ-rays is the π0 → 2γ decay. In practice,
we are interested in the γ-ray spectrum for a given proton
collision energy. For this we have to know the π0 spec-
trum for that specific proton energy and then compute
the γ-ray spectrum using the kinematics of the two-body
decay.

The π0 production spectrum is a result of different
hadronic mechanisms that underlie p–p inelastic colli-
sions. Experiments show that for proton kinetic ener-
gies Tp < 3 GeV the π0 production is dominated by
the baryon resonance production. At higher energies ob-
servations show that Feynman scaling is violated due to
multiple partonic interactions which lead to an increase
of the particle rapidity distribution plateau. Also at such
energies the diffraction dissociation mechanism becomes
important. This mechanism is responsible for producing
large rapidity gaps in the particle rapidity distribution, it
affects the particle production in the very forward region
(i.e. very high energy secondary particle production) and
accounts for the logarithmic increase of the total cross
section.

Different models of pion production were first devel-
oped to explain cosmic ray and low energy accelerator
data. The isobar model [see e.g. 1, 2], was introduced to
describe pion production through a group of baryon res-
onances N∗ and ∆, the most important of which is the
∆(1232) baryon. Very close to the kinematic threshold,
pions are produced with very low speeds. As a result,
their spectra are modified due to strong interaction with
the final state particles. This effect of final state interac-
tion (FSI) has been studied by [3, 4].
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Another model that was developed to explain the cos-
mic ray data with proton kinetic energies Tp > 5 GeV is
the statistical model or the so called fireball model [5–10].
This model considers the formation of an intermediate
state, a “hot gas of pions”, which then decays isotropi-
cally by producing many pions with a quasi-thermal en-
ergy distribution.

For calculations with broader proton energy spectra,
ref. [11, 12] married the isobar and the fireball models
in a single isobar-fireball model. Pion production at low
energies in this model is calculated using the ∆(1232)
baryon resonance. At higher energies it uses the fireball
model calculations with a smooth connection to the low
energy region.

A different approach was introduced by e.g. [13–15].
They did not model pion production, instead, they fit-
ted the invariant π0 production differential cross section
(E dσ/dp3) using accelerator data. The formula that was
introduced obeyed the scaling hypothesis [16, 17]. By in-
tegrating this fit formula one obtains the π0 spectrum
and the γ-ray spectrum. The same approach but in a
more comprehensive way, was later considered by [18].
In the same philosophy [19] introduced a formula for the
γ-ray invariant differential cross section based on the re-
cent Large Hadron Collider (LHC) data.

Ref. [20] compared the isobar-fireball model and the
scaling formula of [14], against accelerator data of π0

production spectra that were available at that time. It
was concluded that the isobar model [12] works better at
low energies (Tp < 3 GeV), whereas the scaling model
[14] works better at higher energies. Thus, [20] married
these two models smoothly in an isobar-scaling model.

Nowadays, many phenomenological approaches have
been developed to calculate hadronic interactions in both
perturbative and non-perturbative regimes. Sophisti-
cated Monte Carlo (MC) codes are developed which han-
dle complex calculations and predict many quantities
that agree well with experimental data. There are dif-
ferent classes of MC codes. The general high energy in-
teraction event generator class, which include both Stan-
dard Model and beyond Standard Model physics, contain
codes such as HERWIG [21], SHERPA [22] and PYTHIA
[23, 24]. Other universal codes that include sophisticated
high energy hadronic physics models are e.g. Phojet [25–
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27] DPMJET [28] and EPOS [29].

Another class of MC codes are specialized in air shower
simulations. They are concerned about high energy sec-
ondary particle production, reproducing well the existing
accelerator data and extrapolating the results to the very
high energy region. SIBYLL [30–32] and QGSJET [33–
37] are part of this set of codes, which are used in the
CORSIKA extensive air shower simulations (EAS) code
[38].

Calculation of the galactic diffuse γ-ray spectrum us-
ing results of MC codes such as HADRIN [39], FRITIOF
[40] and PYTHIA were done by [41]. Ref. [42] noticed
that previous calculations of the pp → γ-ray spectrum for
an astrophysical environment did not consider diffractive
interaction, Feynman scaling violation and the logarith-
mic increase of the inelastic cross section. They stressed
the importance of diffractive dissociation, which is the
source of very high energy γ-rays, and the importance
of the Feynman scaling violation, which increases the γ-
ray yield in the GeV to multi-GeV energy range. Their
first model “Model A” and later the “Readjusted Model
A” [43] included these processes by using PYTHIA 6
event generator for 52.6 GeV ≤ Tp ≤ 512 TeV. For
0.488 GeV ≤ Tp < 52.65 GeV they included calculations
from [18] and extended the model to the resonance region
by including two resonances, the ∆(1232) and a group
of resonances called res(1600), readjusting their calcula-
tions to be accurate below Tp < 3 GeV. The results of
the “Readjusted Model A” are given in a parametrized
form in [43].

Ref. [44] used the results of publicly available codes to
find an accurate parametrization of different secondary
particle spectra at high proton energies, with 0.1 TeV ≤
Tp ≤ 105 TeV. With the < 10 GeV component of as-
trophysical γ-ray sources becoming probeable by present
and next-generation instruments, the limitations in en-
ergy range of this parametrization are becoming appar-
ent. Therefore, a parametrization that is both accurate
and that spans from threshold up to very high energies
is needed. Moreover, very hot astrophysical plasma cal-
culations as well as the increasing sensitivity of the γ-
ray instruments such as Fermi–LAT satellite, which has
recently observed γ-ray spectra that reveal a sub-GeV
bump, require accurate γ-ray production cross sections
at low energies near the p–p kinematic threshold.

In the present work, we adopt an approach similar
to that in [44]. We focus on producing a simple but
accurate parametrization of the γ-ray differential cross
section for a wide range of proton energies. For this,
we combine experimental data of π0 production below
Tp ≤ 2 GeV and publicly available sophisticated MC
codes which combine theoretical and parametrization
driven models, at higher energies. We thus revise the
low energy π0 production cross section data, and use
Geant 4.10.0 [45, 46] parametrization driven models to
connect those experimental data with very high energy
models predictions such as Pythia, SIBYLL, QGSJET,
etc. Since at very high energies the different models avail-

able disagree with each other, we have picked GEANT 4,
PYTHIA 8, SIBYLL and QGSJET as representatives of
their respective MC model classes.
In this way, we introduce here a simple and accurate

parametrization that spans from the kinematic threshold
to PeV energies and that has the flexibility to switch be-
tween different high energy models. We have applied this
parametrization to different proton spectra with a wide
energy range and show that the parametrization has a
smooth transition between different energy regions. We
have related the proton and γ-ray spectra parameters
and have fitted these parameters with quite simple func-
tions. We also discuss the effect of the nuclei on the
γ-ray spectrum. We introduce a practical method to cal-
culate the nuclear enhancement factor to very high en-
ergies and notice that at low energies this factor loses
its meaning. We comment on the nucleus–nucleus sub-
threshold π0 production effect which can produce very
efficiently high energy γ-rays for nuclei with kinetic en-
ergy Tp < 0.28 GeV/nucleon.
Although we do not parametrize the spectra of sec-

ondary particles such are muons, electrons, neutrinos and
their antiparticles, their spectra can be derived above a
certain proton energy using the symmetries and ratios
that exist between charged and neutral pion production
that are found experimentally. Hence, one can poten-
tially derive useful information on other secondary par-
ticles using their ratios with respect to the γ-rays that
exist at high energies, as was shown in [44].

II. INCLUSIVE π0 PRODUCTION CROSS

SECTION AND MULTIPLICITY

A. Total p–p inelastic cross section

The theoretically motivated parametrization of the
high energy p–p inelastic cross section has a quadratic
functional form of the logarithm of the proton energy.
We take here the total and elastic p–p cross section data
compiled by the Particle Data Group (PDG) [47]. These
data include the recent measurements at center-of-mass
energies

√
s = 7 and 8 TeV published by the TOTEM

collaboration at the LHC [see e.g. 48, 49]. We suggest
the following parametrization for the p–p total inelastic
cross section

σinel =

[

30.7− 0.96 log

(

Tp

T th
p

)

+ 0.18 log2
(

Tp

T th
p

)]

×



1−
(

T th
p

Tp

)1.9




3

mb.

(1)

Here, Tp is the proton kinetic energy in the laboratory
frame, T th

p = 2mπ+m2
π/2mp ≈ 0.2797 GeV is the thresh-

old kinetic energy. mp and mπ are the proton and π0
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masses, respectively. The units that we use throughout
are the natural units (i.e. ~ = c = kB = 1).
Figure 1 compares the parametrization of the 1 against

two other parametrizations [44] and [43] often used in
astrophysical contexts, as well as the observational data
from [47].
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FIG. 1. The total p–p inelastic cross section as a function of
the proton kinetic energy in the laboratory system. The data
points are taken from the PDG [47] cross section data. The
red line is our χ2-fit formula shown in eq. (1). The dashed
green line is the formula given in [44] and the dot-dashed blue
line is the formula given in [43].

B. Inclusive π0 production cross section and

average multiplicity

To obtain the inclusive π0 production cross section
or average multiplicity, we have used both experimental
data and calculations from MC codes, which are them-
selves tuned to describe experimental data over a given
energy range.
For proton kinetic energies Tp ≤ 2 GeV, π0 produc-

tion is dominated by baryon resonance production. The
leading π0 production channels for these energies are
pp → ppπ0, pp → pp2π0 and pp → {pn,D}π+π0. Other
two-pion and three-pion channels are negligible. Good
quality data exist for these channels in this energy re-
gion, which we have here compiled. The references to
these data are shown in tables I to III.
For energies Tp > 2 GeV, we calculated the average π0

production multiplicity using Geant 4.10.0, Pythia 8.18,
SIBYLL 2.1 and QGSJET-I. Note that the latest ver-
sion of the QGSJET description presently available is
QGSJET-II. We have not run either SIBYLL or QGSJET
codes here, we instead rely on the fits of π0 and η mesons
spectra for both SIBYLL 2.1 and QGSJET-I provided in
[44], valid for Tp > 100 GeV.
The numerical descriptions we run are those provided

in Geant 4.10.0 and Pythia 8.18. Geant 4.10.0 is itself
actually a toolkit for the simulation of the passage of par-
ticles through matter. Thus it does not stand in any of
the MC code classes that we described previously. How-
ever, Geant 4.10.0 contains sophisticate hadronic inter-
action models such as “FTFP BERT”, that we use here,
which implements Bertini-style cascade at low energies
Tp ≤ 5 GeV. For 4 < Tp ≤ 105 GeV it includes the
FRITIOF string model, see [45, 46]. Simulations with
Pythia 8.18 are done by using the default Pythia 8.18
tune and selecting “SoftQCD” processes.
In this way, we adopt the Geant 4.10.0 average π0 pro-

duction multiplicity to fill in the energy gap between the
experimental data Tp ≤ 2 GeV and the high energy mod-
els adopted. At high energies, different hadronic models
predictions start to diverge. Thus, at these high en-
ergies we provide the option to adopt the multiplicity
from one of these hadronic models: namely Geant 4.10.0;
Pythia 8.18; SIBYLL 2.1 and QGSJET-I.
We have fitted the inclusive π0 production cross sec-

tions and multiplicities from kinematic threshold to very
high energies (Tp ∼ 1 PeV) and parametrized their de-
scriptions.

1. Parametrization of the pp → ppπ0 cross section

An accurate parametrization of the pp → ppπ0 cross
section data from the kinematic threshold to several GeV,
is given by:

σ1π = σ0 × η1.95(1 + η + η5)×
[

fBW (
√
s)
]1.86

. (2)

Here, σ0 = 7.66× 10−3 mb; η = P ∗

π/mπ, where P
∗

π is the
maximum pion momentum in the center-of-mass system.
η is given by:

η =

√

(s−m2
π − 4m2

p)
2 − 16m2

πm
2
p

2mπ
√
s

. (3)

fBW (
√
s) is the unit-less relativistic Breit–Wigner distri-

bution,

fBW (
√
s) =

mp ×K

((
√
s−mp)2 −M2

res)
2
+M2

resΓ
2
res

,

K =

√
8MresΓresγ

π
√

M2
res + γ

,

γ =
√

M2
res(M

2
res + Γ2

res) ,

(4)

where s = 2mp(Tp + 2mp) is the center-of-mass energy
squared. The values of resonance mass and width are
Mres = 1.1883 GeV and Γres = 0.2264 GeV. In figure 2
the parametrization formula of eq. (2) is compared with
the experimental data in table I.
It is clear from figure 2 that the parametrization given

in eq. (2) represents better the experimental data espe-
cially near the kinematic threshold. The widely used
parametrization given in [50] around Tp = 0.3 GeV can
be about 70 % higher than the data.
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FIG. 2. Cross section data (see table I) for the pp → ppπ0

channel compared with eq. (2) (left panel). In the right
panel we compare data with eq. (2) and the parametrization
given in [50]. Notice that near the kinematic threshold the
parametrization of [50] can be up to 70 % larger than the
data.

TABLE I. References for pp → ppπ0 cross section data for
Tp ∈ [0.28, 2.2] GeV.

Tp [GeV] σ [mb] Reference

0.28–0.31 (0.007–5)×10−3 [51]

0.28–0.33 (0.3–8)×10−3 [52]

0.29–0.33 (0.6–8)×10−3 [53]

0.31–0.43 0.005–0.155 [54]

0.33–1.26 0.03–4.87 [55]

0.33–1.01 0.08–4.6 [56]

0.397 0.9 [57]

0.6–0.86 2.1–4.2 [58]

0.94 4.48 [59]

0.97 3.7 [60]

1.25, 2.2 3.74, 4.15 [61]

2. Inclusive π0 production cross section from two-pion
production channels

As already mentioned above, for Tp ≤ 2 GeV, the
dominant two-pion channels are pp → pp2π0 and pp →
{pn,D}π+π0. For our purposes, only the sum of
these two cross section channels is important. Equa-
tion eq:XS2pi provides a fit formula for the inclusive cross
section for the sum of the two-pion production channels.

σ2π =
5.7 mb

1 + exp (−9.3(Tp − 1.4))
. (5)

Here, Tp is in GeV and the formula is valid for
0.56 GeV ≤ Tp ≤ 2 GeV. For Tp < 0.56 GeV, σ2π = 0.

Figure 3 compares individual two-pion production
channel data against our parametrizations. The sum of
the two channels against the parametrization in eq. (5),
is also shown. Tables II and III provide references to the
experimental data for the different two-pion production
channels.

0.5 1 1.5 2

10
−3

10
−2

10
−1

10
0

Tp [GeV]

σ 
[m

b]

pp−> pp 2 π0

0.5 1 1.5 2
10

−2

10
−1

10
0

Tp [GeV]

σ 
[m

b]

pp−> {pn,D} π+π0

0.8 1 1.2 1.4 1.6 1.8 2
10

−2

10
−1

10
0

Tp [GeV]

σ 
[m

b]

 

 

Sum[2 σ(pp2π0) + σ(Xπ+π0)]
Fit−formula σ

2π

FIG. 3. The two panels on the top show our fit to the ex-
perimental data given in tables II and III. Left panel on the
top corresponds to the pp → pp2π0 channel and right panel
on the top to the sum of the pp → pnπ+π0 and pp → Dπ+π0

channels. Experimental data reveal that the pp → pp2π0

cross section has a dip around Tp = 1 GeV. Our parametriza-
tion of these exclusive channels cross sections is σ(Tp) =
2∑

i=1

ai (1 + exp (−bi(Tp − ci)))
−1. For the pp → pp2π0 chan-

nel, a1 = 0.88 mb, a2 = 0.023 mb, b1 = b2 = 15 GeV−1

and c1 = 1.46 GeV, c2 = 0.95 GeV. For the pp → Xπ+π0

channel, a1 = 3.8 mb, a2 = −0.0075 mb, b1 = 9.6 GeV−1,
b2 = 2 GeV−1 c1 = 1.35 GeV and c2 = 0.8 GeV.
The panel on the bottom show the sum of these two-pion
production channels multiplied with their respective multi-
plicities (i.e. 2 × σ(pp → pp2π0) + σ(pp → Xπ+π0)). They
are denoted in the figure with open-circles. The full red line
is the parametrization given in eq. (5). The two-pion chan-
nel contributions to the total inclusive π0 production become
non-negligible for Tp > 1.2 GeV, thus the accuracy below this
energy is not necessarily important.

3. Neutral pion production average multiplicity from
Geant 4.10.0, Pythia 8.18, SIBYLL 2.1 and QGSJET-I

As mentioned, for energies Tp ≥ 2 GeV we use
Geant 4.10.0 to fill the energy gap between the exper-
imental data and the high energy models. Pythia 8.18 is
applicable for Tp > 50 GeV, whereas, SIBYLL 2.1 and
QGSJET-I work for Tp > 100 GeV. Except QGSJET-I
which has an averagemultiplicity a factor 1.7 times larger
at Tp ∼ 100 GeV compared to other models, the rest of
them agree well with each other for Tp < 1 TeV. We fit
here the average π0 multiplicity predicted by all these
models.

If Qp = (Tp − T th
p )/mp, then the Geant 4.10.0 average

π0 multiplicity for 1 GeV ≤ Tp < 5 GeV, may be written
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TABLE II. References for pp → pp2π0 cross section data for
Tp ∈ [0.65, 2.0] GeV.

Tp [GeV] σ [mb] Reference

0.65–0.78 (0.05–1.68)×10−3 [62]

0.78–1.36 0.002–0.2 [63]

0.99–1.26 0.02–0.12 [55]

1.3-1.45 0.16–0.35 [64]

1.4 0.32 [65]

1.48 0.41 [66]

2.0 0.92 [67]

TABLE III. References for pp → {pn,D}π+π0 cross section
data for Tp ∈ [0.73, 2.0] GeV.

pp → pnπ+π0

Tp [GeV] σ [mb] Reference

0.73–0.78 (0.83–2.29)×10−3 [62]

1.1 0.284 [63]

0.86–1.26 0.02–0.66 [55]

1.48 2.37 [66]

2.0 4.07 [67]

pp → Dπ+π0

0.86–1.26 0.02–0.33 [55]

1.48 0.43 [66]

as:

〈nπ0〉 = −6× 10−3 + 0.237Qp − 0.023Q2
p . (6)

Notice that we do not use Geant 4.10.0 to calcu-
late multiplicity at energies Tp < 1 GeV. We find that
Geant 4.10.0 over predicts π0-production multiplicity for
Tp < 0.7 GeV.
For energies Tp ≥ 5 GeV, we find that one formula

is sufficient to fit multiplicities with very high accuracy
for all the models. Setting ξp = (Tp − 3 GeV)/mp, this
formula takes the form:

〈nπ0〉 = a1 ξ
a4

p

[

1 + exp
(

−a2 ξ
a5

p

)]

×

×
[

1− exp
(

−a3 ξ
1/4
p

)]

.
(7)

The coefficients a1 − a5 for each model are listed in ta-
ble IV. Figure 4 shows different model multiplicities com-
pared with the parametrization in eqs. (6) and (7). The
accuracy of these fits is better than 3 % for Tp ≥ 2 GeV.

4. Inclusive π0 production cross section σπ

Our final parametrization for the inclusive π0 produc-
tion cross section is a combination of the experimen-
tal data cross sections at low energies, the Geant 4.10.0

TABLE IV. Coefficients a1 − a5 of eq. (7) for Geant 4.10.0,
Pythia 8.18, SIBYLL 2.1 and QGSJET-I. Tp specifies the pro-
ton kinetic energy range for which the fit is valid.

Model Tp [GeV] a1 a2 a3 a4 a5

Geant 4 ≥ 5 0.728 0.596 0.491 0.2503 0.117

Pythia 8 > 50 0.652 0.0016 0.488 0.1928 0.483

SIBYLL > 100 5.436 0.254 0.072 0.075 0.166

QGSJET > 100 0.908 0.0009 6.089 0.176 0.448

cross section at intermediate energies and at higher en-
ergies one of the four hadronic models: Geant 4.10.0,
Pythia 8.18, SIBYLL 2.1 and QGSJET-I. More specif-
ically, for proton energies between T th

p ≤ Tp < 2 GeV

the π0 production cross section is given by σπ(Tp) =
σ1π + σ2π ; where, σ1π and σ2π are given in eqs. (2) and
(5). For energies between 2 GeV ≤ Tp ≤ T tran

p the cross
section is given by σπ(Tp) = σinel(Tp)×〈nπ0〉 (Tp); where,
T tran
p is a transition energy between Geant 4.10.0 and

other high energy models, and the average π0 multiplic-
ity is calculated in eqs. (6) and (7). If we choose as our
high energy model Geant 4.10.0, then T tran

p = 105 GeV,
which is the highest working energy of this model. If
the chosen high energy model is instead Pythia 8.18,
then T tran

p = 50 GeV, and for Tp > 50 GeV one
adopts the Pythia 8.18 multiplicities. If the choice at
high energies is instead SIBYLL 2.1 or QGSJET-I, then
T tran
p = 100 GeV, and for Tp > 100 GeV we adopt the

multiplicities of the respective model.
Figure 5 compares our low energy σπ values with the

parametrization provided in ref. [50] and the data from
the HADES collaboration [61, 68, 69]. We can conclude
that the ref. [50] parametrization is missing some features
that the inclusive π0 production cross section has around
1–2 GeV. Differences between the high energy models
that we have used here are also shown in figure 5.
As we have mentioned, QGSJET-I predicts a π0 pro-

duction average multiplicity or cross section at Tp =
100 GeV, about 1.7 times higher than the other mod-
els considered. Notice also that Geant 4.10.0 works up
to Tp = 105 GeV, thus, the discrepancies between models
are less than 30 % for 103 GeV ≤ Tp ≤ 106 GeV.

III. PARAMETRIZATION OF THE γ-RAY

DIFFERENTIAL CROSS SECTION

We divide the γ-ray differential cross section into two
parts. The fist part is the maximum value Amax(Tp) =
max(dσ/dEγ) that depends only on the proton energy
Tp. The second part is F (Tp, Eγ) which describes the
shape of the spectrum and is a function of Tp and γ-ray
energy Eγ . We therefore express the differential cross
section as,

dσ

dEγ
(Tp, Eγ) = Amax(Tp)× F (Tp, Eγ). (8)
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FIG. 4. The average π0 production multiplicity as a function of proton kinetic energy. Geant 4.10.0 multiplicity for 1 GeV ≤
Tp < 5 GeV is calculated using the fit formula in eq. (6), whereas, for Tp ≥ 5 GeV is calculated using fit formula of eq. (7)
with the appropriate coefficients in table IV. For Pythia 8.18, SIBYLL 2.1 and QGSJET-I the fit formula is eq. (7) with the
corresponding coefficients presented in table IV. Note that SIBYLL 2.1 and QGSJET-I multiplicities were calculated using the
parametrizations of the π0 and η spectra that are provided in ref. [44]. The accuracy of the fit-formulas that are presented
here, is better than 3 %. An exception to this is the Geant 4.10.0 description, which for Tp < 2 GeV has an accuracy of less
than 10 %. We, however, do not use the Geant 4.10.0 multiplicity in this energy interval, instead adopting our own fit to the
experimental cross sections in this energy range.
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FIG. 5. Inclusive π0 production cross section as a func-
tion of proton kinetic energy. The left panel compares
the parametrization given in ref. [50], our parametrization
and the experimental data at 1.25, 2.2 and 3.5 GeV from
the HADES collaboration [61, 68, 69]. The panel on the
right shows the differences between high energy models us-
ing the parametrization we have introduced here. Notice that
Geant 4.10.0 works for Tp ≤ 105 GeV, in the plot we have
extrapolated its multiplicity up to Tp = 106 GeV.

The peak Amax(Tp) is a function of the pion production
cross section and is fitted separately from F (Tp, Eγ). Let

us define the following variables:

Yγ =Eγ +
m2

π

4Eγ
, Y max

γ = Emax
γ +

m2
π

4Emax
γ

,

Xγ =
Yγ −mπ

Y max
γ −mπ

.

(9)

Here, Emax
γ is the maximum γ-ray energy allowed by

the kinematics. Let us denote with ECM
π and Emax

π LAB

the maximum π0 total energy in the center-of-mass and
laboratory systems, respectively. Let us further denote
with γCM the Lorentz factor of the center-of-mass system
and γLAB

π the maximum π0 Lorentz factor in the labo-
ratory system. The maximum or minimum γ-ray energy

E
max/min
γ is given by:

ECM
π =

s− 4m2
p +m2

π

2
√
s

,

Emax
π LAB =γCM (ECM

π + PCM
π βCM ) ,

γCM =
Tp + 2mp√

s
, γLAB

π =
Emax

π LAB

mπ
,

Emax/min
γ =

mπ

2
γLAB
π

(

1± βLAB
π

)

.

(10)

Here, PCM
π =

√

(ECM
π )2 −m2

π is the pion maximum

center-of-mass momentum, βCM =
√

1− γ−2
CM is the
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center-of-mass velocity, and βLAB
π =

√

1− (γLAB
π )−2 is

the pion maximum velocity in the laboratory system.
The value of Y max

γ is the same if we replace the max-

imum γ-ray energy with the minimum one Emin
γ . The

reason being that Yγ is a symmetric function of Eγ with
respect to Eγ = mπ/2 on a logarithmic energy scale. Val-
ues of Yγ lie in Yγ ∈

[

mπ, Y
max
γ

]

, thus, Xγ ∈ [0, 1]. It
is expected that F (Tp, Eγ) be a function of Yγ , hence,
a function of Xγ . Therefore, the functional shape of
F (Tp, Xγ), for a given proton energy, is defined in the
range [0, 1]× [0, 1], which simplifies the expression of its
parametrization.
With very good accuracy F (Tp, Eγ) can be

parametrized as

F (Tp, Eγ) =

(

1−X
α(Tp)
γ

)β(Tp)

(

1 +
Xγ

C

)γ(Tp)
. (11)

TABLE V. Functions α(Tp), β(Tp), γ(Tp) and λ coefficients
in eq. (11) for Geant 4.10.0, Pythia 8.18, SIBYLL 2.1 and
QGSJET-I. Functions κ(Tp) and µ(Tp) are given in eqs. (14)
and (15), respectively.

Model Energy [GeV] λ α(Tp) β(Tp) γ(Tp)

Exp. Data T th
p ≤ Tp ≤ 1 – 1.0 κ 0

Geant 4 1 < Tp ≤ 4 3.00 1.0 µ + 2.45 µ + 1.45

Geant 4 4 < Tp ≤ 20 3.00 1.0 3
2
µ + 4.95 µ + 1.50

Geant 4 20 < Tp ≤ 100 3.00 0.5 4.2 1

Geant 4 Tp > 100 3.00 0.5 4.9 1

Pythia 8 Tp > 50 3.50 0.5 4.0 1

SIBYLL 2.1 Tp > 100 3.55 0.5 3.6 1

QGSJET-I Tp > 100 3.55 0.5 4.5 1

Here, κ(Tp) and µ(Tp) are given by eq. (14) and (15)
respectively, and C = λ × mπ/Y

max
γ . Table V lists the

values of λ, α(Tp), β(Tp) and γ(Tp) for different energies
and models.
The peak value Amax on the other hand can be ex-

pressed as follows

Amax(Tp) =b0 ×
σπ(Tp)

Emax
π

: for T th
p ≤ Tp < 1 GeV,

Amax(Tp) =b1 θ
−b2
p exp

(

b3 log2(θp)
)

× σπ(Tp)

mp

: for Tp ≥ 1 GeV.

(12)

Where, θp = Tp/mp, E
max
π is the maximum total π0 en-

ergy in the laboratory frame that is allowed by the kine-
matics, see eq. (10). σπ(Tp) is the inclusive π

0 production
cross section as was explained in section II, and b0 − b3
are constants that depend on the hadronic model.

A. Gamma-ray spectra for T th
p ≤ Tp < 1 GeV

Good quality π0–spectral data for Tp < 1 GeV exist
in the literature. We have collected these data (see ta-
ble VI), calculated the corresponding γ-ray spectra pro-
duced, and compared these with other models.
Figure 6 shows some of these data as well as our χ2-fit

of them.

TABLE VI. References for pp → π0 differential cross section
data for Tp ∈ [0.293, 0.989] GeV.

Tp [GeV] Reference

0.293 [70]

0.3 [51]

0.31–0.425 [71]

0.4 [57]

0.6 – 0.86 [72]

0.8 [73]

0.97 [74]

0.989 [75]

Assuming that the π0 spectra in the center-of-mass
system for Tp < 1 GeV is isotropic, one can calculate the
π0 spectra in the laboratory frame (dσπ/dEπ) using its
description in the center-of-mass frame, and subsequently
calculating the γ-ray spectra with the relation

dσ

dEγ
= 2×

Emax

π
∫

Yγ

dσπ

dEπ

dEπ
√

E2
π −m2

π

. (13)

Here, Eπ is the π0 total energy in the laboratory frame,
Emax

π is the maximum total π0 energy in the laboratory
frame that is allowed by the kinematics see eq. (10), Yγ

is given in eq. (9) and the factor 2 in front comes from
the multiplicity of γ-rays due to π0 → 2γ decay.
Using a χ2 method, we have fitted these results with

functions presented in eqs. (11) and (12). We find:

b0 = 5.9, κ(Tp) = 3.29− 1

5
θ−3/2
p (14)

where θp = Tp/mp.
Figure 7 shows how well the Amax of eq. (12), fits the

peak value of the γ-ray spectrum calculated from π0 spec-
tral data. The accuracy of the fit is better than 10 %, as
can be seen from the ratio.
Figure 8 shows some examples of the γ-ray production

differential cross section calculated from the experimen-
tal π0 spectrum data and compares them with the low
energy models from [43, 50]. Although, the shape of π0

spectra between data and the ref. [50] calculations are
very different in the center-of-mass frame, these differ-
ences become less noticeable in the γ-ray spectra. This
testifies to the fact that the γ-ray spectrum inherits from
the π0 production, the multiplicity and the kinematics
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FIG. 6. Comparison of the center-of-mass system π0–
spectrum between data (open circles), our χ2–fit of the data
(full red line) and the isobar calculations from [50] (dash
blue line). Our fit of the pion differential cross section is
based on the partial wave expansion and the final state in-
teraction (FSI). This function is a sum of three terms f1,
f2 and f3 which are a function of x = Tπ/Tmax, where Tπ

is the π0 kinetic energy in the center-of-mass system, while,
Tmax is the maximum π0 kinetic energy in the center-of-mass
frame allowed by the kinematics, see eq. (10). The function

f1 = A1 × x4
√

1−x
1−x+B

, where B = 1MeV/Tmax. Function

f2 = A2 × x (1 − x) and f3 = A3 × x3 (1 − x)3/2. A1, A2

and A3 are fitted using the χ2 method. The pion differential

cross section is given by dσ
dTπ

=
σπ(Tp)

Tmax
× (f1 + f2 + f3), with

σπ(Tp) the π0 inclusive production cross section.

of the π0 → 2γ decay. Subsequently, the γ-ray spectrum
washes out and is less sensitive to the actual shape of the
π0 production spectrum.

B. Gamma-ray spectra from Gean 4.10.0,

Pythia 8.18, SIBYLL 2.1 and QGSJET-I

Employing the functions in eqs. (11) and (12), we have
fitted the γ-ray production differential cross sections for
all these models. The fitting results are summarized in
tables VII and V. The function µ(Tp) that is used in
table V is given in eq. (15). If q = (Tp − 1 GeV)/mp,
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FIG. 7. The peak value of the γ-ray production differ-
ential cross section as a function of proton kinetic energy.
Open circles represent the calculations from π0-spectrum
data; whereas, the line represents our fit function Amax =

5.9×
σπ(Tp)

Emax
π

(Tp)
. The accuracy of the fit is better than 10 % as

it is seen from the ratio.

then

µ(Tp) =
5

4
q

5

4 exp

(

−5

4
q

)

. (15)

TABLE VII. Coefficients b1 − b3 in eq. (12) for Geant 4.10.0,
Pythia 8.18, SIBYLL 2.1 and QGSJET-I.

Model Energy range b1 b2 b3

Geant 4 1 ≤ Tp < 5 GeV 9.53 0.52 0.054

Geant 4 Tp ≥ 5 GeV 9.13 0.35 9.7e-3

Pythia 8 Tp > 50 GeV 9.06 0.3795 0.01105

SIBYLL Tp > 100 GeV 10.77 0.412 0.01264

QGSJET Tp > 100 GeV 13.16 0.4419 0.01439

Figure 9 shows the Amax fit calculated using eq. (12)
and parameters in table VII compared with the one cal-
culated from Geant 4.10.0, Pythia 8.18, SIBYLL 2.1 and
QGSJET-I models. As can be seen from the plots, the
accuracy of the fit is better than 15 % for 1 ≤ Tp ≤ 5 GeV
and better than 3 % for Tp > 5 GeV. It is remark-
able to notice that Amax/σinel, for most of the models,
does not have a strong energy dependence especially for
Tp > 100 GeV. This means that Amax, the peak of the
γ-ray spectrum, takes the same energy dependence, at
high energies, as the total inelastic cross section.

Figures 10 to 13 show the Geant 4.10.0, Pythia 8.18,
SIBYLL 2.1 and QGSJET-I γ-ray production differen-
tial cross sections compared with their respective fit for-
mulas given in eq. (11) and exponents summarized in
table V. The accuracy of the fits is better than 20 %
for Geant 4.10.0 and Pythia 8.18. For SIBYLL 2.1 and
QGSJET-I, the accuracy improves as the proton energy
is reduced.
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FIG. 8. Gamma-ray spectrum for different proton collision
energies. The open circles (“Data”) are calculations using
experimental π0 spectra. Full red line is the fit formula in
eq. (14). Dash blue line are calculations from [50]. Dash-dot
green line are calculations from [43] fits. Ref. [43] calculations
are valid for Tp ≥ 0.488 GeV and they do not respect γ-ray
kinematic limit. Moreover, they do not satisfy the expected
symmetry with respect to Eγ = mπ/2 that π0 → 2γ decay
create. The ratios are taken with respect to calculations from
data and the accuracy of the fit is better than 20 %.

IV. THE EFFECT OF NUCLEUS–NUCLEUS

INTERACTION

Elements heavier than Hydrogen, are found in many
astrophysical environments. As a result, it is necessary
to have a formalism to describe the γ-ray production in
nucleus–nucleus interactions. Generally we expect that
the nucleus–nucleus contribution be small compared to
the p–p one, because, the abundances of nuclei heavier
than Hydrogen are small. Hence, a simplified description
of the nucleus–nucleus interaction is justified.

In the context of Glauber’s multiple scattering the-
ory [77–79], high energy nucleus–nucleus collisions can
be treated as a sequence of binary nucleon-nucleon scat-
terings. This simplifies the complicated nucleus–nucleus
scattering into individual nucleon–nucleon ones and ne-
glects the effects that come with the nuclear medium and
nucleons motion inside the nucleus. Not all the nucleons,
however, participate in the collisions because nucleons in-

side the nucleus “eclipse” each other. Therefore, the in-
elastic cross section is smaller than the sum of all binary
nucleon–nucleon cross sections. In this picture, the γ-ray
spectrum produced by nucleus–nucleus collisions will be
essentially the same with that of p–p, but with an Amax

in eq. (12), scaled by the nucleus–nucleus inclusive π0

production cross section.
To calculate the nucleus–nucleus inclusive π0 produc-

tion cross section, we need the nucleus–nucleus inelastic
cross sections and the π0 average multiplicity. A sim-
ple and accurate model for calculating the average π0

multiplicity, is the so called “wounded nucleons” model
[80]. This model assumes that the average meson pro-
duction multiplicity is proportional to the number of
nucleons that underwent at least one inelastic collision
during a nucleus–nucleus interaction. According to this
model if A and B are two nuclei with mass numbers
A and B, respectively, the average π0 multiplicity is
〈nABπ0〉 = 1

2wAB × 〈nπ0〉, where wAB is the number of

wounded nucleons and 〈nπ0〉 is the average π0 multiplic-
ity for p–p collisions. The factor wAB is given by:

wAB =
AσpB +B σpA

σAB
(16)

where, σpA and σpB are the nucleon(proton)–nucleus A
or B inelastic cross sections, and σAB is the A+B inelastic
cross section.
For the nucleus–nucleus inelastic cross sections, there

exist different phenomenological models and fits of
the experimental data, see e.g. [81–90]. This cross
section shows an energy dependence below Tp <
0.2 GeV/nucleon, above which it approaches the geomet-
rical cross section and thus, thereafter, it remains con-
stant. At very high energies though, it is expected that
the nucleus–nucleus cross section increase. Soft-sphere
models, for instance, predict that the nucleus–nucleus
cross section will increase with energy as the logarithm
of the p–p inelastic cross section, see e.g. [82].
Based on these considerations we use the parametriza-

tion of ref. [87] for describing the nucleus–nucleus cross
section. This parametrization is energy independent. For
very high energies (Tp > 103 GeV/nucleon) we modify
this parametrization with a logarithmic term of the p–p
inelastic cross section. For completeness we state here
explicitly the formulas adopted for nucleus–nucleus reac-
tion cross sections, provided in [87]:

σR = σR0

[

A1/3
p +A

1/3
t − β0

(

A−1/3
p +A

−1/3
t

)]2

, (17)

where, σR0 = πr20 ≈ 58.1 mb with r0 = 1.36 fm. Ap

and At are the projectile and the target mass numbers,
respectively. The coefficient β0 = 2.247 − 0.915 (1 +

A
−1/3
t ) if the projectile is a proton, and β0 = 1.581 −

0.876 (A
−1/3
p + A

−1/3
t ) for a projectile different from a

proton. This formula is valid for projectile energies
Tp ≥ 0.2 GeV and Tp ≥ 0.1 GeV/nucleon, for proton
and nuclei projectile species, respectively.
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FIG. 9. The value of the peak of the γ-ray production differential cross section over the total inelastic cross section (Amax/σinel)
as a function of proton kinetic energy. Open circles give Geant 4.10.0, Pythia 8.18, SIBYLL 2.1 and QGSJET-I calculations;
whereas, the red line is the fit formula of eq. (12) with coefficients listed in table VII. As the ratio shows, the accuracy of the
fit is better than 15 % for 1 ≤ Tp ≤ 5 GeV and better than 3 % for Tp > 5 GeV. It is remarkable that Amax/σinel, for most of
the models, does not have a strong energy dependence especially for Tp > 100 GeV. This means that Amax will have the same
energy dependence, at high energies, as the total inelastic cross section.

To account for the energy dependence of the cross sec-
tion at very high energies, we slightly modify the formula

σinel(Ap, At, Tp) = σR(Ap, At)× G(Tp) (18)

where, Tp is the projectile kinetic energy per nucleon.
For the function G(Tp) we assume a simple form

G(Tp) = 1 + log

(

max

[

1,
σinel(Tp)

σinel(T 0
p )

])

. (19)

σinel(Tp) is the p–p inelastic cross section given in eq. (1),
and we choose T 0

p = 103 GeV as the energy at which
the nucleus–nucleus cross section growth becomes notice-
able. We note that the function G(Tp) can increase the
nucleus–nucleus cross section by about 50 % at energies
Tp ∼ 106 GeV/nucleon.
If we suppose that we have P projectiles and T tar-

gets, the total γ-ray differential cross section will be the
sum from each component. Therefore, if we scale their
contributions with respect to the p–p component, we
form the so called, nuclear enhancement factor ǫ. Let
us denote with Y i

p = (ni/np)proj the ratio by num-
ber of a given projectile i with respect to the proton
component, and let the Y j

t = (nj/nH)targ be the ratio
by number of a target j with respect to Hydrogen in
that medium. The ratio between nucleus–nucleus and
p–p inclusive π0 production cross sections is σij

π /σπ =
1
2 wijσinel(Ai, Aj , Tp)/σinel(Tp) = 1

2 (Aiσinel(p,Aj , Tp) +

Ajσinel(p,Ai, Tp)/σinel(Tp), where Ai and Aj are the pro-
jectile and target mass numbers. σinel(Tp) is p–p inelastic
cross section, whereas, σinel(p,Ai, Tp) and σinel(p,Aj , Tp)
are proton–target and proton–projectile inelastic cross
sections, respectively given by eq. (18). The nuclear en-
hancement factor is given by

ǫ =

P,T
∑

i,j

Y i
p Y j

t

(

Aiσ(p,Aj , Tp) +Ajσ(p,Ai, Tp)

2σinel

)

, (20)

where for simplicity we write σinel(p,Ai, Tp) ≡
σ(p,Ai, Tp) and σinel(p,Aj , Tp) ≡ σ(p,Aj , Tp). When nu-
clei interact with Hydrogen, the p–p inelastic cross sec-
tion will appear which in principle has a different energy
dependence than the nucleus–nucleus cross section. Thus
we separate the contribution that comes when at least
one of the interacting particles is a proton (or Hydro-
gen). Let us denote with

ǫc = 1 +
1

2

P
∑

i>p

Ai Y
i
p +

1

2

T
∑

j>H

Aj Y
j
t , (21)

ǫ1 =
1

2

P
∑

i>p

Y i
p

σR(p,Ai)

σpp
R

+
1

2

T
∑

j>H

Y j
t

σR(p,Aj)

σpp
R

, (22)
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FIG. 10. Geant 4.10.0 γ-ray production differential cross section for some specific proton kinetic energies. The open circles are
Geant 4.10.0 calculations; whereas, the full red lines are the fit formula shown in eq. (11) of section III, with α(Tp), β(Tp) and
γ(Tp) summarized in table V. The dash-blue line are calculations from [50] which are based on the isobar model. The dash-dot
green line is the parametrization given by [43]. The ratio between the fit and the calculations show that the accuracy of the fit
is better than 20 %.

ǫ2 =

P,T
∑

i,j>p,H

Y i
p Y j

t

(

AiσR(p,Aj) +AjσR(p,Ai)

2σpp
R

)

. (23)

Where the i > p and j > H means that the index runs
over all other elements except protons and Hydrogen as
projectile and targets, respectively. We denoted with
σpp
R = πr2p = 10π ≈ 31.4 mb the proton geometrical cross

section, by assuming that rp = 1 fm. σR(p,A) is the
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FIG. 11. Pythia 8.18 γ-ray production differential cross section for some specific proton kinetic energies. The open circles
are Pythia 8.18 calculations, whereas, full red line is the fit formula shown in eq. (11) with the corresponding α(Tp), β(Tp)
and γ(Tp) listed in table V. The dash-green line is the fit given in [43] which works for 0.448 ≤ Tp ≤ 512 TeV. Although not
clearly shown in these plots, the fit provided by [43] violates the symmetry that π0 → 2γ decay spectra has with respect to
Eγ = mπ/2. It also violates the Emax

γ that is allowed by the kinematics. The ratio between the fit and the calculations shows
that the accuracy of the fit is better than 20 %.
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FIG. 12. SIBYLL 2.1 γ-ray production differential cross section for some specific proton kinetic energies. The open circles are
SIBYLL 2.1 calculations, the full red line is the fit formula shown in eq. (11) with the corresponding α(Tp), β(Tp) and γ(Tp)
listed in table V and the dash green line is the fit given in [44]. The ratio between the fit and the calculations shows that the
accuracy of the fit is of the order 20 %.
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FIG. 13. QGSJET-I γ-ray production differential cross section for some specific proton kinetic energies. The open circles are
QGSJET-I calculations, the full red line is the fit formula shown in eq. (11) with the corresponding α(Tp), β(Tp) and γ(Tp)
listed in table V and the dash green line is the QGSJET-II fit calculated using the “ppfrag” code given in [76]. The ratio
between the fit and the calculations shows that the accuracy of the fit is of the order 20 %.
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inelastic proton–nucleus cross sections given in eq. (17).
The nuclear enhancement factor will be expressed as:

ǫ(Tp) = ǫc + (ǫ1 + ǫ2)×
σpp
R × G(Tp)

σinel(Tp)
. (24)

The last expression of the nuclear enhancement factor
is very practical. ǫc does not depend on energy and is
not model dependent, i.e. the nucleus–nucleus cross sec-
tion model. ǫ1 and ǫ2 are not functions of energy but are
model dependent. The only energy dependent term in
the enhancement factor is due to G(Tp)/σinel(Tp) which
multiplies (ǫ1 + ǫ2) – if, of course, we assume that abun-
dances (expressed in energy per nucleon) do not change
with energy. The ratio σinel(Tp)/σ

pp
R is very close to

unity for energies between 10–1000 GeV/nucleon, there-
fore, σpp

R × G(Tp)/σinel(Tp) is also close to unity.
The nuclear enhancement factor ǫ enters in the calcula-

tion of the γ-ray differential cross section by multiplying
the maximum Amax → ǫ×Amax, where Amax is given in
eq. (12).
To illustrate the above formulas, we consider the inter-

action of the primary cosmic rays with the local galactic
interstellar medium. By following [91], the ratios of pri-
mary cosmic ray fluxes at Tp = 10 GeV/nucleon for the
H(A = 1), He(A = 4), CNO(A = 14), Mg-Si(A = 25)
and Fe(A = 56) are Yp = 1 : 5.51 × 10−2 : 3.25× 10−3 :
1.61 × 10−3 : 3.68 × 10−4. The local Galactic inter-
stellar medium abundances for H(A = 1), He(A = 4),
C(A = 12), N(A = 14), O(A = 16), Ne(A = 20),
Mg(A = 24), Si(A = 28), S(A = 32), Fe(A = 56) have
Yt = 1 : 9.59×10−2 : 4.65×10−4 : 8.3×10−5 : 8.3×10−4 :
1.2 × 10−4 : 3.87 × 10−5 : 3.69 × 10−5 : 1.59 × 10−5 :
3.25× 10−5, see e.g. [92]
Using eqs. (21) to (23) we find that ǫc ≈ 1.37, ǫ1 ≈ 0.29

and ǫ2 ≈ 0.1; whereas, ǫ = 1.79 if we choose Tp =
10 GeV/nucleon. Figure 14 shows the energy depen-
dence of the nuclear enhancement factor ǫ(Tp). For the
sake of comparison we have included two more models
of p–nucleus inelastic cross sections which describe the
energy dependence at low energies [83, 90]. Different au-
thors have estimated the nuclear enhancement factor at
Tp = 10 GeV/nucleon [14, 20, 41, 93, 94]. Ref. [94] in-
cludes in addition to p and α the contribution of the
cosmic ray CNO, Mg-Si and Fe nuclei. The cross section
of nucleon–nucleus (or nucleus–nucleus) were calculated
using DPMJET-3. The value of the nuclear enhance-
ment factor found by this author, which adopted the
same abundance ratios as was done here, is ǫ = 1.84.
For comparison, we find that ǫ = 1.84 using ref. [83]
cross sections, ǫ = 1.81 using ref. [90] cross sections and
ǫ = 1.79 using ref. [87] cross sections.
The shape of the γ-ray spectrum due to nucleus–

nucleus interactions is not exactly the same as that pro-
duced through p–p interactions. Recently ref. [95] have
calculated the enhancement factor using QGSJET-II-04
and EPOS-LHC. They show that the nuclear enhance-
ment factor does not depend only on the abundances of
the primary nuclei but also on the spectrally averaged
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FIG. 14. The nuclear enhancement factor ǫ as a function of
cosmic ray kinetic energy. For comparison we include ref. [87]
cross sections and two more cross section models [83, 90],
which take into account the energy dependence of p–nucleus
inelastic cross sections at low energies. Broken lines represent
ǫ in the case when G(Tp) = 1, whereas, the full lines are
calculations with G(Tp) given in eq. (19).

photon energy. The enhancement factor that was found
by these authors, agreed approximately with that of [94],
however, for Eγ > 100 GeV they get larger values.

The Glauber approach does not hold at low energies,
because nucleons motion inside the nucleus as well as
coherent interactions of many nucleons simultaneously
become important. It is interesting to notice that al-
though p–p inelastic collisions do not produce pions be-
low Tp < 0.28 GeV, nucleus-nucleus interactions can pro-
duce pions efficiently below Tp < 0.28 GeV/nucleon in
the so called subthreshold meson production, see e.g.
[96–100]. This means that the enhancement factor in
eq. (20) will go to infinity as we approach the p–p kine-
matic threshold, Tp ≈ 0.28 GeV. Therefore, the enhance-
ment factor does not have a meaning at low energies and
the γ-ray spectrum should be calculated separately be-
tween p–p and nucleus–nucleus (p–nucleus) collisions.

V. APPLICATIONS

Using the parametrized results provided in the pre-
vious sections, the determination of the resultant γ-
ray spectrum produced through p–p interactions with
a power-law distribution of protons is considered. To
account for the energy range of the protons, and their
abundance at each energy, an integral over the proton
energy spectra must be carried out,

Φγ(Eγ) = 4πnH

∫

dσ

dEγ
(Tp, Eγ)J(Tp)dTp, (25)

where nH is the density of target protons.
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For a proton spectrum of the form

Jp(pp) =
A

pαp
exp

[

−
(

pp
pmax
p

)β
]

(26)

we have investigated the corresponding functional form
of the γ-ray.
Overall, the functional shape of γ-ray spectrum pro-

duced in the 0.01 − 1 GeV energy region depends on
the proton spectral index, α, adopted. For sufficiently
large cutoff energies (pmax

p ≫ 10 GeV), the spectrum ob-
tained consists of a rising part from threshold to energies
∼ 0.1 GeV, followed by a subsequent break in the spec-
trum at this energy giving rise to a 0.1 GeV bump feature
(note- this feature sits at ∼ 0.1 GeV in the Φγ represen-
tation). This bump feature remains, although becomes
somewhat less pronounced, as the proton spectral slope is
hardened (ie. α is reduced). At energies above∼ 10 GeV,
the power-law component of the spectrum becomes well
established, becoming subsequently harder above an en-
ergy of ∼ 100 GeV, which originates from the growth
in the inelastic cross-section, σinel. Generally, neglecting
cutoff effects, this hardening equates to the γ-ray spec-
tral index decreasing by ∼ 0.04 for each decadal increase
in the photon energy.
We next proceed to focus more closely on the specific

threshold and cutoff regions in the γ-ray spectrum re-
gions. Both of these “end” regions hold potential for
providing key information on the underlying proton spec-
trum which gave rise to them.
To investigate the growth of the γ-ray spectrum pro-

duced in the region from threshold up to energies ∼
1 GeV, we adopt the parametrization,

Φγ(Eγ) = BEη
γ

(

1 +
2Eγ

mπ

)

−δ

(27)

where B, η, and δ are fit parameters. Using this prescrip-
tion, the flux in the threshold energy region, defined by
the energy flux in the range (10−3 − 1)×E2

γΦγ(1 GeV),
was found to be accurately described, for all hadronic
models, with an accuracy of better than 5% in all
cases. Furthermore, with this prescription, the low en-
ergy power-law slope, η, was found to be closely related to
the underlying proton spectral slope, α, with the approxi-
mate expressions η ≈ 0.1+0.9α and δ ≈ 2η. These results
demonstrate the fact that both the low (Eγ ≪ mπ/2) and
high-energy (Eγ ≫ mπ/2) γ-ray spectral slopes reflect
that of the parent proton spectrum, though with differ-
ing signs. Indeed, being built up of symmetric functions
as discussed in section III, the γ-ray spectrum Φγ must
itself be a symmetric function about Eγ = mπ/2, which
discloses the origin of the ∼ 0.1 GeV bump feature.
Similar to the above description of the threshold re-

gion, we adopt a parametrisation of the γ-ray spectrum
produced from energies above 10 GeV into the cutoff re-
gion, of the form,

Φγ(Eγ) =
A′

Eα′

γ

exp

[

−
(

Eγ

Emax
γ

)β′
]

. (28)

With this prescription, the γ-ray and proton spectrum
cutoff parameters, β′ and β respectively, were found to
follow the relation β′ = aβ/(β+ b). This description was
found to provide an accurate description of the cutoff
region, defined by the energy flux in the range (1−10−3)×
E2

γΦγ(10 GeV), for all hadronic models, with an accuracy
of better than 20% in all cases. A table of a and b best-fit
values for specific proton spectral indices is provided in
table VIII. The spectrum of secondary γ-rays, therefore,
undergoes a slower cutoff than that of the parent proton
spectrum. Furthermore, a cutoff with β′ > a is never
expected in the secondary γ-ray spectrum, regardless of
the severity of the proton spectrum cutoff.
Additional insight into the nature of the threshold

and cutoff regions is provided through a consideration
of the δ-approximation description. Since different au-
thors adopt different definitions for approximation, we
state explicitly the procedure adopted here. For this pre-
scription, only single pion production is considered, with
the pion receiving energy Eπ = KTp, in the lab frame,
through a pion production interaction. We here adopt
K = 0.17, as was motivated in [44]. The differential
cross section approximation for this description assumes,

dσπ

dEπ
= σinel(Tp)δ(Eπ −KTp). (29)

Subsequent to a pion’s production, its isotropic decay
gives rise to a γ-ray spectrum with a top-hat functional
form in Φγ , with the end-points of this function being
dictated by the kinematics described in eq. (10). With
such top-hats being symmetric about Eγ = mπ/2, the
subsequent spectrum produced from a power-law distri-
bution of protons will, as for the full description, itself be
symmetric. The δ-approximation method, therefore, is
expected to accurately describe the γ-ray spectrum deep
in threshold region. However, at the high energy end of
this region (Eγ ≈ mπ/2), this agreement starts to fail,
achieving agreement only within a factor of ∼3 at this
break energy. Furthermore, with the δ-approximation
description neglecting large K interactions, it predicts
a cutoff shape which closely follows that of the parent
proton spectrum. Thus, the agreement this description
achieves in the cutoff region is very poor. A compar-
ison of the δ-approximation result with that produced
through the full description is shown in figure 15 for a
particular example case.

VI. DISCUSSION AND CONCLUSIONS

The aim of this work is to provide a framework of accu-
rate and simple fitting formulas for the γ-ray spectra pro-
duced in p–p inelastic collisions that cover the energy in-
terval from threshold to very high energies (Tp ∼ 1 PeV),
with the added flexibility to switch between different high
energy models. As space-based γ-ray detectors are be-
ginning to probe the Eγ < 100 MeV, improved accuracy
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TABLE VIII. Table of a and b fit parameters for different
proton spectral index values, α.

Geant Pythia SIBYLL QGSJET

α a b a b a b a b

1.5 1.0 1.0 1.1 1.2 1.2 1.2 1.1 1.1

1.75 1.1 1.1 1.2 1.3 1.3 1.3 1.2 1.2

2.0 1.3 1.1 1.4 1.4 1.5 1.4 1.3 1.3

2.25 1.4 1.2 1.5 1.5 1.6 1.4 1.4 1.3

2.5 1.5 1.1 1.7 1.7 1.7 1.5 1.5 1.4
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FIG. 15. An archetypal spectral plot (black line) demonstrat-
ing the quality of fits to both the “threshold” (red dotted-line
region on left of the plot) and “cutoff” (green dotted-line re-
gion on right of the plot) regions. The model parameters
adopted are α = 2.0, β = 1.0 and pmax

p = 104 GeV. The blue
dash-dot-line is the same result including the nuclear enhance-
ment factor calculated in section IV. The magenta dashed-line
shows the equivalent result adopting the δ-approximation (no
enhancement factor).

of the pp → γ production cross sections at low ener-
gies are needed. As a result we have revised here the
low energy π0 production cross section and differential
cross section data below 2 GeV. We use Geant 4.10.0 for
energies above 2 GeV and at high energies, where dif-
ferent hadronic interaction model descriptions diverge,
we have used Geant 4.10.0, Pythia 8.18, SIBYLL 2.1 and
QGSJET-I. Different validations of the MC codes against
the π0 and γ-ray experimental data at the LHC energies
(see e.g. [101–104]) show that none of the MC mod-
els is able to explain fully all the available experimental
data. It is for this reason that we parametrize different
models which are representative of different descriptions
of hadronic interactions. Note that the latest version of
QGSJET in the CORSIKA code is QGSJET-II. In the
present work, however, we do not run the CORSIKA
code. We use here the fits of π0 and η spectra for both
SIBYLL 2.1 and QGSJET-I provided in [44]. Despite
this, we have good reason to believe that the parametriza-

tion provided here can fit well the spectra of other MC
codes that were not considered.
Recently the TOTEM collaboration at the LHC has

measured the p–p inelastic cross section at
√
s = 7 and

8 TeV. The widely used parametrizations for this cross
section in astrophysics e.g. [43, 44], do not fit well these
two data points. Therefore, here we give a parametriza-
tion of the p–p inelastic cross section that fits well both
the low energy as well as new high energy LHC data.
The inclusive π0 production cross section that we have

suggested here, is composed of fits of the experimen-
tal one-pion and two-pion production data and fits from
Geant 4.10.0 π0 production multiplicity. At very high
energies we have fitted separately the π0 production mul-
tiplicity from Geant 4.10.0, Pythia 8.18, SIBYLL 2.1 and
QGSJET-I. All these fits have an accuracy better than
3 % for proton energy T th

p ≤ Tp ≤ 1 PeV. It is very
likely that this parametrization continues to accurately
describe the inclusive π0 production cross section above
1 PeV.
By comparing another widely used low energy

parametrization [50] with the experimental π0 produc-
tion cross section data near the kinematic threshold
(around Tp = 0.3 GeV), we show that this parametriza-
tion is 70–80 % higher than the data. Furthermore, we
highlight that it fails to describe some of the features
around 1–2 GeV, being at least 20 % higher than the in-
clusive cross section data around 1.25 GeV provided by
[69].
The γ-ray production differential cross section is di-

vided into two parts. One part is the value at the
peak of the differential cross section (i.e. the value at
Eγ = mπ/2), which is only a function of proton energy,
namely Amax(Tp). The second part is the shape of the
spectrum and is a function of γ-ray and proton energies
F (Tp, Eγ). This division turns out to be useful since it
simplifies the fitting of each part. The Amax(Tp) for in-
stance, can be composed into the inclusive π0 production
cross section and a relatively simple function of proton
energy, as it is shown in eq. (12). The shape of the spec-
trum F (Tp, Eγ), on the other hand, expressed in terms
of the variable Xγ defined in eq. (9), simplifies the fit-
ting function. As is shown in eq. (11), F (Tp, Xγ) is a
function defined in the range [0, 1]× [0, 1] for a given pro-

ton energy. Its denominator
(

1 +
Xγ

C

)γ(Tp)

is responsible

for the shape near Eγ = mπ/2, whereas the numerator

(1−Xγ)
β(Tp) or

(

1−
√

Xγ

)β=const
is responsible for the

shape near the kinematic limit Eγ = Emax
γ .

The accuracy of the Amax(Tp) is better than 15 % at
energies Tp < 5 GeV and better than 3 % at higher en-
ergies. It is remarkable to notice that Amax(Tp)/σinel for
Tp > 10 GeV has a very weak energy dependence, thus,
Amax(Tp) mimics the σinel.
The accuracy of the γ-ray production differential cross

section dσ/dEγ = Amax×F (Tp, Eγ) is better than 20 %,
see figures 10 to 13. As the proton energy increases,
the γ-ray spectrum becomes wider and the “distance”
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between Eγ = mπ/2 and Eγ = Emax
γ becomes larger. As

a result, at very high energies, the accuracy of the fit for
mπ/2 ≪ Eγ ≪ Emax

γ drops to 20 % or below as can be
seen for the case of SIBYLL 2.1 and QGSJET-I.

The γ-ray spectra for T th
p ≤ Tp < 1 GeV is calcu-

lated using experimental π0 spectral data. Although,
the shape of the π0 spectra between experimental data
and [12, 50] isobaric model calculations are very differ-
ent in the center-of-mass frame, these differences in the
γ-ray spectra are less noticeable. The δ-approximation
introduced at higher energies by [105] (see section V), is
another example where the π0 spectral shape itself does
not play a large role. This quality of the γ-ray spectrum
is evidence that the π0 multiplicity and the kinematics
of the π0 → 2γ decay play the greatest contribution.

We observe that the γ-ray spectrum parametrization
provided in [43], does not satisfy the expected kinematic
limit at certain proton energies, with the spectrum going
substantially beyond the Eγ = Emax

γ limit. A second un-
physical feature of this parametrization is that the γ-ray
spectrum is not symmetric with respect to Eγ = mπ/2 in
the log(Eγ) axis, which is expected from the kinematics
of π0 → 2γ decay.

In real astrophysical environments Hydrogen is not
the only element present; thus, π0 production due to
nucleus-nucleus interaction must be included. Tradi-
tionally, the nuclear effect has been embedded in the
nuclear enhancement factor. This factor however, is
meaningful only if the energy of the nuclei are much
higher than 0.28 GeV/nucleon. For completeness we
have shown explicitly how to calculate this factor us-
ing the Glauber theory and the wounded nucleon model
as well as using inelastic nucleus-nucleus cross sections
from [87] with a modification that counts the increasing
of this cross section at very high energies. At low energies
Tp < 1 GeV/nucleon the p–p contribution to the γ-ray
spectrum decreases. Nucleus–nucleus interaction on the
other hand can still produce π0s at this energies very ef-
ficiently even when Tp < 0.28 GeV/nucleon through the
subthreshold meson production effect. At such energies
the nuclear enhancement factor increases and goes to in-
finity as we approach Tp = 0.28 GeV/nucleon beyond
which this factor becomes completely meaningless and
the contribution of nucleus–nucleus in the γ-ray spec-
trum should be calculated separately. Furthermore, the
Glauber multi–scattering theory is also expected to break
down at these energies due to the internal motion of the
nucleons inside the nucleus and the coherent interaction
between groups of nucleons from projectile and target
nuclei becoming important.

The parametrization that we described here is applied
to different proton spectra, see eq. (26). Simple fits and
relations are found between proton and γ-ray spectral
parameters. Generally, by neglecting the cutoff effect,
the power-law part of the γ-ray spectrum is hardened by
4 % each decadal increase in γ-ray energy. For the energy
region from threshold up to 1 GeV the spectrum can be
fitted accurately with a very simple function shown in

eq. (27). The parameters η and δ of the eq. (27), are
closely related to the power-law index α of the proton
spectrum as follows: η ≈ 0.1 + 0.9α and δ ≈ 2 η. Near
the cutoff region the γ-ray spectrum can be fitted with
the function shown in eq. (28). The β′ parameter of the
γ-ray spectrum cutoff is related to the β parameter of
the proton spectrum cutoff by β′ = a β/(β + b); where,
a and b are fitting parameters and are functions of the
proton power-law index α and their relation is provided
in a tabular form in table VIII.
Recent study of the γ-ray spectrum due to π0 pro-

duction from the galactic cosmic rays [106], have used a
model that combine the model from [20] near threshold
and interpolates it to [76] model at very high energies.
By using the parametrization provided here, we have
recreated [106] power-law and broken power-law proton
spectra calculations. We find that in case of the power-
law proton spectrum, our γ-ray spectrum peaks around
Eγ ≈ 0.4 GeV; whereas, the γ-ray spectrum from [106]
has a plateau-like between 0.3 < Eγ < 1 GeV which is
about 10 % lower than our γ-ray spectrum peak. For en-
ergies between 1 ≤ Eγ ≤ 10 GeV, [106] γ-ray spectrum
is higher than our spectrum with the maximum differ-
ence about 30 % at Eγ ≈ 1 GeV. At higher energies the
two spectra are comparable. For the broken power-law
case the two spectra are comparable except for energies
between 0.2 < Eγ < 1 GeV, where the [106] γ-ray spec-
trum is lower than our spectrum. The largest difference
is about 40–45 % around Eγ ≈ 0.4 GeV.
Lastly, it is possible that one can use the γ-ray spec-

tra to gain information on other secondary particles such
are muons, electrons, neutrinos, and their antiparticles.
This is possible due to the relations that exist between
charged and neutral pion production cross sections far
from the p–p kinematic threshold. Therefore, by using
the production cross section ratios between γ-rays and
other secondary particles that are described e.g. in [44],
one can potentially apply this information to our results
to obtain the secondary spectra of other particles also.

VII. SUMMARY

In this work we combined experimental data on the
pp → π0 production below 2 GeV and results from pub-
licly available Monte Carlo codes at higher energies, to
parametrize the γ-ray spectrum due to inelastic p–p col-
lisions. This parametrization is accurate (≤ 20 %), and
spans from the p–p kinematic threshold to 1 PeV proton
energy, and provides flexibility to switch between differ-
ent high energy models.
We have introduced a practical way to calculate the nu-

clear enhancement factor at high energies and we show
that this factor increases for Tp < 2 GeV/nucleon and
eventually becomes meaningless as we approach p–p kine-
matic threshold Tp ∼ 0.28 GeV/nucleon. At this point
nucleus–nucleus continues to efficiently produce π0 for
Tp < 0.28 GeV/nucleon through the subthreshold meson



17

production effect.
We have applied our parametrization to different pro-

ton spectra and related γ-ray and proton spectral pa-
rameters. Fitting formulas were found which provided a
simple relation between the two spectra parameters.
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hansson, T. Johansson, et al., Physics Letters B 356, 8
(1995).

[52] H. O. Meyer, M. A. Ross, R. E. Pollock, A. Berdoz,
F. Dohrmann, J. E. Goodwin, M. G. Minty, H. Nann,
P. V. Pancella, S. F. Pate, et al., Physical Review Let-
ters 65, 2846 (1990).

[53] H. Meyer, C. Horowitz, H. Nann, P. Pancella,
S. Pate, R. Pollock, B. V. Przewoski, T. Rinckel,
M. Ross, and F. Sperisen, Nuclear Physics
A 539, 633 (1992), ISSN 0375-9474, URL
http://www.sciencedirect.com/science/article/pii/037594749290130C.

[54] R. Bilger, W. Brodowski, H. Calén, H. Clement,
J. Dyring, C. Ekström, G. Fäldt, K. Fransson, J. Greiff,
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B 111, 461 (1976).
[81] H. L. Bradt and B. Peters, Physical Review 77, 54

(1950).
[82] P. J. Karol, Phys. Rev. C 11, 1203 (1975).
[83] J. R. Letaw, R. Silberberg, and C. H. Tsao, ApJS 51,

271 (1983).
[84] S. Kox, A. Gamp, C. Perrin, J. Arvieux, R. Bertholet,

J. F. Bruandet, M. Buenerd, R. Cherkaoui, A. J. Cole,
Y. El-Masri, et al., Phys. Rev. C 35, 1678 (1987).

[85] W. qing Shen, B. Wang, J. Feng, W. long Zhan,
Y. tai Zhu, and E. pu Feng, Nuclear Physics
A 491, 130 (1989), ISSN 0375-9474, URL
http://www.sciencedirect.com/science/article/pii/037594748990

[86] W. R. Webber, J. C. Kish, and D. A. Schrier,
Phys. Rev. C 41, 520 (1990).

[87] L. Sihver, C. H. Tsao, R. Silberberg, T. Kanai, and A. F.
Barghouty, Phys. Rev. C 47, 1225 (1993).

[88] R. K. Tripathi, F. A. Cucinotta, and J. W. Wilson,
Nuclear Instruments and Methods in Physics Research
B 117, 347 (1996).

[89] R. K. Tripathi, J. W. Wilson, and F. A. Cucinotta,

http://www.sciencedirect.com/science/article/pii/037594749290130C
http://link.aps.org/doi/10.1103/PhysRev.138.B670
http://link.aps.org/doi/10.1103/PhysRev.125.2091
http://www.sciencedirect.com/science/article/pii/0375947489902091


19

Nuclear Instruments and Methods in Physics Research
B 129, 11 (1997).

[90] R. K. Tripathi, F. A. Cucinotta, and J. W. Wilson,
Nuclear Instruments and Methods in Physics Research
B 155, 349 (1999).

[91] T. K. Gaisser and M. Honda, Annual Review of Nuclear
and Particle Science 52, 153 (2002), hep-ph/0203272.

[92] J.-P. Meyer, ApJS 57, 173 (1985).
[93] G. Cavallo and R. J. Gould, Nuovo Cimento B Serie 2,

77 (1971).
[94] M. Mori, Astroparticle Physics 31, 341 (2009),

0903.3260.
[95] M. Kachelriess, I. V. Moskalenko, and S. S.

Ostapchenko, ArXiv e-prints (2014), 1406.0035.
[96] P. Braun-Munzinger, P. Paul, L. Ricken, J. Stachel,

P. H. Zhang, G. R. Young, F. E. Obenshain, and
E. Grosse, Physical Review Letters 52, 255 (1984).

[97] H. Noll, E. Grosse, P. Braun-Munzinger, H. Dabrowski,
H. Heckwolf, O. Klepper, C. Michel, W. F. J. Müller,
H. Stelzer, C. Brendel, et al., Physical Review Letters
52, 1284 (1984).
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