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COMPLEX NETWORK REPRESENTATION OF MULTIAGENT SYSTEMS
WITH COOPERATIVE AND COMPETITIVE INTERACTIONS

LEONIDAS F. CARAM,ac∗ CESAR F. CAIAFA,b AND ARACELI N. PROTO c

ABSTRACT. The dynamic behavior of Multi-Agent Systems (MAS) is analyzed in the
context of a modified Lotka-Volterra model. The interaction strength is determined by the
difference of agent sizes: as the difference increases, the interaction is weaker. Competitive
and cooperative scenarios are analyzed, showing clusters of agents in the stationary state.
However, meantime in the competitive scenario the agent sizes are constrained to be non
greater than the capacity value (β = 1), in the cooperative scenario, they are allowed to
exceed such capacity making clear the advantages of cooperation. The complex network
representation is introduced in order to enhance the role of agent sizes and their one-on-one
interactions in the dynamic behavior of the system.

1. Introduction

The field of complex networks and Multi-Agent Systems (MAS) is today one of the
most active areas in statistical physics. The reason for such a success is mostly due to
the simplicity and broad significance of the approach that, through graph theory, allows
researchers to tackle a variety of different fields of complex systems within a common
framework. Many years of research after seminal works (see Albert and Barabási 2002;
Amaral and Ottino 2004; Knyazeva and Kurdyumov 1994; Kocarev and Vattay 2005;
Liljeros, Edling, and Amaral 2003; Sitharama Iyengar 1997; S. Strogatz 2004; S. H.
Strogatz and Mirollo 1988; Watts and S. H. Strogatz 1998; Zhang and Tan 2005) initiated
the modern study of networks and the interest in the field is, in fact, still growing as indicated
by the increasing number of publications in this area.

In this work we treat both, competitive and cooperative scenarios, which are based on
a set of generalized predator-prey Lotka-Volterra differential equations (see Lotka 1925;
Maurer and Huberman 2003; Volterra 1926). This means that we are dealing with n
interacting agents, all of them needing some common resources.

Particularly, here we describe the behavior of MAS analyzed by Caram et al. (2010),
through complex networks. We introduce a graph representation, namely the complex
network representation, where each node represents an agent and agent iterations are
represented by links. The agent size is represented by the node’s diameter, and the strength
of interaction is represented by the thickness of the associated link.
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Our model consider an interaction function that allows agents to interact in a selective
way, it means that the interaction will be strong between those agents with similar or equal
sizes. Meanwhile we will have weak interaction between agents with very different sizes
(see Caram et al. 2010).

We have observed different behaviors like oscillations or chaotic evolution, but the
more interesting case was the emergence of clusters of agents or the stratification of the
system which is studied in this paper. Also we found different behaviors for a given set of
parameters and different set of initial conditions.

In previous works (see, for example, Adamic and Huberman 2000; Maurer and Huberman
2003; Yanhui and Siming 2007) it was demonstrated the appearance of just two states of
global behavior: on one side, one agent gets all the resources meaning that “the winner take
all" while the rest of sites have nothing and, on the other side, each agent gets some level or
portion of the common resources. With the modification described here, we have found that
besides those behaviors, also there are clusters where many agents share different levels of
common resources.

The main objective of the present work is to enhance, using complex networks represen-
tation, how the dynamics of the agents’ size is, as well as how they are related, in both, the
competitive and the cooperative scenarios. For arriving to this purpose, the time evolution of
the agents size is simulated and the emerging complex network configuration is visualized.

2. The Model

We consider n agents with access to some common resource. If the agent i is able to
get some portion of the common resource, its size increases, while if not, loosing a portion
of the resource implies a reduction in its size. In our model, essentially based on the well
known prey-predator model, the interaction parameter is not a constant (see Caram et al.
2010). Instead, it depends on the difference between agent sizes. This fact introduces
a feedback phenomenon which induces a high complex dynamics. Each agent size si is
represented by the fraction of common resource that the agent is able to get during system
evolution.

Mathematically the model is the following:

dsi

dt
= αisi (βi − si)−∑

i̸= j
γi j (si,s j)sis j for i = 1, . . . ,n (1)

where si is the size of agent i, αi is the agent’s grow rate, βi is the agent’s maxima capacity
without interaction and γi j (si,s j) is the interaction between the agent si and the agent s j.

If γi j = 0 the system is uncoupled, and it is the basic Lotka-Volterra or Kolmogorov prey-
predator model (see Lotka 1925; Volterra 1926). In this case each agent will exponentially
grow according with his particular rate αi, up to reach his maximum capacity βi or the
maximum size, as it happens in the population dynamics model of Verhulst (see Verhulst
1845, 1847). Once each agent has reached its maximum, the system is in the stationary
state. By introducing a variable interaction given by γi j(si,s j), the dynamics is changed (see
Caram et al. 2010). In fact, the interaction could be stronger or weaker depending on the
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FIGURE 1. γi j

si,s j


interaction function depending on difference in sizes. K value defines

the nature of competition or cooperation of pair model. If K > 0, we present a competitive
scenario, while if K < 0 a cooperative scenario appears.

sizes of interacting agents. We use the following interaction function:

γi j (si,s j) = K exp


−


si − s j

σ

2

, (2)

where K and σ are fixed parameters. It means that, when a big agent is interacting with a
small one, the intensity of interaction is weak or almost null. Instead, when two agents of
the same or similar size are interacting, the intensity of interaction becomes strong. There is
a relationship to a well known normal distribution, in which the variable is ∆i j = (si − s j).
It is easy to see that the interaction γi j (si,s j) just varies between 0 and K. Parameter σ , is a
positive parameter that controls the interaction levels. The K parameter determines the type
of scenario: K > 0 competitive, or K < 0 cooperative as well as it defines the amplitude of
the interaction.

In Fig. 1, the interaction function γ (si,s j) is shown as a function of ∆i j for different
values of σ . It is noted that, for σ → 0, γ (si,s j) is more like a Dirac distribution.

We consider that all agents have the same dynamical properties, so αi = 1 and βi = 1, in
which case the model is given by:

dsi

dt
= si (1− si)−∑

i̸= j
K exp−

 si−s j
σ

2

sis j for i = 1, . . . ,n (3)

Further details about fixed points analysis and stability points of such, can be found in
Caram et al. (2010) for the competitive scenario and n = 5. In the present contribution we
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describe the previous results, in terms of complex networks representation and include the
cooperative scenario as well (K < 0).

We restrict ourselves to examine the case of n = 5 agents. This restriction do not affect
the possibility to apply the model to more agents, just demand more simulation time with
different parameters values.

It can be seen that, for n = 5 agents, considering the degeneracy of several solutions,
seven possible cases of fixed points appear representing different combinations in the
number of agents that are involved in each cluster. These cases are summarized by Caram
et al. (2010), for the competitive scenario, where the emerged fixed points are stable or
not according with the σ value and the initial conditions. The type of stability has been
determined by numerically evaluating the Jacobian matrix of the system at the fixed point,
using a Newton-Raphson type algorithm (see Caram et al. 2010). In the following sections,
we give different examples where the model parameters, σ , K, are kept fixed, but the set of
initial conditions is different, just for stable fixed points. The size of the agent is given by si
meantime the links’ thickness is given by the corresponding γ (si,s j). Complex networks
allow us to display the interaction between agents.

3. Competitive scenario

In order to represent a competitive scenario, K must be positive, this produces a negative
feedback. So, according to the analysis made by Caram et al. (2010), the possible range is
0 < K < 1. Three different network configurations emerge during the time evolution of the
system which are shown in Fig. 2. In this case the time evolution corresponds to a set of
initial conditions which were chosen very close to each other (Gaussian distributed with
mean µ = 0.1 and standard deviation equals to 0.05), σ = 0.1 and K = 1. With this σ value
just only two fixed points are stable. This case is one of the two possible time evolutions
according to the analysis made by Caram et al. (2010). It is clear that, in the stationary state
two clusters of agents with strong interactions within the cluster appear. It is easy to see
that two subnetworks well differentiated composed by three and two agents, respectively.
One subnetwork has two agents with large sizes (agents 4 and 5), and the other has three
agents with the same small size (agents 1, 2 and 3).

In Fig. 3 a different competitive scenario is shown. Parameters are σ = 0.1, K = 1 and
random initial conditions are considered (uniformly distributed in [0,1]). Here two different
configurations emerge during the time evolution of the network, for n = 5 agents. This
case corresponds to the other possible time evolution according to the analysis made by
Caram et al. (2010). In the stationary state three clusters of agents with strong interactions
within clusters emerge. Just only one agent (with the largest size) s1 ≃ 1, dominates the
configuration, and two subnetworks are well differentiated and composed by two agents
each one, respectively. One subnetwork has two agents with medium sizes (agents 2 and 3),
and the other has two agents with the same lower size (agents 4 and 5).

As it was discussed by Caram et al. (2010), Figs. 2 and 3 correspond to three levels of
sizes, 1-1-3, (two agents with different sizes and three agents with the same size) and to
four levels of sizes, 1-1-1-2, (three agents with different sizes and two agent with the same
size), respectively. The difference between both time evolutions are due to the different set
of used initial conditions, showing the sensitivity to them, in the competitive scenarios.
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FIGURE 2. Top: network configurations. Bottom: si vs. time simulation results for σ = 0.1,
K = 1 (competitive scenario). Initial conditions are taken for agent sizes quite close to each
other. Three different network configuration emerge.
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FIGURE 3. Top: network configurations. Bottom: si vs. time simulation results for σ = 0.1
and K = 1 (competitive scenario) and random initial conditions. Two different network
configurations emerge.
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4. Cooperative scenario

In order to represent a cooperative scenario, K must be negative, which creates a positive
feedback. Instead of stabilizing the system, it leads to very unstable and complex behaviors
and the possible values of K must be chosen very carefully in order to have a stable system
behavior. When the cooperation between agents i and j is maximum, and equal to K, si = s j
and, as the difference of sizes decreases, as absolute value, the cooperation decreases too,
making only possible values into the range −K < γi j (si,s j)< 0, in order to have a stable
system behavior. Following a similar analysis as it was done by Caram et al. (2010), it is
demonstrated that, the K values range is − 1

n−1 < K < 0, for getting a cooperative scenario
with stable solutions, so for five agents case (n = 5), it results in − 1

4 < K < 0. In this case,
four stable fixed points exits: four levels of sizes, 2-1-1-1, two agents with the same size
and three agents with different sizes, two levels of sizes, 3-2, three agents with the same
size and two agents with other lower same size, two levels of sizes, 4-1, four agents with
the same size and one agent with other lower size, and one level of sizes, 5-0, five agents
with the same size, respectively. Following a similar analysis as it was done by Caram et al.
(2010), is possible to see that, the fixed point 2-1-1-1, is the strongest attractor compared to
the rest of fixed points. In the following we show simulations in which each one of fixed
points are reached in the stationary state. Initial conditions are chosen in order to assure the
convergence to the desired fixed points.

Three different configurations emerge during the time evolution of the network, for n = 5
agents, which are shown in Fig. 4. In this case, the time evolution corresponds to σ = 0.01
and K = −0.0625 for a set of random initial conditions (uniformly distributed in [0,1]).
Following a similar analysis as it was done by Caram et al. (2010), and for these σ and K
values, it is demonstrated that there are four possible stable fixed points. So this case is
one of the four possible stationary states. We can see that all agents appear with almost the
same sizes. One can assume that the interaction should be strong, but this is not true. It
happens that for σ = 0.01, the random initial conditions lead to a stationary state with an
average ∆s ≥ 0.02 and interaction γi j (si,s j) equals to almost zero (see Fig. 1). However all
agents have similar sizes but very different strengths of interaction, for example agent 5 is
disconnected of the rest. When agent sizes are exactly the same, the interaction is really
strong, as it happens between agents 1 and 2. On the other side, agents 3 and 4 are well
connected and the interactions between agents 1 and 4, and agents 2 and 4 are weak. Also,
a medium interaction is observed between agents 1 and 3, and agents 2 and 3.

A different cooperative scenario is obtained for σ = 0.01 and K = −0.0625 for a set
of initial conditions s1 = s2 = s3 = 1.14286 and s4 = s5 = 1.066 very close to the fixed
point at s1 = s2 = s3 = 1.14286 and s4 = s5 = 1.06667. We observe that the system evolves
quickly to the fixed point (see Fig. 5). This case is one of the four possible stationary states,
three agent sizes in s1 = s2 = s3 = 1.14286, and two agents in s4 = s5 = 1.06667, appear
in stationary state. The resulting system configuration is easily described by a complex
network representation. This representation shows two subnetworks with strong interactions
within the clusters, composed by three and two agents, respectively. The difference of
sizes between two subnetworks is ∆s = 0.07619, and for this reason the subnetworks are
disconnected.
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FIGURE 4. Top: network configurations. Bottom: si vs. time simulation results for
σ = 0.01, K = −0.0625 (cooperative scenario) and random initial conditions. Three
different network configurations emerge. From the given initial conditions, a maximum
∆s = 0.0547 values appear for the stationary state.
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FIGURE 5. Top: network configurations. Bottom: si vs. time simulation results for
σ = 0.01, K =−0.0625 (cooperative scenario) and initial conditions such that agent sizes
are close to the stable fixed point. Two different network configurations emerge with
∆s = 0.07619.
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FIGURE 6. Top: network configurations. Bottom: si vs. time simulation results for
σ = 0.01, K =−0.0625 (cooperative scenario) and a set of initial conditions such that agent
sizes close to the stable fixed point. Network representations for ∆s = 0 and ∆s = 0.23077
(maximum) are shown.
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FIGURE 7. Top: network configurations. Bottom: si vs. time simulation results for
σ = 0.01, K =−0.0625 (cooperative scenario) and a set of initial conditions such that agent
sizes are chosen to be close to to the fixed point.
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In Fig. 6, a different cooperative scenario is obtained for σ = 0.01, K = −0.0625 as
before, and also the set of initial conditions were chosen very close to the fixed point at
s1 = s2 = s3 = s4 = 1.23077 and s5 = 1 (Gaussian distribution with mean µ = 1.0 and
standard deviation of 0.0005), but now ∆s = 0.23077. This case is one of the four possible
time evolution and in the stationary state two network configurations emerge. Now the
system evolves quickly to four agent sizes with s1 = s2 = s3 = s4 = 1.23077, and one
agent with s5 = 1. Two clusters of agent sizes with strong interaction emerge (t ≈ 30). A
subnetwork well differentiated composed by four agents with exactly the same size, and
agent 5 disconnected.

In Fig. 7, keeping σ = 0.01, K =−0.0625 and the set of initial conditions (s1 = s2 =
s3 = s4 = s5 = 1.33) near to the stable fixed point s1 = s2 = s3 = s4 = s5 = 1.33333. This
case is the another of the four possible time evolution. We observe that the sizes of agents
are the same within each network configuration (see Fig. 7 at t = 10 and t = 1000) but, the
sizes slightly change over time in order to evolve to the fixed point. Now, in the stationary
state, five agents with sizes in s1 = s2 = s3 = s4 = s5 = 1.33333 are found. However, the
network representation allows one to enhance the role of γ (si,s j) which otherwise will be
difficult to visualize.

The network representations described above (see Figs. 4, 5, 6, and 7) show, in the
stationary state, four levels of size, 2-1-1-1, two agents with the same size and three agents
with different sizes, two levels of sizes, 3-2, three agents with the same size and two agents
with other lower same size, two levels of sizes, 4-1, four agents with the same size and
one agent with other lower size, and one level of sizes, 5-0, five agents with the same size,
respectively.

5. Conclusions

In this work we have described different behaviors of a particular multi-agent system,
including both cooperative and competitive scenarios. The complex networks representation
is introduced which allows us to give a more complete description of the model. While
competitive scenario leads to stratification of agents with sizes lower or at least equal to β

(in this paper β = 1), in the cooperative scenario clusters of agents emerge with individual
capacities higher that β = 1, which makes clear the cooperative effect. The complex network
representation allow us to appreciate how the difference value ∆s impact on the interaction
level γ (si,s j) for each pair of agents. The difference between time evolutions are due to
the different set of initial conditions. The complex networks representation reflects how
the initial conditions modified both, the number of interacting agents, and the links among
them.
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