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Deciphering the genetic bases that drive animal diversity is one of the major

challenges of modern biology. Although four decades ago it was proposed

that animal evolution was mainly driven by changes in cis-regulatory DNA

elements controlling gene expression rather than in protein-coding sequences,

only now are powerful bioinformatics and experimental approaches available

to accelerate studies into how the evolution of transcriptional enhancers

contributes to novel forms and functions. In the introduction to this Theme

Issue, we start by defining the general properties of transcriptional enhancers,

such as modularity and the coexistence of tight sequence conservation with

transcription factor-binding site shuffling as different mechanisms that main-

tain the enhancer grammar over evolutionary time. We discuss past and

current methods used to identify cell-type-specific enhancers and provide

examples of how enhancers originate de novo, change and are lost in particular

lineages. We then focus in the central part of this Theme Issue on analysing

examples of how the molecular evolution of enhancers may change form

and function. Throughout this introduction, we present the main findings of

the articles, reviews and perspectives contributed to this Theme Issue that

together illustrate some of the great advances and current frontiers in the field.

provided by CONIC
1. Introduction
In 1859, the publication of Darwin’s The Origin of Species provided a powerful

natural explanation as to how the endless forms most beautiful and most wonderful
have been created on this planet. After 150 years of advances in genetics and

the molecular principles of heredity, the molecular basis of life diversification

can now be understood in its general terms. In the past decade, whole-genome

sequencing has allowed direct observation of the genetic changes that separate

related species in unprecedented breadth, helping us to understand how genetic

variation is generated and opening up the possibility of grasping what genetic

changes make, for example, an elephant different from a mouse.

Confirming pioneering observations [1], whole-genome comparisons show

that protein-coding sequences and repertoire do not vary much between related

organisms, with the exception of proteins related to functions like olfaction,

reproduction and immune defence [2,3]. Coding exons are embedded in a sea

of intronic and intergenic non-coding sequence, the vast majority of which is

devoid of specific functions and constitutes ‘junk’ DNA. However, the non-

coding part of the genome also includes functional regulatory regions, like

enhancers. Transcriptional enhancers determine where, when and how much

a protein-coding gene is expressed in every animal tissue. Because they

encode such critical spatio-temporal and quantitative information, it is expected

that their sequences are under strong purifying selection and mutate at a slower

rate than flanking neutrally evolving regions. Even though enhancers tend to be

evolutionarily conserved, in general they evolve faster than coding regions [4,5],

suggesting that changes in regulatory DNA play an important role in evolution.

Although this does not mean that physiological and morphological changes

cannot be caused by mutations in coding exons [6,7], many characteristics of

enhancers and other cis-regulatory regions indicate that organismal evolution

is mostly driven by changes in gene regulation, as theorized over 40 years
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Figure 1. Schematic of the modular organization of the expression of mouse
Pomc. The neuronal enhancers nPE1 (blue) and nPE2 (red) control expression
in neurons of the hypothalamic arcuate nucleus (Arc). The proximal pituitary
enhancer (PPE; green) drives expression to melanotrophs and corticotrophs of
the pituitary (Pit), whereas the distal pituitary enhancer (DPE; purple) is active
in pituitary corticotrophs. A cryptic hippocampal enhancer, cryHE (orange),
drives reporter gene expression in newborn neurons of the dentate gyrus (DG)
of the hippocampus in transgenic mice. Pomc exons are in black boxes.
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ago [1,8,9]. In fact, as we shall see in §§6 and 7, evidence has accu-

mulated in recent years showing that mutations in regulatory

regions are an important source of evolutionary innovation

[10–13]. Although the relatively rigid genetic code that deter-

mines the amino acid sequence of proteins was deciphered

soon after the discovery of DNA structure, the regulatory code

of the genome still remains an unsolved mystery and, as such,

understanding the complex interplay between regulatory

DNA regions and transcription factors (TF), regulatory RNAs,

signalling pathways and epigenetic marks that determine gene

expression is among the main current challenges of modern mol-

ecular genetics. As our knowledge of the regulatory code

progresses, the closer we are to understanding how evolution

operates at the molecular level to bring about morphological

and physiological innovation. This field of research, years ago

mainly supported by those interested in the basic mechanisms

of gene expression regulation, is experiencing a vigorous

growth in medical and human genetics departments interested

in understanding human disease, as developmental defects,

cancer and other conditions are more and more found to be

caused by mutations in enhancers [14–20].

In the introduction to this Theme Issue on Enhancers
Evolution and Animal Diversity, we shall review some general

principles concerning how changes in transcriptional enhancers

happen over time and particularly how they can lead to pheno-

typical innovation. Some principles will be illustrated with our

studies on the regulation of the proopiomelanocortin gene

(Pomc; see figure 1 for a schematic of the structure of mouse

Pomc and its regulatory regions). Pomc encodes a prohormone

expressed in the arcuate nucleus of the hypothalamus and in

the corticotropes and melanotropes of the pituitary which

plays critical roles in the control of energy balance and stress

response in vertebrates [21].
2. Enhancers: general considerations
In animals, enhancers are one of the main types of transcriptional

regulatory regions, others being promoters, promoter-tethering

elements, locus control regions, silencers, barrier elements

and insulators. Enhancers are cis-acting segments of DNA,
usually mapped down to 200–500 bp, that control expression

of nearby genes. Enhancer activity is thought to depend on the

long-range communication between the enhancer region and

the promoter [22], which is achieved by DNA looping mediated

by specific proteins like cohesin and the Mediator complex [23],

as well as relocation of the active gene from the periphery to

the interior of the nucleus [24]. Identified enhancers are often

located in the vicinity of the genes they control, but some have

been found up to 1 Mb away [14], even within introns of

other genes (for a recent excellent collection of papers on distal

enhancers, see the Discussion Meeting Issue; [25]).

Since their discovery over 30 years ago [26], enhancers have

been found to harbour several transcription factor-binding

sites (TFBS) in a particular spatial order, defining what can

be called the enhancer grammar. Detailed functional dissection

of different enhancers led to the development of two extreme

models of enhancer organization, the (i) enhanceosome and the

(ii) billboard models [27]. The enhanceosome model is derived

from work on an enhancer that triggers interferon-b (IFN-b)

transcription in response to viral infection. Exhaustive analyses

of this enhancer found that it is composed of a tight ensemble

of binding sites for several TF that need to be present in a pre-

cise order and spacing, as even minor mutations that prevent

binding or alter the distance between bound TF cause the

enhancer not to function at all. TF in the enhanceosome thus

work synergistically as a unit [28]. By contrast, billboard

enhancers are composed of TFBS arranged in a looser and

more flexible way such that the removal of a binding site

diminishes enhancer performance but does not abolish it com-

pletely. The enhancer for stripe 2 of Drosophila even-skipped
(eve), for instance, has an arrangement of TFBS for activators

(Bicoid, Hunchback) and repressors (Krüppel, Giant) that,

when individually mutated, do not abolish its function but

rather change stripe width and intensity in transgenic experi-

ments [29]. For many enhancers analysed in less depth, there

is evidence that removal of large chunks of conserved enhancer

sequence does not abolish enhancer function, also pointing to a

flexible, billboard-like organization, as is the case of the neur-

onal Pomc enhancers nPE2 and nPE1 (figure 1; [30,31]). Few

enhancers have been studied at the same depth as those for

IFN-b and eve stripe 2, but it is possible that for most enhancers

more rigid and more flexible subsegments coexist. The 362-bp

core region of the sparkling (spa) enhancer of Pax2, which drives

expression to cone cells in the Drosophila compound eye, seems

to have an intermediate organization, as spacing and order

of TFBS are important for enhancer function, as in the enhan-

ceosome, but at the same time one of the critical regions for

spa function (region 1) can be relocated without affecting

expression [32,33]. A third model of TFBS organization was

found in enhancers involved in heart development and differ-

entiation [34]. This alternative (iii) TF collective mode of

enhancer activity operates via the cooperative recruitment of

a large number of cardiogenic TFs to activate enhancers with

an apparently lax motif grammar, such that motifs for some

factors may be absent and some necessary TF are rather

recruited via cooperative protein–protein interactions [34].

Apart from the order and number of TFBS, another

important variable in enhancer grammar is TF-binding affin-

ity. Genome-wide analyses indicate that many interactions

between TF and DNA are relatively weak, and these are

regarded as likely to be non-functional [35] as are also

DNA regions bound at low occupancy [36]. However, in

this issue, Ramos & Barolo [37] show that a weak interaction

http://rstb.royalsocietypublishing.org/
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between the TF Cubitus interruptus (Ci) and a decapentaplegic
enhancer in response to Hedgehog signalling is nevertheless

very important for the correct interpretation of the Hedgehog

gradient in the fly embryo, implying that low-affinity sites

can be functional in some circumstances [37]. Enhancer

grammar also depends on the interactions between bound

TF, and this is reflected by the conservation of distances

between TFBS which is necessary to facilitate these inter-

actions. In this issue, Guturu et al. [38] take into account

DNA sequence and protein structural data to predict regions

bound by TF on phylogenetically conserved elements in the

genome, generating an original, free database of potential

TF complexes for future studies on enhancer organization

and function [38].
R
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3. Enhancer modularity
During embryonic development and in each tissue of the

adult body, different cell types express distinct groups of

TF and are exposed to various cell-signalling pathways,

giving rise to a unique combinatorial regulatory code that

is interpreted by DNA regulatory regions, like enhancers, to

ultimately determine whether a particular gene will be on

or off in a given cell type. Genes with complex expression

patterns have been experimentally shown to have several

enhancers, each of which drives expression in particular cell

types or time points. This modular organization allows

each enhancer to control gene expression in a strict spatial

and temporal domain independently of each other and of

the basal promoter. For example, the mouse Sonic hedgehog
homolog gene (Shh), which encodes a secreted morphogen,

has at least six enhancers controlling its expression in several

parts of the neural tube [39], as well as one distal enhancer

controlling expression in the limb bud [14,40]. Neuronal

enhancers nPE1 and nPE2 drive Pomc expression to hypo-

thalamic neurons independently of the pituitary enhancer

or promoter, and vice versa (figure 1; [41,42]). The functional

modularity of enhancers is best illustrated by targeted muta-

genesis experiments. For example, the removal of a distal,

limb-specific enhancer of Shh causes limb truncations in

mutant mice without causing aberrant phenotypes in the noto-

chord or neural tube, which also express Shh [40]. It is

important to note, however, that enhancers may not be absol-

utely modular. For instance, some enhancers can synergize

with each other, as the case of Shh forebrain enhancers in

zebrafish [43]. Recently, a thorough characterization of the

200 kb-regulatory landscape of the mouse Fgf8 gene, which

encodes a secreted signalling protein, has shown that the rela-

tive position of enhancers in relation to the controlled gene is

important to fine-tune the expression pattern of the gene [44].

In any case, enhancer modularity has important evolutionary

consequences, as mutations in a particular enhancer will

change the expression of a gene in a particular region with

no or minor effects in other regions, i.e. with little or no pleio-

tropic effects associated (see §6). Another important, emerging

feature of gene regulation is that many metazoan genes possess

more than one enhancer driving partially or completely

overlapping expression patterns [45,46]. In flies, many devel-

opmental genes carry two enhancers with overlapping

functions; the enhancer closer to the gene was called ‘primary’,

whereas the one farther way was named ‘shadow’ enhancer

[47]. The existence of functionally overlapping enhancers is
not restricted to developmental genes. For instance, Pomc has

two distinct enhancers that drive expression to the same popu-

lation of hypothalamic neurons [31,42]. Even the expression of

Pomc in the pituitary, long thought to be driven only by the

proximal enhancer and promoter, was recently found to

depend also on an enhancer with the same regulatory activity

as a proximal enhancer (figure 1; [41]). Functionally overlap-

ping enhancers may confer robustness, buffering gene

expression against environmental and genetic disturbances

[48,49]. Enhancers with partial redundant activity are also

hypothesized to be a potential source of evolutionary novelty,

as such systems might be more tolerant to mutations that lead

to new expression patterns [47].
4. Identification of enhancers and functional
studies

Identifying enhancers in genomes is crucial for the understand-

ing of the complexity and mechanisms of gene regulation [50].

Traditionally, regulatory regions have been identified and

mapped by cloning candidate sequences upstream of a mini-

mal promoter fused to a reporter gene and testing their

transcriptional activity in cell lines or in transgenic organisms.

Although more laborious and expensive to make, transgenic

animals have the great advantage of providing complete

spatio-temporal expression information simultaneously in all

tissues and cell types of an overall healthy animal. More and

more laboratories map enhancers using 100–200 kb bacterial

artificial chromosomes, which allow for the testing of regula-

tory regions in a context that better resembles the endogenous

one, compared with small constructs [51]. Detailed studies

using these methods have determined that genes involved in

embryonic development are controlled by several enhancers,

like the example of the mouse Shh gene mentioned in §3 or

the chicken Sox2 gene encoding a TF controlled by at least 11

enhancers arranged in a 50 kb region surrounding the gene

[52]. This is not surprising because the expression of develop-

mental genes need to be precisely controlled both spatially

and temporally in many different tissues. However, even

genes not involved in development may have several enhan-

cers, like Pomc, which is controlled by two distal enhancers in

the hypothalamus and by one distal and one proximal enhancer

in the pituitary (figure 1; [41,42]). These and many other

examples indicate that the number of enhancers in every

animal genome is substantially larger than the number of

protein-coding genes.

Beginning in the early 2000s, the sequencing of the genomes

of several species allowed for the identification of enhancers

and other non-coding DNA elements by phylogenetic foot-

printing [53]. This technique is based on the idea that DNA

sequences that play a functional role evolve slower than non-

functional sequences, which are freer to accumulate neutral

mutations [54]. Thus, comparing the genomes of an appropriate

set of organisms allows one to identify DNA elements under

evolutionary constraint and differentiate them from neutrally

evolving sequences. Conserved non-coding sequences (CNE),

when experimentally tested, often turn out to display enhancer

activity [55–58]. Deeply conserved CNE (i.e. conserved in all

vertebrates) are more often found around genes involved in

early development, presumably because mutations in enhan-

cers that control the precise regulatory patterns of such genes

often cause deleterious developmental phenotypes [59,60].

http://rstb.royalsocietypublishing.org/
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Recently, the sequencing of 29 mammalian genomes has

allowed for the mapping of evolutionary constraint in great

detail, showing that 4.2% of mammalian genome sequence is

phylogenetically conserved [61]. Within the conserved fraction,

around 68% is located in intronic or intragenic regions (i.e. out-

side exons and promoters), and at least 30% of the conserved

fraction overlaps chromatin marks typical of enhancers [61].

Some CNE display extreme levels of conservation (ultracon-

served sequences or UCE), reaching 100% sequence identity

in mammals [62], and some orthologous CNE have even been

found to be present in invertebrates and vertebrates [5,63].

The challenges posed by the study of CNE, in particular the

study of their evolutionary dynamics and function, are the

topic of a review by Harmston et al. in this issue [64], while

another review by Maeso et al. [65] deals with the challenge

of identifying and analysing transphyletic CNE.

In recent years, chromatin immunoprecipitation coupled

to microarray hybridization (ChIP-CHIP) or DNA sequencing

(ChIP-seq) has allowed for the genome-wide mapping of TFBS

and the mapping of chromatin (‘epigenetic’) marks in the form

of specific histone posttranslational modifications [66,67].

Tracing the distribution of such features—as well as regions

of open chromatin detected by whole-genome mapping

of DNase I hypersensitive sites—can be used to identify

potential enhancers at a genome-wide scale [68,69]. Thus,

enhancer regions are bound by clusters of TF [70–72] and

are often associated with transcriptional cofactors p300/

CBP (a histone acetylase) and components of the Mediator

complex [23,73]. Active enhancers are also associated with

specific histone marks like histone H3 lysine 4 monomethy-

lation (H3K4me1) and histone H3 lysine 27 acetylation

(H3K27ac), as well as depletion in H3 lysine 4 trimethylation

(H3K4me3), which mark promoters (reviewed in [60,61]). In

the human genome, the ENCODE Project identified around

400 000 elements bearing enhancer-like chromatin signatures

in the cell lines that were analysed [74], while around 230 000

potential enhancers were found in the mouse genome using

similar techniques [75]. The utility of sequence conservation

as well as whole-genome ChIP techniques to identify and

study the evolution of enhancers is reviewed in this issue by

Sakabe & Nobrega [76].

It is important to note, however, that the evidence pro-

vided by the genome-wide mapping of genomic features is

just an indication of potential enhancer activity and should

not be taken as equivalent to regulatory function [77,78].

Indeed, it is expected that the large genome of complex

organisms is alive with biochemical activity, including TF

binding, with no significant physiological consequences for

the organism [77,79–81]. As an indication of this, it has

been recently shown that DNA sequences generated at

random can display a significant degree of transcriptional

regulatory activity in mammalian cells [82], indicating that

even expression assays in cells or transgenic models may be

deceptive and that more detailed experimental evidence is

necessary before assigning enhancer function to a sequence.

Around 1 kb upstream of mouse Pomc, we have serendipi-

tously found a non-conserved regulatory region which

drives reporter expression to the subgranular layer of the den-

tate gyrus of the hippocampus of transgenic mice (figure 1;

[83]) and is being used as a reliable marker of newborn neur-

ons in this brain region [84]. Because Pomc is not expressed in

the hippocampus, it may well be that this enhancer activity

is used by another gene in the vicinity or just represents a
consistent artefact, especially considering that this DNA

sequence is not conserved in other mammals.
5. Molecular evolution of enhancers
Although purifying selection keeps transcriptional enhancers

evolving at a slow pace in relation to non-functional DNA,

enhancers do change by the accumulation of point mutations

and small insertions and deletions. In addition, new enhan-

cers can appear by chance when random mutations create

clusters of TFBS or lost when large deletions eliminate enhan-

cer sequences. Such processes can be driven by natural

selection as well as purely neutral mechanisms [85]. Ulti-

mately, turnover of TFBS in enhancers as well as the birth

and elimination of enhancers cause the regulatory element

repertoire to change over evolutionary time. An indication

of this is that while a third of the coding bases are conserved

between mammals and amphioxus (a chordate that belongs

to a sister group of vertebrates), less than 1% of CNE bases

(a proxy for enhancers) are conserved between these groups

[5]. Thus, TFBS reshuffling and enhancer turnover seem to

be two pervasive mechanisms setting up hurdles on the

way towards the discovery of a universal transcriptional

regulatory code, in contrast to the straightforward transla-

tional code unravelled in the 1960s that allows predicting

protein identity directly from DNA sequence. The variety of

rules already found in the regulatory code are perplexing,

as illustrated by the titles of two recent papers on the subject:

the review ‘Conserved expression without conserved regula-

tory sequence: the more things change, the more they stay

the same’ [86] and the research paper ‘Minor change, major

difference: divergent functions of highly conserved cis-regulat-

ory elements subsequent to whole genome duplication events’

[87]. If the former addresses the concept that the regulatory

logic of a functional enhancer can be retained in the absence

of detectable sequence conservation, the latter indicates that

even small mutations present in highly conserved enhancers

may lead to profound functional differences. As understanding

the transcriptional code and its impact on the evolution of form

and function will be more challenging than anticipated, efforts

must be redoubled to study how gene expression is modified

by enhancer birth, change or loss.

(a) The birth of an enhancer
Genetic mechanisms leading to the birth of novel enhancers

include: (i) insertion of transposable elements (TEs), (ii) de
novo mutations and (iii) chromosomal rearrangements that pro-

mote enhancer adoption. The high contribution of TE-derived

sequences to genome composition provides a substantial

amount of raw material with the potential to evolve into novel

functional cis-regulatory elements. Probably the first convincing

case was a sequence derived from a HERV-E retroposon that

became co-opted as a parotid-specific enhancer of the human

salivary a-amylase 1C gene (AMY1C; [88]). Interestingly, inser-

tion of this TE in the 50 proximal flanking region of a paralogue

copy of the ancestral pancreatic AMY2B occurred in the lineage

leading to primates [89] which acquired, therefore, the possi-

bility to taste rewarding sweet sugars produced by the

enzymatic processing of starch. More recently, the 29 Mammals

Project has found more than 280 000 conserved, TE-derived

non-coding elements [61,90]. Although these elements carry

potential cis-regulatory function, exaptation (co-option) of

http://rstb.royalsocietypublishing.org/
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TE-derived sequences into transcriptional enhancers has been

rigorously demonstrated in transgenic animals in only a hand-

ful of cases [77]. For example, we have found that the

neuronal Pomc enhancers nPE1 and nPE2 originated from two

independent exaptation events, an example of convergent

evolution of transcriptional enhancers [31,91], whereas

nPE2 derived from a CORE-SINE retroposon [30] in the

lineage leading to mammals, nPE1 is a more recent placental

acquisition derived from a mammalian apparent LTR (MaLR)

retroposon [31].

Eichenlaub & Ettwiller [92] have recently discovered that

enhancers can originate de novo after acquiring minor changes

in previously existing non-regulatory sequences [92]. By taking

advantage of the massive gene loss following the last whole-

genome duplication in teleosts, these authors identified four

ancient exons that lost their coding capacity in teleosts and

were exapted as transcriptional enhancers of nearby genes, as

demonstrated in transgenic medaka embryos [92]. Gene con-

version may promote the adoption of an enhancer previously

used by another gene, as shown by the group of Mike Levine

in the beetle Tribolium castaneum in which a cardiac enhancer

located in the 30 flanking region of the ladybird gene was relo-

cated to the 50 end of the neighbouring gene C15. This

inversion, therefore, promotes the cardiac expression of C15

in Tribolium [93].
(b) Enhancers change, function not always
That enhancers can change without modifying their regulatory

activity is best illustrated by the even-skipped stripe 2 enhancer

(S2E) in species of the Drosophila genus, in which the shuf-

fling of TFBS within the S2E of different species leads to the

same expression pattern in transgenic Drosophila melanogaster
embryos [94,95]. Even the orthologous eve enhancers of

sepsid flies, which are distant relatives of Drosophila and

whose enhancer sequences are very different, can drive equiv-

alent expression in transgenic D. melanogaster embryos [96],

showing that enhancers with different arrangements of TFBS

can correctly interpret a TF code and give rise to the same

expression output. Importantly, in complementation experi-

ments, the divergent Drosophila pseudoobscura S2E perfectly

rescued the embryonic lethal phenotype of mutant

D. melanogaster carrying homozygous deletions of S2E, prov-

ing that two enhancers with highly different sequences can

be functionally interchangeable, at least when tested in the lab-

oratory [95]. Thus, stabilizing selection is reminiscent of the

politically cynical ideas of the Sicilian Prince of Salinas who

in the novel ‘The Leopard’ by Guisseppe Lampedusa

published in 1957 stated that ‘everything needs to change,

so everything can stay the same’. In vertebrates, this scenario

is illustrated by experiments in which mammalian enhancers

can drive appropriate expression in zebrafish embryos even

in the absence of obvious sequence identity. For example,

Fisher et al. [97] analysed human enhancers of the RET locus

in zebrafish and found that 11 out of 13 drove equivalent

reporter gene expression in zebrafish, even though no ortholo-

gous zebrafish enhancers could be found by sequence

comparisons. In this issue, Domené et al. [98] show that the

mammalian Pomc enhancers nPE1 and nPE2 drive expression

to POMC neurons of zebrafish embryos, even though their

exapted origin from TEs in the early stages of the mammalian

radiation [30,31] rules out the possibility that they are ortholo-

gous to the teleost enhancers.
Contrarily to the cases described above, there are examples

in which conservation and high sequence identity may be

functionally deceiving as has been reported for the zebrafish

Shh enhancers ar-D [50 proximal], ar-A (intron 1) and ar-C

(intron 2) that are highly conserved at the sequence and

location level with their corresponding mouse orthologues,

but which direct expression to different expression territories

in each animal, demonstrating that the function of the structu-

rally conserved enhancers has diverged during vertebrate

evolution [43]. Similarly, but at the paralogue level, the ar-C

enhancers of the fugu shha and shhb genes carry minor

sequence changes that, however, modify the expression pattern

of reporter genes in transgenic zebrafish embryos [99].

Hox genes also provide a great setting where to look for

enhancer evolution between duplicate paralogues. Half a

billion years ago, the ancestral Hox gene cluster became quad-

ruplicated in the vertebrate lineage, generating novel Hox
genes paralogous after two consecutive events of tetraploidi-

zation. Hoxa1 and Hoxb1 are indispensable for proper

hindbrain segmentation as has been demonstrated in individ-

ual knockout mice. Analysis of these mutant mice showed

that no active paralogue was able to compensate for the lack

of the loss-of-function copy, suggesting subfunctionalization.

Indeed, it is known that Hoxa1 lost its ability to autoregulate

its expression levels, whereas Hoxb1 lost the responsiveness

to retinoic acid. In a reverse evolution experiment, Tvrdik &

Capecchi [100] reconstructed the ancestral Hox1 gene by insert-

ing the autoregulation enhancer of Hoxb1 into the 50 flanking

region of Hoxa1 in the context of a Hoxb1 null-allele mutant.

The resulting enhancer knockin/gene knockout mice sur-

prisingly showed normal development, demonstrating that

subfunctionalized gene paralogues can be reset to the primitive

state and replaced with a single copy provided that both

paralogue proteins retain equivalent activities.

Of course, enhancer evolution can also lead to divergent

expression patterns, possibly driving phenotypical innovation.

The introduction of novel TBFS into pre-exisiting functional

enhancers may allow a gene to acquire expression in an

additional spatio-temporal domain without affecting its ances-

tral expression pattern. Rebeiz et al. [101] reported that the

neprilysin-1 gene (Nep1) of Drosophila santomea has gained a

novel expression pattern in optic lobe neuroblasts after

accumulating four mutations near a pre-existing intronic

enhancer responsible for driving Nep1 expression to ancestral

areas such as the ventral ganglion and the retinal field. In

this issue, Glassford & Rebeiz [102] expand on their previous

work by systematically testing the mutational paths that led

to the accumulation of these four mutations. Interestingly,

their results indicate that some of the paths were prohibited

due to fitness costs associated with epistasis [102].
(c) Enhancers come and go
Enhancers are not only modified or created de novo but may also

be lost during the course of evolution as will be further discussed

in §6a. Bejerano and co-workers [103] found that hundreds of

conserved non-coding genomic regions are independently lost

in distinct mammalian genomes, raising the possibility that

some of them could be involved in lineage or species-specific

morphological variation. The existence of functionally overlap-

ping or near redundant enhancers provides a genetic substrate

for this type of mechanism to occur; the surprising lack

of detectable differential phenotypes in four different strains of
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mutant mice lacking ultraconserved enhancers [104] exemplifies

that animals may lose sequences selected for millions of years

without notable deleterious effects, at least in the comfortable

environment of a laboratory animal facility.

Another interesting evolutionary mechanism that induces

loss of function of tissue-specific enhancers is the appearance

of a novel transcriptional repressor that silences previously

active enhancers, as has been reported in a recent study of

the molecular evolution of the vertebrate paralogues pax2
and pax8 [105]. In Xenopus laevis tadpoles, pax2 is expressed

in several cell-types, whereas pax8 is expressed only in a

subset of pax2-expressing tissues. Despite this difference, pax2
and pax8 share several paralogous, conserved non-coding

elements that, individually, recapitulate a pax2-like reporter

expression pattern when ligated upstream of a minimal

b-actin promoter and tested in transgenic tadpoles. Surpris-

ingly, when the b-actin promoter was replaced by the

Xenopus pax8 proximal promoter, the pax2 and pax8 enhancers

drove a more restricted pax8-like expression pattern, demon-

strating that the ancestral enhancers of pax2 and pax8 are

equally able to direct pax2-like, multi-tissue expression,

except when placed upstream of a silencer present in the

pax8 proximal promoter that suppresses expression outside

the pax8-expressing tissues [105].
6. Enhancer evolution and animal diversity
What about real data indicating that mutations in enhancer

sequences underlie evolution of important traits? The

number of detailed studies of phenotypic diversification

driven by enhancers is still very small, and the difficulty in set-

ting up such experiments lies in the necessity of having (i) an

easy-to-spot phenotype that displays intra- or interspecific

variation; (ii) knowledge of gene(s) that control(s) such pheno-

type; (iii) detailed data on the DNA sequences (promoter

and enhancers) that regulate the genes in the relevant organ/

structure; (iv) sequence information from related species or

populations in which the phenotype shows a relevant variation

and (v) an amenable experimental system with which to

perform functional studies with the different versions of the

enhancer, usually by transgenesis.

Owing to this complexity, most studies on the importance

of cis-regulatory variation in species evolution and adap-

tation do not go very deep. Phenotypic variation at many

interesting traits is known to be controlled by cis-regulatory

divergence, but usually the DNA sequences behind the vari-

ability are unknown. For instance, it is well established that

colour pattern in wings of Heliconius butterflies is linked to

divergent regulation of the optix gene, but the cis-regulatory

sequences are still to be found [106,107]. In other examples,

nucleotide polymorphisms linked to a trait are known but

their regulatory role has not been analysed in great detail.

One example of the latter case is lactase expression in

human populations. Several pastoralist human populations

around the world have independently evolved the capacity

to express lactase during adulthood, which allows digestion

of milk and dairy products. Many polymorphisms linked to

the persistence of lactase expression in adults are known, all

of them located on an intron of an adjacent gene [108]. The

intronic region is conserved only in primates and displays

enhancer activity in cell culture assays, but a detailed charac-

terization of lactase regulatory elements and its variants in a
more physiological model, like transgenic mice, is still lacking

[108,109]. In other cases, suggestive differences in enhancer

sequence and activity between species are known, but the

derived expression pattern cannot be linked to a trait.

A detailed understanding of the relation between enhancer

evolution and trait variation is only possible by series of

studies of a particular locus in several species or populations.

Table 1 shows a list of studies that provide compelling evidence

as to how enhancer sequence evolution has contributed to

specific traits in animals. The examples illustrate various mech-

anisms that lead to divergence of enhancer function: deletions,

modification in the TFBS repertoire and acquisition of new

enhancer regions.

(a) Enhancer deletion and phenotypic variation
A dramatic mechanism of enhancer evolution is simply the de-

letion of an enhancer, which leads to the loss of gene expression

in a particular region of the body. A good example concerns a

pelvic enhancer of the Pitx1 gene in the three-spined stickleback,

a teleost fish that lives in the sea as well as in North American

and Northern European freshwater lakes. Marine sticklebacks

possess bony spines in the pelvic region, presumably as protec-

tion from predators; freshwater populations, on the other hand,

usually lack large pelvic armour. Development of such spines

depends on the activity of a TF, Pitx1, which is expressed in

the pelvic region under the control of a specific enhancer

[111,112]. Several freshwater stickleback populations lack

spines due to deletions of the pelvic enhancer; interesting-

ly, deletions have happened independently several times in

isolated populations of freshwater sticklebacks [111,112].

Other likely cases of enhancer deletions during evolution

have been uncovered by McLean et al. [114], who identified

509 instances of non-coding DNA regions which are conserved

in mammals but have been deleted since the split between

humans and chimpanzees. One of the sequences absent in

humans is an enhancer of the androgen receptor (AR) gene that

drives expression to vibrissae (sensory hairs in the face) and

the genital tubercle during development [114]. Testosterone

is necessary for sensory vibrissae growth and for the develop-

ment of penile spines, structures that are present in rodents and

non-human primates but absent in our species. Thus, a reason-

able hypothesis is that the loss of an AR enhancer in our close

ancestors led to morphological change in our lineage [114].

Thus, the work on teleost Pitx1 and mammalian AR shows

that deletion of enhancers that control the expression of a TF

in a particular region can cause evolution to happen by large

steps, eliminating whole morphological structures provided

that the lack of such structures (like pelvic and penile spines)

are not selected against. Another enhancer deletion with poten-

tial functional significance uncovered by McLean et al. [114]

affects the expression of the tumour-suppressor gene

GADD45G, which might be related to human-specific neuronal

proliferation in the forebrain.

(b) Evolution by mutations in TFBS
Another, more subtle way of enhancer evolution is via point

mutations and small indels that either create or eliminate

TFBS within an enhancer, thereby changing its activity. Sever-

al enhancers that control pigmentation in flies of the genus

Drosophila are known to have evolved in this way. The yellow
gene, which encodes an enzyme involved in pigment syn-

thesis, is expressed in the Drosophila wing under the control

http://rstb.royalsocietypublishing.org/


Ta
bl

e
1.

En
ha

nc
er

s
in

vo
lve

d
in

ev
ol

ut
ion

ar
y

in
no

va
tio

n.
n.

d.
,N

o
da

ta
.

tr
ai

t
sp

ec
ie

s/
po

pu
la

tio
ns

ge
ne

TF
en

ha
nc

er
va

ria
tio

n
re

fe
re

nc
es

ve
rte

br
at

es
ax

ial
m

or
ph

ol
og

y
m

ou
se

ve
rsu

s
ch

ick
en

Ho
xc

8
n.

d.
po

in
tm

ut
at

ion
s

[1
10

]

bo
ny

pe
lvi

c
ar

m
ou

r
sti

ck
leb

ac
ks

Pi
tx1

n.
d.

de
let

ion
[1

11
,1

12
]

fo
re

lim
b

len
gt

h
ba

ts
ve

rsu
s

m
ice

Pr
x1

n.
d.

po
in

tm
ut

at
ion

s
[1

13
]

fac
ial

vib
ris

sa
e,

pe
ni

le
sp

in
es

hu
m

an
s

ve
rsu

s
ap

es
an

d
m

ice
an

dr
og

en
re

ce
pt

or
n.

d.
de

let
ion

[1
14

]

fo
re

lim
b

len
gt

h
an

d
an

at
om

y
te

leo
sts

ve
rsu

s
te

tra
po

ds
Ho

xd
13

n.
d.

ac
qu

isi
tio

n
of

a
ne

w
lim

b
en

ha
nc

er
[1

15
]

rib
ca

ge
an

at
om

y
sn

ak
es

ve
rsu

s
m

am
m

als
M

yf5
Pa

x3
,H

ox
a1

0,
Ho

xb
6

po
in

tm
ut

at
ion

s
[1

16
]

in
ve

rte
br

at
es

w
in

g
da

rk
sp

ot
D.

m
ela

no
ga

ste
r,

bia
rm

ipe
s,

tri
sti

s,

gu
nu

ng
co

la
,e

leg
an

s,
m

im
et

ica

ye
llo

w
En

gr
ail

ed
,D

ist
all

es
s

(D
ll)

po
in

tm
ut

at
ion

s
[1

17
–

11
9]

ab
do

m
in

al
pi

gm
en

ta
tio

n
va

rio
us

Dr
os

op
hi

la
sp

ec
ies

ye
llo

w
Ab

do
m

in
al

B
(A

BD
-B

)
po

in
tm

ut
at

ion
s

[1
20

]

tri
ch

om
e

di
str

ib
ut

ion
in

lar
va

e
D.

m
ela

no
ga

ste
r,

se
ch

ell
ia

,e
zo

an
a,

vir
idi

s,
lit

to
ra

lis
sh

av
en

ba
by

/o
vo

n.
d.

po
in

tm
ut

at
ion

s
[1

21
–

12
3]

ab
do

m
in

al
pi

gm
en

ta
tio

n
D.

m
ela

no
ga

ste
ra

nd
D.

sa
nt

om
ea

ta
n

n.
d.

po
in

tm
ut

at
ion

s,
de

let
ion

s
[1

24
]

ab
do

m
in

al
pi

gm
en

ta
tio

n
Ug

an
da

n
D.

m
ela

no
ga

ste
rp

op
ul

at
ion

s
eb

on
y

n.
d.

po
in

tm
ut

at
ion

s
[1

25
]

rstb.royalsocietypublishing.org
PhilTransR

SocB
368:20130017

7

 on January 28, 2017http://rstb.royalsocietypublishing.org/Downloaded from 
of the spot enhancer [117]. In D. melanogaster, yellow expression

is low and steady throughout the wing, leading to uniform pig-

mentation. In Drosophila biarmipes, in contrast, yellow is highly

expressed in a corner of the wing, creating a dark spot [117].

Dark spots on the wings may have a function during

wooing, when males execute an elaborate dance to females.

Analyses of enhancer sequence differences and transgenic

assays indicate that the spot enhancer in D. biarmipes has sites

for a transcriptional activator (recently identified as Distalless)

[118] as well as for the repressor Engrailed, the latter respon-

sible for setting the posterior boundary of the yellow spot

[117]. In a subsequent work, Prud’homme et al. [119] checked

for the presence of wing spots throughout Drosophila phyl-

ogeny and found that independent gains and losses of the

wing spot have happened a couple of times during the evo-

lution of the genus. Loss of the wing spot in Drosophila
gunungcola and Drosophila mimetica happened by mutations

in the same spot enhancer, in a case of convergent phenotypic

evolution driven by change in the same regulatory element

[119]. Notably, gain of wing spot in Drosophila tristis, which

primitively lacked a spot, happened not by mutations in the

spot enhancer, as in D. biarmipes, but in another enhancer

located in a yellow intron that directs expression to wing veins

[119]. Thus, a remarkably similar phenotype—the dark spot

on the upper right corner of the wing—was independently

generated by the co-option of two different yellow enhancers

during fly evolution [119].

Yellow is also involved in the male-specific pigmentation of

the abdomen, where its expression is controlled by the body
enhancer [120]. In D. melanogaster and D. pseudoobscura, body
enhancer activity depends on the binding of TF Abdominal-B

(Abd-B), but the TFBS responsible for binding have been lost

in the body enhancer of Drosophila kikkawai, which lacks abdomi-

nal pigmentation [120]. In another species lacking abdominal

pigmentation, D. santomea, it is the expression of tan that is

altered [124]. tan is an enzyme with functions in pigmentation

and vision. Its expression depends on an enhancer that is con-

served in the Drosophila genus, but in D. santomea at least three

different kinds of mutations, including point mutations and del-

etions, render the enhancer non-functional in the abdomen,

which stays unpigmented [124]. Also variation in an enhancer

of ebony, which encodes an enzyme related to pigmentation,

was found to be related to abdominal pigmentation in African

D. melanogaster populations [125].

Another variable phenotype in flies which has been studied

in great depth is trichome development in Drosophila larvae.

The precise pattern of trichome distribution depends on several

enhancers that control the expression of the TF shavenbaby (svb),

as illustrated by Stern & Frankel [126] in this issue, who

summarize 13 years of continuous work on the evolution of

shavenbaby expression in several Drosophila species. Quartern-

ary trichome loss in Drosophila sechellia larvae is due to

several (at least five) point mutations in one particular enhan-

cer, E6, which reduce svb expression in the area of the larvae

that gives rise to quartenary trichomes [121]. Interestingly,

each mutation in the E6 has a small effect per se, so that signifi-

cant reduction is svb expression is only achieved when all sites

are mutated. Thus, loss of enhancer activity can be brought

about not only by enhancer deletion but also by the accumu-

lation of point mutations with small effect, possibly to avoid

pleiotropic effects caused by complete enhancer loss [121].

In tetrapods, limb anatomy and length is partially con-

trolled by the TF Prx1. Forelimbs in bats are much longer

http://rstb.royalsocietypublishing.org/


rstb.royalsocietypublishing.org
PhilTransR

SocB
368:20130017

8

 on January 28, 2017http://rstb.royalsocietypublishing.org/Downloaded from 
than those of mice, and Cretekos et al. [113] showed that

replacing a mouse Prx1 limb enhancer with the orthologous

enhancer from a bat caused the limb of mutant mice to be

a little longer, indicating that mutations in the enhancer

alter its activity and contribute to the evolution of forelimb

anatomy [113]. Another recent example of enhancer

mutations driving innovation is the work by Guerreiro et al.
[116] on the axial anatomy of snakes. Vertebrae in tetrapods

can usually be subdivided into several types (cervical, thor-

acic, lumbar, sacral and caudal). Snakes, on the other hand,

are characterized by a homogeneous vertebral anatomy,

with a great number of thoracic-like, ribbed vertebrae. In ver-

tebrates, rib formation at posterior levels of the column is

repressed by TF Hoxa10, but in snakes this repression does

not take place [127]. Studying an enhancer of Myf5, a gene

necessary for proper axial development, Guerreiro et al.
[116] identified sites that can bind to TF Pax3 and Hoxb6,

which act as activators, and Hoxa10, which is a repressor

[128]. In snakes, there is a single nucleotide substitution in

the enhancer that prevents Hoxa10 binding without interfer-

ing with activator binding, which likely explains why ribbed

vertebrae are formed in snakes despite of Hoxa10 expression

not being altered in this group [116,129].

(c) Acquisition of new enhancers and
expression territories

During evolution, it is certain that new regulatory activities

originate not only by tinkering with pre-existing enhancers

but also by the appearance of new enhancers. Patterns of

CNE distribution suggest that new enhancers played a role in

several stages of vertebrate evolution [130], while a burst of

co-option of transposons as new cis-regulatory elements is

associated with the reproductive innovations of placental mam-

mals [131,132]. Recently, mapping of enhancer chromatin

marks (H3K27ac) at equivalent stages of limb development in

mouse, macaque and human uncovered many putative enhan-

cers which seem to be active only in the developing human limb

and which might contribute to the specific limb phenotype of

our species [133].

An important event in the history of vertebrates was the

morphological transition from a fin to a limb in the ancestor

of tetrapods. Expression of genes of the Hoxd group are more

intense in the developing limbs of tetrapods compared with

developing fins of fish, and it has been hypothesized that

this feature might be related to the differences in the mor-

phology of these structures. Recently, Freitas et al. [115]

found that overexpression of Hoxd13 in the zebrafish develop-

ing fin causes increased proliferation of the chondroskeleton,

which acquires anatomical and molecular characteristics

similar to a tetrapod fin. In addition, they show that a tetra-

pod-specific Hoxd enhancer, CsC, drives robust expression

to the fins of transgenic zebrafish, showing that the trans-
acting factors ready to overexpress Hoxd were in place

before the appearance of the tetrapod limb [115,134].

Many of the studies described above that pinpoint enhan-

cer mutations leading to morphological innovation began by

mapping a large-effect genetic locus responsible for variation

in closely related species or populations [135–138]. Mapping

may also detect genomic regions with signs of a selective

sweep, an indication that natural selection is fixing a variant

in the population. In this issue, Glaser-Schmitt et al. [139]

describe a selective sweep around an enhancer of the CG9509
gene (encoding an enzyme of unknown function) that is

responsible for a consistently higher expression of this gene

in European versus sub-Saharan African populations of

D. melanogaster. Increased expression of the enzyme outside

sub-Saharan Africa likely indicates that this phenotype has fit-

ness value, perhaps because the enzyme may have detoxifying

functions [139].
7. Enhancer evolution in humans
In their seminal paper, King & Wilson [1] observed that chim-

panzee and human proteins were exceptionally similar in

sequence and deduced that the differences between these

species should mainly be due to mutations in regulatory

DNA. Testing this idea is not an easy task due to the lack

of appropriate model organisms to manipulate [140], but

the work of McLean et al. [114] discussed above indicates

that, at least for some traits, highly suggestive experimental

evidence can be obtained for the identification of human-

specific, non-coding mutations that helped mould our

species. In this regard, sequences displaying signs of acceler-

ated evolution in humans often have enhancer activity and

might be responsible for human-specific phenotypic adap-

tations [141]. One example is element HACNS1, a limb

enhancer showing evidence of accelerated evolution in the

human lineage [142]. In transgenic mice, human HACNS1
shows an increased transcriptional activity compared with

the chimpanzee and macaque orthologous enhancers [142],

probably due to mutations that prevent the binding of repres-

sors of the gene [135]. Although it has been hypothesized that

this might be linked to the evolution of limb morphology, the

gene controlled by HACNS1 is unknown and no experimental

evidence for a function in limb development is available

[142]. In this issue, Capra et al. [143] combine data on non-

coding human accelerated regions with genome-wide sur-

veys of chromatin marks and binding of transcription

factors and cofactors to identify potential enhancers. Experi-

mental testing of a set of human and chimpanzee enhancer

orthologues indicates that most can work as enhancers in

transgenic mice and, consistent with the evidence for positive

selection in humans, many of them have different regulatory

activity between the species [143]. These human accelerated

regulatory sequences, together with other putative human-

specific enhancers found in genome-wide surveys [142,144],

are a rich dataset for the discovery of the peculiar gene regu-

lation features that make us human. Taking advantage of

some of these databases, the group of Lucı́a Franchini identi-

fied the genes carrying the highest number of human-specific

accelerated sequences [141]. The developmental brain gene

NPAS3 is at the top of this ranking with up to 14 elements

that are highly conserved in mammals, including primates,

but carry human-specific nucleotide substitutions. In this

issue, Kamm et al. [145] study the accelerated element

2xHAR142 present in intron 5 of human NPAS3 and show

that the mouse and chimp 2xHAR142 orthologues behave

as transcriptional enhancers in transgenic mice driving

lacZ expression to similar regions of the central nervous

system where mouse Npas3 is normally expressed. Interest-

ingly, the human 2xHAR142 orthologue extends the area of

lacZ expression to the developing anterior telencephalon, pro-

viding an example of human-specific heterotopy promoted

by an accelerated transcriptional enhancer that could have
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contributed to the characteristic enlargement of this brain

area in humans [145].
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8. Concluding remarks
Deciphering the genetic mechanisms that operated during the

past 650 Myr of animal evolution to create the seemingly infin-

ite variety of animals that populate our planet has been one

of the holy grails in biology. However, it is only recently

that scientists have developed a number of experimental

tools that allow study of these problems that were much

more difficult to tackle in the pre-genomic era (before ca
2005). The idea of putting together this Theme Issue comes

at a critical time in which the massive availability of

genome sequences from several species, coupled to single-

and multiple-gene functional studies in transgenic organisms

and sophisticated maps of chromatin features have produced

an unprecedented impact in the identification of potential

cell-type-specific enhancers with functional roles in different

lineages or species. We are just beginning to understand the

different possible mechanisms by which enhancers evolve

and contribute to novel forms and functions. The limited

number of examples documented in the literature, most of

which are listed above, are certainly but the tip of the iceberg,

as hundreds of thousands of candidate enhancer sequences

have been identified by sequence conservation and enhan-

cer-associated chromatin marks in many different animal

genomes. However, to make sense of whole-genome surveys

and bioinformatic predictions, it will be important to further

develop the methods to evaluate regulatory function in vivo,

because the data derived from genome-wide studies are

descriptive in nature. In this regard, novel techniques have

been recently developed to test the regulatory activity of
DNA elements at a large scale (see for instance ref. [82]), some-

thing that should help functional studies to keep pace with

genome-wide surveys. In addition to reporter gene assays, it

will also be desirable to accelerate the study of enhancers by

loss-of-function assays, which is perhaps the best way of evalu-

ating the function of a DNA sequence. In recent years,

promising novel genome-editing techniques based on the use

of prokaryotic CRISP/Cas9 nuclease [146,147] and the tran-

scription activator-like effector nucleases [148–150] have

emerged and may be rapidly adapted to make loss-of-function

studies of enhancers in several vertebrate and invertebrate

species, including those organisms in which regulatory regions

knockouts were, until now, not amenable, as have been recently

achieved in zebrafish [148,151,152] and medaka [150]. The use

of these novel techniques will certainly accelerate discoveries

in the field of enhancer evolution and animal diversity.

The articles, reviews and perspectives that follow this intro-

duction shed more light in the still murky and mysterious

world of gene expression evolution in the animal kingdom.

Each of these papers, in one way or another, consolidates the

idea that there will probably be no fixed law, like gravity, to

explain at the molecular level how endless forms most beautiful
and most wonderful have been, and are being evolved. It rather

seems that a wide variety of peculiar molecular mechanisms

perform, together, the complex task of putting the genome in

action, in each cell type of each animal species, at every

moment in life and under every possible physiological and

environmental circumstance.
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