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de Souza FSJ, Franchini LF, Nasif S, Low MJ,

Rubinstein M. 2013 Enhancer turnover and

conserved regulatory function in vertebrate

evolution. Phil Trans R Soc B 368: 20130027.

http://dx.doi.org/10.1098/rstb.2013.0027

One contribution of 12 to a Theme Issue

‘Molecular and functional evolution of

transcriptional enhancers in animals’.

Subject Areas:
bioinformatics, developmental biology,

evolution, genetics, genomics, neuroscience

Keywords:
transgenic zebrafish, proopiomelanocortin,

hypothalamus, mammals, teleosts,

comparative genomics

Author for correspondence:
Marcelo Rubinstein

e-mail: mrubins@dna.uba.ar
& 2013 The Author(s) Published by the Royal Society. All rights reserved.
†These authors contributed equally to this

study.

Electronic supplementary material is available

at http://dx.doi.org/10.1098/rstb.2013.0027 or

via http://rstb.royalsocietypublishing.org.
Enhancer turnover and conserved
regulatory function in vertebrate
evolution
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Mutations in regulatory regions including enhancers are an important

source of variation and innovation during evolution. Enhancers can evolve

by changes in the sequence, arrangement and repertoire of transcription

factor binding sites, but whole enhancers can also be lost or gained in certain

lineages in a process of turnover. The proopiomelanocortin gene (Pomc),

which encodes a prohormone, is expressed in the pituitary and hypo-

thalamus of all jawed vertebrates. We have previously described that

hypothalamic Pomc expression in mammals is controlled by two enhan-

cers—nPE1 and nPE2—that are derived from transposable elements and

that presumably replaced the ancestral neuronal Pomc regulatory regions.

Here, we show that nPE1 and nPE2, even though they are mammalian

novelties with no homologous counterpart in other vertebrates, nevertheless

can drive gene expression specifically to POMC neurons in the hypothala-

mus of larval and adult transgenic zebrafish. This indicates that when

neuronal Pomc enhancers originated de novo during early mammalian evol-

ution, the newly created cis- and trans-codes were similar to the ancestral

ones. We also identify the neuronal regulatory region of zebrafish pomca
and confirm that it is not homologous to the mammalian enhancers. Our

work sheds light on the process of gene regulatory evolution by showing

how a locus can undergo enhancer turnover and nevertheless maintain the

ancestral transcriptional output.

provided by CONIC
1. Introduction
The understanding of organismal evolution at the molecular level is closely

related to the study of gene regulation, as mutations in regulatory regions in

the DNA are considered one of the main drivers of biological evolution [1].

Transcriptional enhancers are cis-acting DNA elements that work as arrays of

transcription factor binding sites (TFBSs) and control the transcriptional activity

of genes located nearby. The identification and study of enhancers is a difficult

task, as there are no general, fixed rules regarding the location or sequence com-

position of such elements. Compared with coding regions, which are generally

highly constrained by protein structure and function, enhancers are freer to

evolve, because TFBSs are small (6–10 nucleotides long) and accept much

higher levels of sequence divergence than the genetic code, i.e. each transcrip-

tion factor can recognize a variety of binding site sequences. In addition,

although some examples of rigid enhancer organization exist [2,3], the order

of TFBSs on a given enhancer can be quite flexible [4]. Finally, enhancers act

at a distance and can even be embedded within neighbouring loci [5–9], indi-

cating a large degree of positional freedom of enhancers in relation to the genes

they control. Thus, while new protein coding genes mostly appear by
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Figure 1. Scheme of possible evolutionary paths of enhancers. Top: ancestral enhancer (box) has a given arrangement of transcription factor binding sites (TFBSs,
coloured squares) in a background of near-neutral sequence (yellow). (a) As evolutionary time goes by, the enhancer can accumulate relatively few mutations
(indicated as white areas in box) and give rise to homologous enhancers that can be aligned (i.e. are ‘conserved’) between species. (b) If TFBSs undergo
much turnover and the accumulation of mutations is too high, homologous enhancers may no longer be alignable (i.e. be ‘non-conserved’). (c) The ancestral
enhancer becomes inactive by the accumulation of mutations, but this is compensated by the appearance of a new enhancer elsewhere in the locus that fulfils
the same regulatory function. In the path to (c), both functional enhancers coexist for some time until one of them becomes non-functional.
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duplication of pre-existing genes [10], DNA sequences within

an enhancer can change quickly over evolutionary time

and new enhancers can appear in new locations and replace

ancient ones.
(a) Enhancer evolution in vertebrates
Traditionally, enhancers were found by the patient testing of

different DNA regions coming from the locus under study in

reporter gene assays in cell culture and in transgenic mice.

With the advent of whole-genome sequencing, it was quickly

recognized that enhancers and other regulatory regions might

be identified by the sequence alignments of genomes of differ-

ent organisms, the rationale being that non-coding, functional

DNA regions would show signs of purifying selection (i.e.

constraint) and have a higher level of sequence conservation

than non-functional, neutrally evolving regions [11,12].

Thus, early alignments of human and mouse genomes

allowed for the identification of candidate regulatory regions

and, as more genomes were sequenced, comparisons of mam-

malian genomes with those of teleost fishes such as fugu

(Takifugu rubripes) and zebrafish (Danio rerio) allowed for the

identification of thousands of conserved non-coding elements

(CNEs) that have maintained their function throughout ver-

tebrate evolution [13–15]. In fact, many of these highly

conserved CNEs behave as enhancers when tested in trans-

genic mice and/or zebrafish [5,14–16], indicating that

enhancer function can be conserved during the 450 million

years that have passed since the divergence of the teleost

and tetrapod lineages [17].

But, can all enhancers in a given genome be simply ident-

ified by phylogenetic footprinting? Because enhancers can

evolve relatively fast, the answer to this question is not

easy, as many circumstances can be envisaged that would

lead to failure in the identification of enhancers by sequence

conservation between two given lineages (figure 1). Thus,

(i) orthologous enhancers (i.e. originated from a common

ancestral sequence) can mutate redundant nucleotides
within TFBSs and/or reshuffle their TFBSs during evolution

(TFBS turnover), but may still be alignable, something that

facilitates their identification, as in the case of CNEs. How-

ever, (ii) it is also possible that extensive mutations can

occur that maintain enhancer function but erase alignability,

preventing a straightforward identification by sequence con-

servation. Alternatively, (iii) current enhancers performing

the same regulatory function in two different lineages may

be non-homologous (analogous), being rather the result of

the de novo appearance of a new enhancer in a different

location of the locus in one or both of the lineages, and the

ancestral enhancer may be lost in at least one of them (enhan-

cer turnover). Of course, it is also possible that enhancers are

gained or lost independently of the fate of the ancestral

enhancers, again leading to lineage-specific differences in

enhancer repertoire. As for the regulatory consequences of

TFBS and enhancer turnover, three non-mutually exclusive

alternatives exist: (i) either reshuffling and turnover may

happen without altering the ancestral transcriptional activity

of the controlled gene, i.e. ‘things change to stay the same’;

(ii) enhancer turnover occurs modifying quantitative or quali-

tative traits of the spatio-temporal gene expression domain

that may produce phenotypic changes, i.e. longer limbs,

darker colour, etc.; or (iii) enhancer turnover originates com-

pletely novel patterns of expression in different lineages,

leading to regulatory innovation with reflections in the mor-

phology and physiology of organisms.

Hence, given enough time, it is expected that TFBS and

enhancer reshuffling and turnover will erase sequence

similarity in different lineages, and the power to detect func-

tional sequence by comparative approaches will depend on

the distance of the species analysed, meaning that as the phy-

logenetic distance increases, the proportion of CNEs should

decrease. For instance, Prabhakar et al. [18] identified 170 000

CNEs in a human–rodent comparison, but this number

dropped to 40 000 in human–chicken and 5700 in human–

fugu comparisons. When tested in transgenic mouse embryos,

27% of human–rodent CNEs (mammalian-specific) were
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found to have enhancer activity [18], a percentage that is simi-

lar to that obtained with human–fugu CNE (29% [16]).

Mammalian-specific and vertebrate-specific enhancers seem

to be distributed non-homogeneously among genes, as enhan-

cers conserved between mammals and fish are more common

near genes involved in embryonic development, suggesting

that genes with complex spatio-temporal expression patterns

are less flexible in their enhancer organization and architecture

compared with genes with other functions [19,20]. In con-

clusion, the proportion of enhancers in the human genome

that will be identifiable by phylogenetic footprinting is still

unclear. The recent sequencing of 29 mammalian genomes

should be an invaluable tool to help identify enhancers

common to mammals or, at least, most mammalian groups

[21]. In the case of enhancers with more restricted distribution,

such as primate- or even human-specific enhancers, their

identification might only be possible by conventional func-

tional assays or aided by epigenetic marks typical for

enhancers in the locus under study [22,23]. Concerning

the latter strategy, many investigations in recent years have

used genome-wide chromatin immunoprecipitation to map

epigenetic marks that are typical for enhancers and, in some

cases, to test the elements in transgenic mouse analysis

(reviewed in [24,25]). Such studies have detected a large pro-

portion of enhancers that are conserved among several

mammals but also a significant fraction of enhancers without

apparent evolutionary constraint [22,26,27]. It remains to be

tested, however, the relative importance of conserved versus

weakly- or non-conserved enhancers in the regulation of

the genes they control. Although there are well-characterized

examples of cis-acting regulatory regions restricted to

particular mammalian lineages (e.g. [28,29]), several disease-

associated mutations mapping to non-coding regions in

humans have turned out to reside within phylogenetically

conserved enhancers [6,30–36].
(b) Zebrafish as a tool to investigate enhancer evolution
When it comes to studying human enhancers, researchers

have traditionally studied reporter gene expression in trans-

genic mice as a gold standard. Being mammals, mice are

suitable models to test the activity of human enhancers,

with the invaluable advantage over cell culture systems that

enhancer activity can be analysed in a spatio-temporal way

and simultaneously in all tissues and cell types. There are,

however, other attractive vertebrate models that can be

used to study enhancers by transgenesis, including the teleost

zebrafish, which allows for quicker and cheaper transgenic

assays [37]. Mammals and zebrafish share thousands of

CNEs that can work as enhancers, and zebrafish transgenesis

plays an important role in the analysis of such conserved

genetic elements [14,15,38–41].

As discussed earlier, the few thousand enhancers that are

conserved between mammals and teleosts should constitute

only a fraction of the total [18], as TFBS and enhancer turn-

over tend to erase sequence similarity during evolution.

Recent high-throughput studies participating in the mouse

ENCODE project detected 230 000 elements with enhancer-

type signatures based on the genomic distribution of certain

epigenetic marks in murine cells [42]. Can zebrafish transgen-

esis be used to study mammalian enhancers that are not

conserved in teleosts? The answer to this question is yes, as

it has been found in some experiments that mammalian
enhancers without obvious teleost orthologues can neverthe-

less drive specific transgene expression in zebrafish embryos

[39,43,44], indicating that at least part of the underlying cis-

(TFBS composition or order) as well as trans- (transcription fac-

tors) elements are conserved in mammals and teleosts in many

diverged enhancers. It is likely that many of these non-con-

served enhancers do possess orthologues that cannot be

readily identified owing to the turnover of neutral and redun-

dant nucleotide sites within the enhancers in each lineage

(TFBS turnover). Indeed, using the genome of the frog Xenopus
tropicalis, an evolutionary intermediate reference between

mammals and teleosts, 1500 CNEs derived from human and

zebrafish genomes have been found that do not align to each

other but do align with elements in the frog [45]. When ana-

lysed in detail, such elements show evidence of TFBS

conservation that cannot be detected in whole-genome align-

ments and, when tested in transgenic zebrafish, many

elements display enhancer activity, indicating that the lack of

mammal–fish identity of these orthologous enhancers was

caused by the accumulation of mutations within the ancestral

sequences during the evolution of each lineage [45]. Apart

from turnover of TFBS sequence within enhancers, evolution

can also lead to the appearance of non-orthologous novel

enhancers and, eventually, to enhancer turnover with com-

plete functional loss of the ancestral sequence (figure 1). In

practice, however, it is difficult to be certain whether the

lack of overt sequence identity of such non-conserved

mammal–fish enhancers is the result of TFBS sequence turn-

over in orthologous enhancers or due to an enhancer

appearing de novo, unless a detailed knowledge of the evol-

utionary history of the enhancer in at least one of the two

lineages is found [46,47]. Here, we show that two mouse

enhancers of the proopiomelanocortin gene (Pomc) that cer-

tainly appeared in the mammalian lineage direct appropriate

reporter gene expression to homologous neurons in the

ventromedial hypothalamus of transgenic zebrafish.
(c) Evolution of Pomc transcriptional expression
The Pomc gene encodes a prohormone found in all vertebrates

that is processed to several bioactive peptides to orchestrate

the stress response. Pomc is expressed in the pituitary gland

and brain, mainly in the hypothalamus, and its derived pep-

tides are involved in processes as diverse as glucocorticoid

release, stress-induced analgesia, energy balance control

and, in fishes and amphibians, background colour adaptation

[48–50]. Mammals, birds and other tetrapods have only one

Pomc copy, but zebrafish and other teleosts, including fugu

and Tetraodon nigroviridis, have two Pomc paralogues—pomca
and pomcb—that date from the ancient whole-genome

duplication in the teleost lineage around 320 Ma [51]. In zebra-

fish, pomca is expressed in the anterior and intermediate lobes

of the pituitary as well as in the ventral hypothalamus, just like

the tetrapod gene [52,53]. The expression pattern of zebrafish

pomcb is unknown, but the Tetraodon homologue is expressed

in the preoptic area of the brain and pituitary [51].

Pituitary and hypothalamic Pomc expression are con-

trolled by different regulatory regions. In the mammalian

pituitary, there is a large body of evidence that Pomc
expression is regulated by several TFBSs present in the prox-

imal promoter [54–56], as well as by a mammalian-conserved

distal enhancer [57]. In the zebrafish, similar to mammals, it

has been found that a construct carrying the proximal

http://rstb.royalsocietypublishing.org/
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promoter and first intron of the pomca gene can drive green

fluorescent protein (GFP) expression to the anterior and

intermediate lobes of the pituitary, but not to ventral hypo-

thalamic neurons [52]. A similar construct carrying 500 bp

of the Xenopus laevis Pomc gene promoter directs GFP

expression to cells of the intermediate lobe, but not the hypo-

thalamus, of transgenic frog embryos [58], suggesting that the

function of the proximal Pomc promoter in driving pituitary

expression is ancestral in vertebrates.

In the mouse hypothalamus, Pomc expression depends on

a distal module that we identified in the pre-genomic era fol-

lowing a tedious chromosome walking and deletional

analysis in transgenic mice [59]. Upon release of the first

human genome draft, we were able to perform a human–

mouse phylogenetic footprinting that revealed the presence

of two highly conserved sequences, later also found in

other mammalian genomes, which proved to drive reporter

gene expression to POMC hypothalamic neurons [60].

These neuronal Pomc Enhancers, that we named nPE1 and

nPE2, are located at 212 and 210 kb relative to the mouse

transcription start site (TSS) [60]. While nPE2 is found in

monotremes (egg-laying mammals) and marsupials, as well

as placental mammals, nPE1 is only found in placentals

[46,47]. No sequences similar to either nPE enhancer can be

identified in non-mammalian genomes. A detailed phyloge-

netic analysis of both enhancers revealed that nPE1 and

nPE2 are derived from unrelated ancient transposable

elements (TEs) that were independently co-opted—or

exapted—at different times during early mammalian evol-

ution [46,47,61]. nPE2 was derived from a CORE-SINE

retroposon before the mammalian radiation [46], whereas

nPE1 is derived from an MaLR retroposon inserted at the

time of the placental mammal diversification [47]. Transgenic

mouse studies showed that either nPE1 or nPE2 is able to

drive authentic reporter gene expression to POMC hypo-

thalamic neurons, whereas the simultaneous absence of

both enhancers from a 4 kb mouse neuronal distal module

completely inactivates this function [60]. More recently, we

reported a first case of convergent evolution of cell-specific

transcriptional enhancers by demonstrating that nPE1 and

nPE2 control a fully overlapping spatio-temporal expression

domain in the ventral hypothalamus [47,61].

While nPE1 and nPE2 explain neuronal Pomc expression in

mammals, nothing is known about the regulatory regions con-

trolling hypothalamic Pomc expression in all other vertebrate

classes. Because nPE1 and nPE2 are derived from TEs exapted

in the mammalian lineage, they should be non-orthologous to

Pomc regulatory regions in other vertebrates (figure 1). With

this in mind, here we attempt to investigate the following

aspects of Pomc regulatory evolution: (i) can the mammalian

enhancers be recognized by the trans-acting machinery

of the teleost hypothalamic neurons? (ii) What is/are the

enhancer/s controlling Pomc expression in the zebrafish hypo-

thalamus? (iii) Are the zebrafish neuronal Pomc enhancer/s

conserved in genomes from other teleost suborders?
2. Material and methods
(a) Transgenic zebrafish
Adult stocks of strain AB wild-type zebrafish (D. rerio) obtained

from the Zebrafish International Resource Center (University of

Oregon, USA) were maintained at 28.58C on a 14 L : 10 D cycle.
All embryos were collected by natural spawning and were

raised at 288C in E3 medium (5 mM NaCl, 0.17 mM KCl,

0.33 mM CaCl2, 0.3 mM MgSO4 and 0.1% methylene blue) in

Petri dishes. Transposase mRNA was synthesized in vitro using

mMESSAGE mMACHINE Sp6 kit (Ambion, Inc.) from pCS-TP.

One nanolitre of a DNA/RNA solution containing 25 ng ml21

of circular DNA (transgene vectors) and 35 ng ml21 of transpo-

sase mRNA were co-injected into one cell fertilized egg.

Quantification and selection of positive transgenic zebrafish

was carried out in tricaine-anaesthetized embryos and viewed

in an Olympus BX41 fluorescent microscope coupled to an

Olympus DP71 digital camera. Patterns of neuronal enhancer

activity were confirmed by transient injections (300–1000

embryos injected for each construct in at least three different

days). Five-day-old transgenic embryos were screened for

enhanced green fluorescent protein (EGFP) expression in the

pituitary (used as a positive control for the transgene activity)

and in the hypothalamus. Around 80–90% of injected embryos

express EGFP in the pituitary. Only those embryos expressing

EGFP in both the pituitary and hypothalamus were considered

to be positive for neuronal enhancer activity. All procedures

were performed in accordance with the Guide for the Care and

Use of Laboratory Animals, United States Public Health Services.
(b) DNA constructs
The plasmid pT2KXIG containing Tol2 sequences for transposase

recognition (gift from Koichi Kawakami) was modified to replace

the pEF1a promoter and the intron of rabbit b-globin (cut by

XhoI and BamHI) with a 991 bp (2562/þ428) fragment, includ-

ing the zebrafish pomca promoter, the entire first exon and

intron, and 22 bp of the second exon, to yield transgene 1

(Tg1). An approximately 4 kb DNA fragment containing mouse

neuronal enhancer elements nPE1 and nPE2 located at 213

and 29 from mouse Pomc was subcloned into Tg1 upstream of

the zebrafish promoter using XhoI and an introduced XmaI site

to yield Tg2. Additionally, the following constructs with differ-

ent deletions (D) of Pomc neuronal enhancers were subcloned

into Tg1 using XhoI, and then characterized for correct orien-

tation: DnPE1 (Tg3), DnPE2 (Tg4) and DnPE1–DnPE2 (Tg5),

all in the 213/29 mouse Pomc context (see details in de Souza

et al. [60]). All fragments were first PCR amplified with

Pfx DNA polymerase (Invitrogen), subcloned into pZErO-2

(Invitrogen) and sequenced before subcloning into Tg1 vector.

Several zebrafish fragments located upstream of pomca were

amplified using a bacterial artificial chromosome (BAC) clone

(RP71–36D5) as template. First, two consecutive fragments of

4.2 (210.6/26.4) and 5.8 kb (26.4/20.56) were amplified by

PCR (TaKaRa Ex Taq), linked together at a natural BamHI site

located at 26.4, and then subcloned into Tg1 in artificially

added XhoI and XmaI sites (Tg6). Additionally, three fragments

encompassed in the 210.6/20.56 zebrafish region included in

Tg6 were PCR amplified with Pfx DNA polymerase (Invitrogen),

subcloned into pZErO-2 and finally subcloned with XhoI

upstream of the pomca promoter in Tg1 to generate Tg7

(23/20.6), Tg8 (26.9/24) and Tg9 (210.6/26.9). Further dis-

section of the 3.6 kb Tg9 was performed by restriction

digestion using either MluI and EcoRV (eliminating a 1273 bp

fragment), followed by fill-in reaction and blunt ligation, to

analyse the 50 region of 2327 bp (Tg10, 210.6/28.2), or diges-

ted with ApaI and EcoRV (eliminating a 2327 bp fragment),

followed by fill-in reaction and blunt ligation to analyse the 30

1273 bp fragment (Tg11, 28.2/26.9). Three sites of Tg11

(indicated in figure 4d ) were mutated from TAAT to TGGT by

PCR using overlapping megaprimers bearing the mutations.

The resulting mutated 1273 bp fragment was subcloned

into pZErO-2, sequenced and then subcloned into Tg1 using

XhoI sites present in the primers to yield Tg12. All plasmid

http://rstb.royalsocietypublishing.org/
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constructs were verified by restriction digest mapping and direct

DNA sequencing.

(c) Whole-mount mRNA in situ hybridization
Whole-mount in situ hybridization was performed essentially as

described by Thisse et al. [62] with the following modifications:

larvae were grown in a buffer containing 0.2 mM 1-phenyl-

2-thiourea from 24 h post-fertilization onwards to remove

pigmentation. After fixation in 4% paraformaldehyde, 5 days-post

fertilization (dpf) larvae were permeabilized in proteinase K

(10 mg ml21) for 30 min. Riboprobe was synthesized with DIG

RNA labelling kit (Roche) according to manufacturer’s instructions

using a zebrafish pomca template plasmid which included a 623 bp

sequence from exon 3 cloned into pGEM-T easy (Promega). The tem-

plate plasmid was digested with ApaI and transcribed with Sp6 to

generate digoxigenin-labelled antisense riboprobe. Pre-hybridiz-

ation and hybridization were performed at 658C. After stringent

washing, incubation in blocking solution (1� PBS/Tween, 2%

sheep serum, 2 mg ml21 bovine serum albumin) was performed

for 1 h at room temperature followed by incubation with alkaline

phosphatase-coupled anti-digoxigenin antibody (Roche) by shaking

at 1 : 2000 for 2 h at room temperature. The reaction was developed

with NBT/BCIP (Roche) in the dark. Larvae were cleared in 70%

glycerol and mounted for photography on an Olympus BX41

fluorescent microscope coupled to an Olympus DP71 digital camera.

(d) Immunohistochemistry on cryosections
Five dpf larvae or adult zebrafish brains were fixed for 2 h in 4%

paraformaldehyde in PBS at 48C. They were rinsed three times in

PBS, cryoprotected in 10% sucrose in PBS, immersed in 10% gela-

tin/10% sucrose/PBS, fast frozen in isopentane and stored at

2808C until use. Cryosections (16 mm) were incubated overnight

at 48C with rabbit polyclonal anti-human ACTH–IC-1 (1 : 700;

National Hormone and Pituitary Program, National Institutes of

Health) and mouse monoclonal anti-EGFP (1 : 700; MAB3580,

Millipore) in KPBS (0.9% NaCl, 16 mM K2HPO4, 3.6 mM

KH2PO4)/0.3% Triton X-100, 2% normal goat serum. Following

several washes with KPBS, primary antibodies were detected

using Alexa-555 anti-rabbit immunoglobulins and Alexa-488

anti-mouse immunoglobulins conjugated secondary antibodies

(Invitrogen), diluted 1 : 1000 in KPBS/0.3% Triton X-100. Images

were taken either with an Olympus BX41 fluorescent microscope

or, for confocal images, with a Nikon Eclipse E800.

(e) Bioinformatic analysis
Comparative analysis of mouse nPE2 and zebrafish 1.2 zfnPE

sequences to detect TFBSs was performed using the matrix-

based program MATINSPECTOR (www.genomatix.de), which uses

a large and updated library of TFBS weight matrices [63]. Mul-

tiple sequences were compared using the PIPMAKER program

(http://bio.cse.psu.edu/pipmaker).
3. Results: functional conservation of neuronal
Pomc enhancers in mammals and zebrafish

(a) Mammalian neuronal enhancers drive reporter gene
expression to zebrafish POMC hypothalamic neurons

The mammalian Pomc gene is expressed in the pituitary and

the arcuate nucleus of the ventral hypothalamus [60]. In the

zebrafish and other teleosts, apart from the pituitary, the

pomca gene is expressed in the nucleus lateralis tuberis (NLT)

[51,64], considered a homologous structure to the mammalian

arcuate nucleus [65]. Hence, expression of Pomc in the ventral
hypothalamus is a primitive feature of the common ancestor of

ray-finned fishes and tetrapods. However, enhancers nPE1 and

nPE2, which control hypothalamic Pomc expression in the mam-

malian brain, are mammalian novelties, as they resulted from

the exaptation of TEs at the base of the mammalian radiation

[61]. Consistent with this, we used the PIPMAKER program [66]

to perform multiple local alignments between the mouse and

human Pomc loci and the region encompassing approximately

40 kb around the pomca locus in zebrafish chromosome 17

(contig AL590149.9, Zv9), but no non-coding regions could be

aligned between these species (data not shown).

To check whether the mammalian enhancers, in spite of

their relatively recent evolutionary origin, could be recognized

by the transcriptional machinery of zebrafish hypothalamic

POMC neurons, we created transgenic zebrafish carrying the

mouse distal neuronal Pomc enhancer module using Tol2-

transposon-based constructs. A transgene series was built

using an approximately 1 kb region of the zebrafish pomca
gene that encompasses 451 bp of the upstream promoter,

exon 1 (85 bp), intron 1 and 22 bp of exon 2 that were fused

to EGFP coding sequences (figure 2b). This region has been

shown by Liu et al. [52] to drive robust EGFP expression to

the distal and intermediate lobes of transgenic zebrafish, but

not to the hypothalamus, a result that we reproduced here

(figure 2b, Tg1). Next, we inserted the mouse distal neuronal

Pomc enhancer module corresponding to 213 and 29 kb

from the mouse Pomc TSS upstream of the zebrafish promoter

construct (figure 2b, Tg2). Interestingly, constructs carrying

this module drove EGFP expression to the zebrafish embryo-

nic hypothalamus at 5 dpf (figure 2b, Tg2). In whole-mount

embryos, positive hypothalamic neurons are seen as a small

group of cells located anteriorly to the pituitary. This latter

tissue also expresses EGFP, because the construct carries the

zebrafish proximal promoter (figure 2b, Tg2). In total, of 717

embryos displaying EGFP expression in the pituitary, 179

(25%) also showed EGFP cells in the ventromedial hypo-

thalamic area, with very little, if any, ectopic expression in

the brain, retina or other body areas. To confirm the identity

of EGFP-expressing neurons, we checked for co-expression

of EGFP and POMC by immunofluorescence in sections of

5 dpf-transgenic embryos using an antibody against the

human adrenocorticotropic hormone (ACTH) peptide,

which is very similar to POMCa-derived zebrafish ACTH

[51,67] and efficiently labels zebrafish POMC neurons.

Approximately 30 ACTH-positive neurons arranged as two

arcs around the midline are detected per embryo and, of

these, approximately 50% are also EGFP-positive. We have

also detected transgenic expression in a few neurons located

within the array of ACTH-immunoreactive (ir) neurons but

that were not labelled with the ACTH antibody. It remains

to be determined whether these neurons show ectopic trans-

genic expression or the human ACTH antibody fails to label

the entire population of zebrafish POMCa-expressing neurons.

To check whether the 4-kb mouse regulatory region is also

functional in the adult fish brain, we grew and mated Tg2 F0

transgenic zebrafish and created F1 transgenic lines. From

one of these lines, we collected many 5 dpf F2 embryos and

observed that all of them expressed EGFP in the pituitary

and in approximately 50% of ACTH-ir neurons of the hypo-

thalamus (figure 3a). EGFP-positive neurons were also

observed in the NLT of the ventral hypothalamus of three-

month-old F2 transgenic adults in which, again, approximately

50% of human ACTH-ir neurons coexpressed EGFP (figure 3b).
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Together, these results show that a mammalian Pomc regulat-

ory region drives EGFP expression with similar efficiency in

embryos and adult zebrafish POMC neurons.

The results above show that a distal neuronal regulatory

region of mouse Pomc can be recognized by the zebrafish

transcriptional machinery despite the fact that these two ver-

tebrate lineages split 450 Ma. This 4 kb distal module carries

the enhancer analogues nPE1 and nPE2, and previous studies

showed that either nPE1 or nPE2 is able to drive reporter

gene expression to POMC hypothalamic neurons in trans-

genic mice [60]. Thus, we asked whether expression in

transgenic zebrafish depended on one or both mammalian
enhancers. To this end, we tested deletion constructs in

which nPE1 (DnPE1), nPE2 (DnPE2) or both enhancers simul-

taneously (DnPE1/DnPE2) were removed (figure 2b; Tg3–5).

As previously found in transgenic mice [60], DnPE1 and

DnPE2 constructs still drove EGFP expression to the zebrafish

hypothalamus (figure 2b, Tg3 and Tg4), with 51/250 and

55/260 5 dpf embryos showing hypothalamic EGFP

expression relative to transgenic signal in the pituitary,

respectively. Immunofluorescence experiments showed simi-

lar levels of ACTH/EGFP colocalization for Tg3 and Tg4 to

that of Tg2 (figure 2b). By contrast, simultaneous deletion

of both enhancers led to a complete loss of EGFP expression
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in the zebrafish hypothalamus (figure 2b; Tg5). Thus, we con-

clude that the ability of the 4 kb mouse regulatory region

to drive reporter gene expression to the zebrafish hypothala-

mus depends on the presence of either nPE1 or nPE2, which

seem here to play overlapping regulatory roles, as observed

previously in transgenic mice [47,60].

(b) Identification and characterization of a neuronal
regulatory region of zebrafish pomca

Comparative studies of Pomc transcriptional regulation

between mammals and fishes would greatly profit from the

characterization of the zebrafish cis-elements that control

hypothalamic pomca expression. Bioinformatic analyses

failed to detect sequences similar to nPE1 or nPE2 in the zeb-

rafish genome. Likewise, phylogenetic footprinting studies

performed between the pomca zebrafish locus and sequences

available from other teleost fish genomes failed to detect con-

served non-coding regions. Therefore, in order to search for a

putative zebrafish neuronal Pomc enhancer (zfnPE), we

returned to a classical deletional analysis in transgenic zebra-

fish, similar to that we did 15 years ago to detect the mouse

distal neuronal module [59] but, in this case, aided by an
assembled zebrafish BAC genomic library. Using a combi-

nation of DNA primers and the BAC clone RP71–36D5, we

assembled a transgene similar to Tg1 but with approximately

11 kb of 50 flanking sequences of zebrafish DNA (figure 4b,

Tg6). Tg6 led to the expression of EGFP in the ventromedial

hypothalamus in 67 (17%) out of 394 transgenic embryos

(5 dpf) showing EGFP-positive expression in the pituitary,

and immunofluorescence analyses showed that hypothalamic

EGFP was expressed in POMC neurons (figure 4c), indicating

that a zebrafish neuronal regulatory module resides within

the 11 kb genomic region. To narrow down this element

further, we created a series of three deletions of the 11 kb

upstream region (figure 4b; Tg7–Tg9) and observed that

only the most distal, 3.6 kb segment, located between 210.6

and 26.9 kb of pomca exon 1, could drive EGFP expression

to the hypothalamus (figure 4c; Tg9), with a hypothala-

mus/pituitary proportion of 57/398 (14%). By contrast,

constructs Tg7 and Tg8, covering the region between 26.9

to 20.6 kb from pomca exon 1, were expressed only in the

pituitary. We further divided the 3.6 kb region into a 5’

(210.6 to 28.2 kb; Tg10) and a 3’ portion (28.2 to 26.9 kb;

Tg11) and produced transgenic zebrafish. While the 3’ part

was as efficient as the original Tg6, showing a 77/391
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hypothalamic/pituitary ratio (20%), the 5’ part drove EGFP

expression very inefficiently with only a 5/233 hypothala-

mic/pituitary ratio (2%), suggesting that a zfnPE resides in

the 1.2 kb region present in Tg11 (figure 4c).

Because the zebrafish enhancer zfnPE and the mamma-

lian enhancers nPE1 and nPE2 drive EGFP expression to

the same array of hypothalamic POMC neurons in transgenic

zebrafish, it is tempting to speculate that they share common

DNA motifs recognized by the unique set of transcription fac-

tors present in these neurons. To begin pinpointing these

regulatory elements, we made an exhaustive BLAST search

of the 1.2 kb zebrafish region (chr17 : 33 424 669–33 425 868;

Zv9/danRer7) to find DNA elements also present in mam-

malian enhancers nPE1 (586 bp) and nPE2 (180 bp). We

found 10 short motifs (between 16 and 18 bp) of more than

85% identity between mouse nPE2 and the 1.2 kb zebrafish

sequence containing zfnPE. We selected two of these motifs

because they are embedded within a 50 bp fragment that

was shown to be essential for nPE2 enhancer function in

transgenic mice [46]. These two motifs contain TAAT

sequences normally found in homeodomain TFBSs, that we

substituted for mutant variants carrying TGGT (figure 4c,

Tg12 and figure 4d ). Strikingly, transgenic zebrafish embryos

bearing Tg12 failed to express EGFP in the brain while retain-

ing the ability to express the reporter gene in the pituitary

(figure 4c), indicating that these two elements play a critical

role in pomca neuronal expression within the 1.2 kb region.

Because transcription factors controlling hypothalamic Pomc
expression remain unknown, we searched for common

TFBSs present in the mutated regions of zfnPE and in mam-

malian nPE2. We found 10 candidate transcription factor

families (figure 4d ) that could help identify transcription fac-

tors that drive neuronal-specific Pomc expression. A complete

list of common TFBSs shared by mammalian nPE1 and nPE2

as well as by zebrafish zfnPE and a tetraodon upstream

element (see below) is shown in the electronic supplementary

material, figure S1.

The mutated TAAT sites present in zfnPE are included in a

region annotated in the UCSC Genome Browser (www.

genome.ucsc.edu) as a hAT Charlie DNA transposon (DNA-

8–14_DR), a family of DNA transposons that is highly abun-

dant in the D. rerio genome [68]. One peculiarity found in

the recently published zebrafish genome is the unusually

large proportion of sequences derived from DNA transposons

relative to those originated from retrotransposons, in clear con-

trast to what has been found in most other vertebrate genomes,

including the other four available Acanthopterygii fishes [68].

In this regard, our finding that the pomca locus of medaka,

stickleback, tetraodon and fugu is devoid of sequences derived

from a hAT Charlie strongly suggests that insertion of this

DNA transposon upstream of zebrafish pomca is a relatively

recent event. Future genome projects will help us to determine

whether exaptation of zfnPE from a hAT Charlie DNA trans-

poson occurred solely in zebrafish, in Cypriniformes or in

the lineage leading to Ostariophysi.

In addition, the 1.2 kb zebrafish enhancer module maps

within a predicted transcriptional unit of a gene that encodes

for a protein similar to angiopoietin-like (angpl). This gene

has a conserved position in relation to Pomc that dates back

to the bony fish ancestor of teleosts and tetrapods, although

it is not found in placental mammals [51]. The 1.2 kb

module particularly contains the putative first exon and

part of the first intron of the gene, and further studies will
be necessary to establish whether zfnPE includes an active

or extinct coding exon as has been reported for other ver-

tebrate enhancers [69,70]. Although a paralogue of putative

angpl1 exon 1 is also found upstream of pomcb, the fragment

carrying the two mutated TAAT sites of zfnPE seems to be

absent from the angpl1/pomcb locus. Moreover, we failed to

detect hAT Charlie derived-sequences in the pomcb locus,

suggesting that insertion of this DNA transposon upstream

of pomca occurred after the whole-genome duplication that

took place in teleosts around 320 Ma [51].

(c) Identification and characterization of a neuronal
regulatory region of tetraodon pomca

Similar to placental mammals, some members of the teleost

superorder Acantomorpha—including tetraodon, fugu and

medaka—also lack the angpl locus in the 50 region of pomca,

suggesting that these fishes might use a neuronal enhancer

different from zfnPE to express pomca in the ventromedial

hypothalamus. In fact, comparisons of the zebrafish pomca
locus with those of other vertebrates did not yield any con-

served non-coding element. However, when the 50 flanking

region of pomca from fugu was used in a phylogenetic foot-

printing analysis together with orthologous genomic

sequences taken from other teleosts, we detected an 80 bp

region that is conserved in representative species of the super-

order Acanthomorpha, including tetraodon (T. nigroviridis),

three-spined stickleback (Gasterosteus aculeatus) and medaka

(Oryzias latipes) but not in zebrafish pomca or pomcb, a teleost

that belongs to the superorder Ostariophysi (figure 5a). To

check whether this conserved element might be an enhancer,

we cloned a 426 bp fragment of the tetraodon pomca locus

upstream of the zebrafish pomca promoter (figure 5b; Tg13),

and the construct was tested in transgenic zebrafish. We

observed that Tg13 is expressed in the ventromedial

hypothalamus of zebrafish (25 embryos positive in the hypo-

thalamus among 202 positive in the pituitary), and that a few

cells colocalize with ACTH (figure 5c). This result indicates

that the 426 bp sequence located in the 50 flanking region of tet-

raodon pomca harbours a hypothalamic pomca enhancer. The

presence of an 80 bp conserved element in the four Acantho-

morpha species used in this study suggests that this enhancer

could be active in all members of this superorder. In the

same hypothalamic area where we observed coexpression of

EGFP and POMC, we have also observed other EGFP-positive

neurons that were not colabelled with the anti-human ACTH

antibody. These hypothalamic neurons may represent another

neuronal population to be identified.
4. Discussion
(a) Conservation of function by non-homologous

enhancers in vertebrate evolution
Here, we show that mouse Pomc enhancers nPE1 and nPE2

can drive expression to POMC neurons of the zebrafish hypo-

thalamus, even though DNA sequences similar to these

elements cannot be found in the genomes of any non-

mammalian vertebrate. Indeed, nPE2 is present in all mam-

malian groups, whereas nPE1 can be found only in

placental mammals ([46,47] and figure 6). Evidence that

nPE enhancers are mammalian novelties comes from detailed

http://www.genome.ucsc.edu
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genomic comparisons showing that both nPEs are derived

from TE sequences: nPE2 is most similar to TEs of the

CORE-SINE subfamily [46], which are very abundant in

mammalian genomes [71,72], whereas nPE1 is most similar

to a long terminal-repeat retrotransposon of the MaLR sub-

family [47], which is also restricted to mammals [73]. The

limited phylogenetic distribution of nPEs, and the fact that

they are more similar to TEs of mammals, strongly indicates

that these enhancers are mammalian novelties (figure 6). As a

consequence, nPEs are predicted to be analogous, but not

homologous (orthologous), to the neuronal Pomc regulatory

regions of other vertebrate groups.

Other works have indicated that mammalian enhancers

can drive expression to zebrafish embryos in the absence of

overt sequence conservation [39,43,74,75], but in these studies

it was not clear whether the mammalian enhancers had origi-

nated de novo in the mammalian lineage or if they were

divergent orthologues to those of zebrafish. As indicated by

the work of Taher et al. [45], which used NCEs of the
amphibian Xenopus as an intermediate species to find

divergent mammalian and zebrafish NCEs, orthologous ver-

tebrate enhancers can become so dissimilar by extensive

mutations in TFBSs and intervening sequences that computer

algorithms may fail to identify them. Thus, the defined

timing of origin of nPEs makes them, to the best of our

knowledge, the first bona fide non-homologous vertebrate

enhancers that show conserved function in mammals and tel-

eosts. Conclusive de novo generation of vertebrate enhancers

has also been shown in the teleost fish medaka, in which

three enhancers that are only active in medaka are derived

from degenerating exonic sequences, but in these cases the

enhancers were shown to be active only in medaka itself [70].

Even mammalian enhancers that have zebrafish homol-

ogues can fail to drive specific, eutopic expression in

transgenic fish. In a comparative enhancer study, Ritter et al.
[40] observed that of 13 orthologous human and zebrafish

enhancers tested, only four (31%) yielded similar expression

patterns in transgenic zebrafish embryos. A larger study
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testing 47 human enhancers with zebrafish orthologues [44]

found that 36% displayed radically different expression pat-

terns in mouse and zebrafish transgenesis. Given this

context, it is particularly striking that nPEs, which are not

homologous to enhancers in zebrafish, nevertheless gave

specific expression in zebrafish hypothalamic POMC neurons.

NCEs conserved between mammals and teleosts are

typically located close to genes encoding transcription fac-

tors and receptors involved in embryonic development,

probably because these genes require tight temporal and

spatial regulation [19,20]. Although it is expressed early

during organogenesis, hypothalamic POMC has no known

developmental function. Instead, it is necessary for fitness

in adulthood, but even then, hypothalamic Pomc mRNA

levels can vary widely without gross physiological effects

[76]. Thus, non-developmental genes such as Pomc may be

particularly prone to enhancer turnover.

The fact that the mammalian enhancers direct reporter

gene expression to zebrafish POMC neurons indicates that

the specific set of transcription factors that defines a Pomc-
expressing hypothalamic neuron is present in both mamma-

lian and teleost POMC neurons. Thus, the cis-acting motifs

controlling Pomc neuronal expression in the zebrafish

should be very similar to those present in the mouse enhan-

cers, meaning that the cis/trans code of neuronal Pomc
expression has been conserved since the times of the bony

fish ancestor. The fact that nPEs are mammalian novelties

indicates that their cis-elements had to be created de novo

before the new enhancers eventually replaced the ancestral

Pomc regulatory elements during early mammalian evolution

(figure 1). We observed, however, that nPEs reproducibly

drove EGFP expression to only around 50% of zebrafish

POMC neurons, and there was EGFP expression in some

non-POMC-ir neurons within the zebrafish hypothalamus.

This apparent lack of perfect targeting precision, found
even in transgenic studies with CNEs [40,44], is probably

due to species-specific differences in Pomc regulation and is

hardly surprising considering the evolutionary distance

between mammals and teleosts.

The mammalian arcuate nucleus and the teleost NLT are

generally considered to be homologous anatomical structures

since they are both located in the ventromedial hypothalamus

and express a highly similar gene set, such as agouti-related

peptide (agrp) [64,77,78], somatostatin (sst) [79], growth hor-

mone releasing hormone (ghrh) [80], the leptin receptor

(lepr) [81] and Pomc [51,64]. The NLT and the arcuate also

show conserved function. In mammals, POMC-derived mel-

anocortin peptides produced by arcuate neurons play a

crucial role in the control of energy balance, and are antago-

nized by Agouti-related protein (AgRP), a peptide produced

by a separate population of arcuate neurons [50]. In fish, there

is abundant evidence that POMC melanocortin peptides and

AgRP also control energy balance [77,78,82–85]. Not every-

thing is conserved, though: while the mouse POMC

neurons coexpress the neuropeptide CART, and AgRP is

coexpressed with NPY, in zebrafish neither CART nor NPY

is expressed in the NLT [86,87].

Currently, little is known about transcription factors reg-

ulating neuronal Pomc expression in any animal model. Our

results suggest that the transcription factor repertoires of

POMC neurons in the arcuate nucleus and the NLT are simi-

lar and define, at least to some extent, a unique regulatory

code, consistent with the idea that the neurosecretory hypo-

thalamus is an ancient metazoan structure [88]. As nPEs are

functional both during zebrafish embryonic development

and adulthood, those common transcription factors are pre-

sent throughout the life of zebrafish POMC neurons. Given

the relative ease and low cost of genetic manipulation of zeb-

rafish compared with mice, our neuronal Pomc–EGFP

transgenic zebrafish line could provide a new tool to search
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for transcription factors controlling hypothalamic Pomc
expression, similar to the use of a zebrafish pituitary Pomc–

EGFP line to screen for mutations altering pituitary develop-

ment [89]. Genes affecting nPE1 and nPE2 function in

transgenic zebrafish are likely to be the same as those that

control the enhancers in mammals.

(b) Zebrafish pomca neuronal regulatory region
Pomc is not found in basal chordates but exists in all vertebrate

groups, including jawless fish (agnathans) and cartilaginous

fish [90]. In the agnathan lamprey, Pomc paralogues Poc and

Pom are expressed in the pituitary, but not in the brain [91],

whereas cartilaginous fish do express Pomc in the hypothala-

mus [92]. Thus, it seems that Pomc was originally a pituitary

gene that became transcriptionally active in the hypothalamus

in an ancestor to jawed fish (figure 6). In teleosts, amphibians

and mammals, the Pomc proximal promoter is responsible for

expression in the pituitary [52,54,56,58], but mammalian nPEs

are the only known neuronal regulatory regions of the gene.

The identification of Pomc neuronal cis-elements in other

vertebrates might help understanding the various paths that

enhancers can take during evolution. In a first step in this

direction, we sought to identify the regulatory elements that

control zebrafish Pomc in the hypothalamus. Comparative

genomics was of no use in this case, because non-coding con-

served regions could not be found around the zebrafish pomca
gene, even when comparing it with the pomca loci of other tel-

eosts. The reason for this is likely to be the distant

evolutionary relationship between the superorder Ostario-

physi, to which zebrafish belongs, and the superorder

Acanthomorpha, to which other sequenced teleosts such as

fugu, tetraodon, medaka and three-spined stickleback

belong [93]. The efficient use of fish comparative genomics

to find regulatory regions in zebrafish would greatly benefit

from the sequencing of the genomes of closer relatives such

as the channel catfish (Ictalurus punctatus), the common

carp (Cyprinus carpio) or the goldfish (Carassius auratus).

From an initial 10 kb region upstream of the pomca promo-

ter, we narrowed the pomca neuronal regulatory region down

to 1.2 kb. This distal fragment drove efficient EGFP expression

to ACTH-ir neurons of the zebrafish NLT. Thus, we consider

that this region harbours a bona fide neuronal Pomc enhancer
that we named zfnPE. Interestingly, the 1.2 kb region is

embedded within the locus immediately 5’ of pomca, encom-

passing exon 1 and part of intron 1 of a gene similar to

angpl. We have not yet determined whether the neuronal regu-

latory region is located within the intron or the exon, but

mutagenesis of three TAAT sites within the intron abolished

EGFP expression in the hypothalamus. These critical sites are

embedded within DNA sequences derived from a hAT Charlie

DNA transposon, a family of TEs present in high copy number

in the zebrafish genome. Further work is necessary to deter-

mine the birth date and phylogeny of this exaptation event

(figure 6). Establishing the precise cis-elements controlling zeb-

rafish pomca expression might help pinpoint the elements

regulating mammalian Pomc, because zfnPE, nPE1 and nPE2

are functional analogues.
5. Concluding remarks
The de novo origin of enhancers is presumably an important

feature in the evolution of gene regulation. The appearance of

Pomc nPE enhancers early in the mammalian lineage offers a

clear example of how new enhancers can arise and eventually

replace ancestral ones while conserving the underlying

cis- and trans-regulatory codes (figure 6). This was possibly

facilitated by the fact that Pomc is not a gene involved in

development, making its regulation easier to be ‘tinkered’

with by evolution. Zebrafish is an ideal model for such

studies, because its phylogenetic distance to mammals

coupled with the ease to perform transgenesis offers many

possibilities to discover what is ancestral and what is derived

in mammalian regulatory evolution. At the same time, the

search for the regulatory regions in other species, as we

did here with zebrafish and tetraodon pomca, will illuminate

the evolutionary paths that regulatory regions can take in

different lineages during evolution.
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