
1 

1 
2 
3 
4 

Nature Computational Science 1, 830–842, 2021 

5 
6 
7 
8 
9 

10 

How connectivity rules and synaptic properties shape the efficacy of pattern 11 
separation in the entorhinal cortex–dentate gyrus–CA3 network  12 

13 

14 

15 

S. Jose Guzman1,2, Alois Schlögl1, Claudia Espinoza1,3, Xiaomin Zhang1,4, Benjamin A.16 
Suter1, and Peter Jonas1,* 17 

18 

19 

20 

1 IST Austria (Institute of Science and Technology Austria), Am Campus 1, A-3400 21 
Klosterneuburg, Austria 22 

2 Present address: Institute of Molecular Biotechnology (IMBA), Dr. Bohr-Gasse 3, A-23 
1030 Wien, Austria 24 

3 Present address: Medical University of Vienna (MUW) Austria, Division of Cognitive 25 
Neurobiology, Spitalgasse 4, A-1090 Wien, Austria 26 

4 Present address: Brain Research Institute, University of Zürich, Winterthurerstrasse 27 
190, CH-8057 Zürich, Switzerland 28 

29 

30 

31 

* Corresponding author. E-mail: peter.jonas@ist.ac.at32 

33 



2 

 

Abstract  35 

Pattern separation is a fundamental brain computation that converts small 36 

differences in input patterns into large differences in output patterns. Several 37 

synaptic mechanisms of pattern separation were proposed, including code 38 

expansion, inhibition, and plasticity. However, which of these mechanisms play a 39 

role in the entorhinal cortex (EC)–dentate gyrus (DG)–CA3 circuit, a classical 40 

pattern separation circuit, remains unclear. Here, we show that a biologically 41 

realistic, full-scale EC–DG–CA3 circuit model, including granule cells (GCs) and 42 

parvalbumin-positive inhibitory interneurons (PV+-INs) in the DG, is an efficient 43 

pattern separator. Both external gamma-modulated inhibition and internal lateral 44 

inhibition mediated by PV+-INs substantially contributed to pattern separation. 45 

Both local connectivity and fast signaling at GC–PV+-IN synapses were important 46 

for maximal effectiveness. Similarly, mossy fiber synapses with conditional 47 

detonator properties contributed to pattern separation. In contrast, perforant path 48 

synapses with Hebbian synaptic plasticity and direct EC–CA3 connection shifted 49 

the network towards pattern completion. Our results demonstrate that the 50 

specific properties of cells and synapses optimize higher-order computations in 51 

biological networks, and might be useful to improve the deep learning 52 

capabilities of technical networks.  53 

 54 
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Introduction 61 

A fundamental question in neuroscience is how higher-order computations are 62 

implemented at the level of synapses, neurons, and neuronal networks. A key 63 

computation in the brain is pattern separation, a process that converts slightly different 64 

synaptic input patterns into substantially different action potential (AP) output patterns1–65 
4. Although pattern separation is a universal network computation conserved across 66 

circuits and species4, it is thought to play a particularly important role in the dentate 67 

gyrus (DG), the input region of the hippocampus in mammals5,6. A prevalent model of 68 

hippocampal memory suggests that pattern separation in the DG is essential for reliable 69 

storage and recall of memories in the downstream CA3 region2,7,8. Thus, analyzing the 70 

mechanisms of pattern separation is crucial for the understanding of both short-term 71 

processing and long-term storage of information.  72 

Early models of pattern separation, inspired by the architecture of the 73 

cerebellum4,9,10, suggested that divergent feedforward excitation and code expansion 74 

play a role in pattern separation9. According to the Marr-Albus theory, projection from a 75 

small to a large population of neurons expands the dimensionality of coding space, 76 

increasing the separability of patterns by downstream biological decoders10. The Marr-77 

Albus model is consistent with structural and functional connectivity rules of the 78 

cerebellum, because a single mossy fiber axon divergently projects onto ~600 granule 79 

cells (GCs)4. Whether code expansion also explains pattern separation in the rodent 80 

hippocampus, where ~50,000 entorhinal cortex (EC) neurons diverge to ~500,000 GCs, 81 

which re-converge onto ~200,000 CA3 pyramidal neurons11–13, is an open question.  82 

More recent models of pattern separation implied an important role of lateral 83 

inhibition14. These models were supported by the synaptic organization of the olfactory 84 

system in insects15–17. In the mushroom body of the fly, a single inhibitory cell, the 85 

anterior paired lateral (APL) interneuron, plays a role in pattern separation. Activation of 86 

a single Kenyon cell activates the APL interneuron, which in turn provides powerful 87 

inhibition to all Kenyon cells16. Thus, global lateral inhibition mediated by the APL 88 

interneuron could implement a “winner-takes-all” mechanism, thereby establishing a 89 

powerful decorrelation algorithm18–20. Whether inhibition contributes to pattern 90 
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separation in the DG is less clear. Although lateral inhibition is uniquely abundant in the 91 

DG, multiple GCs need to fire APs to activate parvalbumin-positive inhibitory 92 

interneurons (PV+-INs) and to trigger lateral inhibition21,22. Furthermore, lateral inhibition 93 

is not global, but follows distance-dependent connectivity rules22. Thus, lateral inhibition 94 

cannot implement a winner-takes-all mechanism, although softer versions with multiple 95 

winners remain possible18,19,23. 96 

 The DG is connected to the downstream CA3 region via powerful mossy fiber 97 

synapses2,7. Whereas the DG seems to be specialized on pattern separation, the CA3 98 

region is traditionally associated with pattern completion8,24. How the pattern separation 99 

mechanism in the DG is integrated with the pattern completion function of the CA3 100 

region remains enigmatic. Furthermore, how the unique properties of hippocampal 101 

mossy fiber synapses, such as conditional and plasticity-dependent detonation25, 102 

contribute to pattern separation is unclear. Detonation properties of mossy fiber 103 

synapses may facilitate the transfer of information from the DG to CA3 region, which 104 

might contribute to pattern separation23. Furthermore, sparse mossy fiber connectivity 105 

will reduce correlations, which may enhance pattern separation26. Whether these rules 106 

hold in biologically realistic network models remains to be determined.  107 

The DG receives its main input from the EC via the perforant path (PP)27. 108 

Hebbian plasticity at PP synapses could implement a competitive learning 109 

mechanism2,28,29, which might contribute to pattern separation. Consistent with this idea, 110 

genetic deletion of N-methyl-D-aspartate (NMDA)-type glutamate receptors in GCs 111 

reduces behavioral pattern separation30. However, plasticity at PP EC–GC synapses 112 

has also been suggested to contribute to pattern completion31, similar to its well-113 

established function in the CA3 circuit8. As an additional complication, the PP not only 114 

projects to GCs in the DG, but also directly innervates the CA3 region32. In a simplified 115 

model, the relative strength of the mossy fiber and PP input onto CA3 pyramidal 116 

neurons determines the balance between decorrelated and original input23. However, 117 

whether this is also the case in a biologically realistic model remains unclear.  118 

To address the mechanisms of pattern separation in the EC–DG–CA3 network, 119 

we developed a model based on experimentally determined cellular and synaptic 120 
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properties. Implementation in real size allowed us to analyze sparse coding regimes33 121 

and to insert measured connectivity rules22.  122 

 123 

 124 

Results  125 

Pattern separation in a biologically realistic PN–IN network 126 

Pattern separation is a fundamental brain computation that converts small differences in 127 

input patterns into large differences in output patterns. The basic principle is illustrated 128 

in Extended Data Fig. 1. When two highly overlapping patterns (A and B) are applied at 129 

the input level of a neuronal population, two less overlapping patterns (A’ and B’) are 130 

generated at the output level (Extended Data Fig. 1a). Quantitatively, for any given pair 131 

of patterns, the correlation at the output (Rout = r(A’, B’)) is smaller than that at the input 132 

(Rin = r(A, B)) (Extended Data Fig. 1b). Thus, pattern separation may be graphically 133 

depicted in a plot of Rout against Rin for all pairs of patterns23. For an efficient pattern 134 

separation mechanism, the data points would be expected to be located below the 135 

identity line (Extended Data Fig. 1c). In contrast, for a pattern completion mechanism8, 136 

the data points will be above the identity line (Extended Data Fig. 1d).  137 

 To quantify the properties of the pattern separation circuit, we used three 138 

different measures (Methods). First, to describe the overall pattern separation 139 

performance, we defined an integral-based measure, ψ, computed as the area between 140 

the Rout–Rin data and the identity line, normalized by the maximal area (Extended Data 141 

Fig. 1e). Second, to selectively capture pattern separation performance within a region 142 

in which input patterns were highly similar, we defined a slope-based measure, γ, 143 

computed as the slope of the Rout–Rin curve for Rin
  1 (Extended Data Fig. 1e, inset). 144 

Finally, to characterize the ability of the network to preserve rank similarity34–36, we 145 

computed a rank-based correlation coefficient ρ (Extended Data Fig. 1f). These three 146 

parameters describe complementary aspects of pattern separation. For example, 147 
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randomization is well known to decorrelate patterns (increasing the values of ψ and γ), 148 

but fails to maintain similarity relations (decreasing the value of ρ).  149 

 To explore whether a biologically realistic network is capable of pattern 150 

separation, we developed a model of the EC–DG–CA3 network based on empirical 151 

experimental data (Fig. 1; Supplementary Fig. 1; Supplementary Table 1; 152 

Supplementary Software). The network was created in full scale12,13. Both PN–IN 153 

connectivity in the DG and GC–CA3 connectivity was constrained by experimental 154 

data21,22,37. Similarly, GC–CA3 connectivity via mossy fibers was experimentally 155 

constrained11,25,38–40. As gamma oscillations show maximal power in the DG41,42, a 156 

corresponding phasic inhibitory conductance was simulated in GCs at the onset of each 157 

simulation epoch19. The model allowed us to simulate the activity in GCs, PV+-INs, and 158 

CA3 pyramidal neurons in a biologically realistic network and to examine how 159 

biophysical properties of synapses and functional connectivity rules affect pattern 160 

separation (Fig. 1b).  161 

 We then analyzed pattern separation at multiple levels of the network. For the 162 

biologically realistic standard parameters (Supplementary Table 1), the integral-based 163 

pattern separation measure ψ was 0.56 for the EC–DG component (Fig. 1c), 0.38 for 164 

the DG–CA3 component (Fig. 1d), and 0.80 for the entire EC–CA3 network (Fig. 1e). 165 

Thus, pattern separation was primarily generated in the EC–DG layer, but further 166 

amplified in the DG–CA3 layer. Values of the slope-based pattern separation measure 167 

γ  closely paralleled values of ψ (EC–DG: γ = 11.1; DG–CA3: γ = 3.0; EC–CA3: γ = 23.7). 168 

Thus, the model was able to convert small differences at the input level into large 169 

differences at the output level. Finally, the rank-based pattern separation measure ρ 170 

was high in the individual layers, as well as across the entire network (EC–DG: ρ = 0.98; 171 

DG–CA3: ρ = 0.96, and EC–CA3: ρ = 0.94; Fig. 2f–h). Thus, the biologically realistic 172 

full-scale network model accurately maintained similarity relations. These conclusions 173 

were unaffected by the details of model implementation (Supplementary Figs. 2–8; 174 

Methods).  175 

 176 
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Pattern separation by gamma rhythm and lateral inhibition  177 

The finding that pattern separation accumulated in a multi-layer deep network-like 178 

architecture was surprising, given that the divergence–convergence properties of the 179 

circuit seemed inconsistent with a code expansion model9,10. To explore alternative 180 

mechanisms of pattern separation, we examined the contribution of inhibition (Fig. 2)4,9. 181 

It has been suggested that both external gamma-modulated inhibition and internal 182 

lateral inhibition contribute to pattern separation14,18,19,43,44. We therefore explored 183 

gamma-modulated inhibition and lateral inhibition, in isolation as well as in combination, 184 

for a suprathreshold excitatory drive to GCs (Iµ = 1.8 relative to threshold). Deletion of 185 

gamma-modulated external inhibition from the network model (Jgamma = 0) reduced ψ 186 

and γ over a wide range of excitatory synaptic drive (Fig. 2b, top right). In contrast, 187 

deletion of lateral inhibition reduced the range of excitatory drive in which both high ψ 188 

and ρ could be achieved (Fig. 2b, bottom left). Thus, gamma inhibition and lateral 189 

inhibition differentially affected pattern separation. Elimination of both forms of inhibition 190 

substantially impaired pattern separation (Fig. 2b, bottom right). Thus, the combination 191 

of gamma-modulated inhibition and lateral inhibition provides a major contribution to 192 

separation mechanism in the model.  193 

 To further analyze the complex interaction of tonic excitatory drive, gamma-194 

modulated inhibition, and lateral inhibition, we computed ψ–Iµ–Jgamma contour plots (Fig. 195 

2c, d). With intact lateral inhibition, efficient pattern separation (ψ > 0.5) was robustly 196 

observed in a wide region of the parameter space (Fig. 2c). In contrast, after deletion of 197 

lateral inhibition, efficient pattern separation was only detected within a narrow band in 198 

the Iµ–Jgamma parameter space, in which the amplitude of gamma-modulated inhibition 199 

precisely matched that of the excitatory drive (Fig. 2d). Thus, a simple thresholding 200 

mechanism combined with gamma-modulated inhibition was not sufficient to generate 201 

robust pattern separation.  202 

Finally, we explored how interfering with lateral inhibition at multiple levels affects 203 

pattern separation (Fig. 2e–g). Reducing the peak connectivity of either excitatory E–I or 204 

inhibitory I–E connections (cE–I and cI–E) markedly affected the efficacy of pattern 205 
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separation (Fig. 2e, light blue bars). Similarly, reducing the connectivity width of either 206 

excitatory E–I or inhibitory I–E connections (σE–I and σI–E) reduced the efficacy of 207 

pattern separation (Fig. 2f). Finally, reducing the strength of either excitatory E–I or 208 

inhibitory I–E connections (JE–I or JI–E) substantially decreased the efficacy of pattern 209 

separation (Fig. 2g). Thus, interfering with disynaptic inhibition at multiple levels 210 

uniformly inhibited pattern separation. Taken together, the combination of gamma 211 

oscillations and lateral inhibition plays a critical role in the pattern separation process in 212 

the DG.  213 

 214 

Moderate effects of divergent connectivity 215 

To systematically explore how divergence and convergence affect pattern separation, 216 

we first examined pattern separation in simple models, in which convergent or divergent 217 

connectivity was concatenated with a thresholding mechanism (Fig. 3a–d). In this 218 

simple model, the number of neurons and the degree of convergence and divergence 219 

could be freely varied. In our simulations, we changed the connectivity ratio from 1 : 10 220 

(divergence) to 10 : 1 (convergence). In contrast to our expectations, the degree of 221 

pattern separation, as quantified by ψ, was only slightly dependent on the connectivity 222 

ratio (Fig. 3c, d). Weak dependence on the connectivity ratio was observed over a wide 223 

range of activity values (Fig. 3d). Thus, divergent connectivity was not strictly required 224 

for pattern separation.  225 

Next, we determined how convergence and divergence affected pattern 226 

separation in the full-scale, biologically realistic network model (Fig. 3e–g). To address 227 

this aspect, we varied the number or activity level of entorhinal cells (nEC or αEC), and 228 

peak value or width of EC-GC connectivity (cEC–GC or σEC–GC)27,32,45. Increasing the 229 

number of ECs decreased ψ, whereas decreasing the number increased it (Fig. 3f, top). 230 

Similarly, increasing EC activity consistently decreased ψ (Fig. 3f, bottom). Changing 231 

EC–GC connection probability had more complex effects, with lowest values of ψ for 232 

intermediate connectivity, and highest values at both low- and high-connectivity limit 233 

(Fig. 3g, top). Finally, increasing EC–GC connection width consistently decreased ψ 234 
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(Fig. 3g, bottom). Thus, the excitatory EC–GC connectivity only moderately influenced 235 

pattern separation. These results indicate that divergent connectivity was not strictly 236 

required for pattern separation, neither in a simplified model, nor in a biologically 237 

realistic full-scale network.  238 

 239 

Requirement for local connectivity and fast PV+-IN signaling  240 

Classical models suggest that global PN–IN connectivity supported pattern separation 241 

more effectively than local connectivity9. However, our results indicate that a model 242 

based on local connectivity rules22 is a highly efficient pattern separator. To resolve this 243 

apparent contradiction, we explored the effects of local E–I and I–E connectivity in the 244 

network model (Fig. 4a–c). To address the effects of locality in isolation, we maintained 245 

the total connectivity (i.e. the area under the connection probability–distance curve) 246 

through compensatory changes in maximal connection probability. Increasing the width 247 

of connectivity for either excitatory E–I or inhibitory I–E synaptic connections reduced ψ; 248 

particularly large changes were observed when local connectivity was replaced by 249 

global random connectivity (Fig. 4b). Thus, local PN–IN connectivity supported pattern 250 

separation more effectively than global connectivity. 251 

 Next, we examined the effects of changes in the width of excitatory E–I and 252 

inhibitory I–E connectivity (Fig. 4c). As before, the total connectivity was maintained 253 

through compensatory changes in maximal connection probability. Contour plot analysis 254 

corroborated that local connectivity supported pattern separation more effectively than 255 

broad connectivity. However, the effects of changes in the width of excitatory E–I and 256 

inhibitory I–E connectivity were asymmetric. If focal E–I and I–E connectivity were 257 

equally important, ψ contour lines should have a slope of −1. However, contour lines 258 

were much steeper (Fig. 4c). Hence, local excitatory E–I connectivity (plotted on the 259 

abscissa) was more important for pattern separation than local inhibitory I–E 260 

connectivity (plotted on the ordinate). Thus, the biological connectivity scheme, in which 261 

excitatory E–I is narrower than inhibitory I–E connectivity22, is highly suitable for pattern 262 

separation.  263 
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 Why does local connectivity support pattern separation better than global 264 

connectivity? Effects of local connectivity might be a consequence of changes in 265 

average latency, which are shorter in a locally connected network than in an equivalent 266 

random network (Fig. 4d). To test this hypothesis, we first examined the effects of 267 

changes in axonal propagation velocity. As predicted, decreases in both vAP E–I and vAP 268 

I–E negatively affected pattern separation (Supplementary Fig. 9a). Next, we changed 269 

the connectivity width while maintaining the average kinetic properties of disynaptic 270 

inhibition through compensatory changes of vAP E–I and vAP I–E (Supplementary Fig. 9b). 271 

Changes in propagation velocity almost completely compensated the effects of changes 272 

in connectivity. Thus, local connectivity improved pattern separation through facilitation 273 

of rapid signaling.  274 

 If local connectivity enhanced pattern separation by increasing the average 275 

speed of lateral inhibition, other fast signaling processes in INs may also contribute21,46–276 
48. To test this hypothesis, we systematically varied the corresponding model 277 

parameters (Fig. 4e, f). Increasing the synaptic delay at both excitatory GC–PV+-IN 278 

synapses and inhibitory PV+-IN–GC synapses impaired pattern separation (Fig. 4e). 279 

Notably, the effect was stronger than that of AP propagation velocity (Supplementary 280 

Fig. 9a). Similarly, prolonging the time constants of the synaptic currents at excitatory 281 

GC–PV+-IN synapses reduced pattern separation efficacy (Fig. 4f, top). Finally, slowing 282 

the membrane time constant of the PV+-INs inhibited pattern separation (Fig. 4f, 283 

bottom). Thus, the fast signaling properties of PV+-INs contributed to the efficacy of 284 

pattern separation process.  285 

 286 

Contribution of mossy fiber synapses to pattern separation 287 

In our standard model, the mossy fiber synapse between GCs and CA3 pyramidal 288 

neurons provides a significant contribution to pattern separation (Fig. 1c–e). In the 289 

model, we realistically implemented both connectivity and synaptic strength of mossy 290 

fiber synapses. The number of mossy fiber synapses per GC was taken at 15, 291 

consistent with previous morphological data11,22,38. The strength of hippocampal mossy 292 
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fiber synapses was assumed as subthreshold (with a synaptic strength / threshold ratio 293 

= 0.34), in agreement with previous experimental data showing that mossy fiber 294 

synapses have subthreshold properties under control conditions25,39,40,49.  295 

 How does sparse connectivity of hippocampal mossy fiber synapses contribute 296 

to pattern separation? Whereas dense connectivity may introduce correlations, sparse 297 

connectivity may avoid such correlations26. To test this hypothesis, we varied the 298 

number of mossy fiber terminals per axon (Fig. 5a–d). To maintain the activity level of 299 

the network, the individual synaptic conductance values were appropriately scaled. 300 

Unexpectedly, increasing the number of mossy fiber boutons per axon increased the 301 

amount of pattern separation in the second layer of the network. The pattern separation 302 

index ψ, measured between DG and CA3, increased from 0.37 to 0.61 (Fig. 5c, d). 303 

Similarly, ψ measured across the entire network increased from 0.80 to 0.92. Thus, the 304 

sparse connectivity of the mossy fiber synapse decreases, rather than increases, the 305 

magnitude of pattern separation (Fig. 5d).  306 

 A hallmark property of mossy fiber synapses is the unique extent of presynaptic 307 

plasticity, including facilitation, PTP, and long-term potentiation (LTP)25,40,50. To examine 308 

how these specific plasticity properties influence pattern separation, we systematically 309 

shifted synaptic strength in the range from the subdetonation into the detonation range 310 

(Fig. 5e, f). When synaptic strength relative to threshold was increased from 0.34 to 311 

0.51 and 1.01, the pattern separation index ψ, measured between DG and CA3, 312 

became progressively reduced (ψ = 0.38, 0.23, and 0.07, respectively; Fig. 5e, top; Fig. 313 

5f). Similarly, ψ measured across the entire network became smaller (ψ = 0.80, 0.70, 314 

and 0.58, respectively; Fig. 5e, bottom; Fig. 5f). Thus, presynaptic plasticity at 315 

hippocampal mossy fiber synapses shifted the network from strong to weak pattern 316 

separation, that is, in the direction of pattern completion (Fig. 5f).  317 

 318 

Contribution of PP synapses to pattern completion  319 



12 

 

The role of Hebbian plasticity at PP EC–GC synapses in pattern separation has been 320 

unclear30,31. To test the effects of Hebbian synaptic plasticity at PP synapses on pattern 321 

computations in the network, we initially simulated the responses of the network to 100 322 

EC patterns with the default parameter set in a control run, potentiated the PP EC–GC 323 

synapses according to a simple Hebbian synaptic plasticity rule, and subsequently 324 

simulated the responses of the network to 100 EC patterns with the potentiated 325 

synapses in a test run (Fig. 6a–c). Whereas the network demonstrated robust pattern 326 

separation under control conditions, potentiation according to a Hebbian plasticity rule 327 

reduced both the integral-based pattern separation index ψ and the slope-based index 328 

γ, switching  the network from a pattern separation into a pattern completion mode (Fig. 329 

6a–c).  330 

 PP inputs not only innervate GCs27, but also CA3 pyramidal neurons via PP 331 

EC–CA3 synapses32. Do these synapses also regulate pattern separation in the EC–332 

DG–CA3 network? To address this question, a tonic excitatory drive computed from the 333 

EC activity and the EC–GC connectivity was applied in parallel to GCs and CA3 334 

pyramidal neurons after appropriate scaling to represent feedforward excitation. 335 

Increasing the strength of the PP EC–CA3 synapses markedly reduced the degree of 336 

pattern separation (Fig. 6d–f). Taken together, our results indicate that mossy fiber GC–337 

CA3 synapses and PP EC–CA3 synapses synergistically regulate pattern computations, 338 

shifting the EC–DG–CA3 network from pattern separation in the direction of pattern 339 

completion.  340 

 341 

Discussion 342 

A fundamental question in neuroscience is how higher-order computations are 343 

implemented at the level of synapses, neurons, and neuronal networks. Our full-size, 344 

realistic network model provides an answer to this question, at least for a specific 345 

network function (pattern separation) and a specific circuit (the EC–DG–CA3 circuit). 346 

This information may be useful to expand the deep learning capabilities of technical 347 

networks51.  348 
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 According to the Marr-Albus theory, divergence of excitatory connections plays a 349 

major role in pattern separation4,9,10,52. However, in the trisynaptic pathway, divergence 350 

at EC–GC synapses is followed by convergence at GC–CA3 pyramidal neuron 351 

synapses. How is pattern separation possible under these conditions? As the mossy 352 

fiber synapse is below the threshold of AP initiation in postsynaptic CA3 cells25, 353 

convergence followed by thresholding will establish a decorrelation mechanism15,53. 354 

Pattern separation in the mossy fiber system will accumulate with pattern separation 355 

generated in the DG, leading to increase of ψ across layers. Thus, pattern separation is 356 

not strictly localized to the DG, but represents a distributed network computation that 357 

involves multiple regions of the trisynaptic circuit.  358 

 Thresholding is a well-established decorrelation mechanism15,53,54. Consistent 359 

with the idea that thresholding contributes to pattern separation in the DG, GCs show a 360 

uniquely negative resting membrane potential and a high relative voltage threshold55. 361 

While our results confirm that thresholding in the complete absence of inhibition can 362 

result in pattern separation, efficient pattern separation is only possible in a narrow 363 

region of the parameter space. Addition of lateral inhibition markedly expands the 364 

regime of efficient pattern separation (Fig. 2c, d). This is consistent with behavioral 365 

experiments, which showed that both genetic deletion of GABAA receptors in GCs and 366 

pharmacogenetic inhibition of GABAergic INs in the DG affect pattern separation56,57.  367 

 Both experimental and theoretical evidence suggest that network oscillations, 368 

particularly in the gamma frequency range, may play a role in pattern separation19,58. 369 

We have incorporated gamma activity as a transient inhibitory conductance at the 370 

simulation onset, and found that this conductance enhanced pattern separation. It is 371 

possible that gamma oscillations and pattern separation are different reflections of the 372 

same phenomenon, e.g. disynaptic inhibition. Alternatively, gamma oscillations in the 373 

DG may be generated by mutual inhibition37,59. In this scenario, rhythmic gamma activity 374 

may assist pattern separation by structuring activity in time58. Thus, mutual inhibition 375 

and recurrent inhibition may cooperate to provide an optimal framework for pattern 376 

separation.  377 
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Several theories assume that global lateral inhibition plays a key role in pattern 378 

separation4,9. Intuitively, global inhibition could implement a “winner-takes-all” or a “k-379 

winners-take-all” mechanism14,18,19,43,44. In the DG, lateral inhibition is abundant, but 380 

follows local distance-dependent connectivity rules22. How can a local lateral inhibition 381 

mechanism contribute to pattern separation? Unexpectedly, our model reveals that local 382 

connectivity supports pattern separation, even more effectively than global connectivity. 383 

The beneficial effects of local connectivity are almost completely compensated by 384 

reducing the signaling speed. Thus, local connectivity enhances pattern separation 385 

through a gain in the speed of lateral inhibition.  386 

Fast signaling is a hallmark of function of GABAergic INs, particularly fast 387 

spiking, PV+ subtypes46. Fast signaling properties are expressed at multiple levels, 388 

including excitatory synaptic input21,22, input-output transformation47, axonal AP 389 

propagation60, and inhibitory synaptic output48. However, the impact of these specific 390 

signaling properties on higher-order computations in neuronal networks is unclear. 391 

Here, we show that several fast signaling properties of GABAergic INs facilitate pattern 392 

separation. Short synaptic delays are particularly critical for pattern separation, 393 

suggesting that tight coupling between presynaptic Ca2+ channels and release sensors 394 

might be important61. Furthermore, the decay time constant of the excitatory synaptic 395 

conductance at PN–IN synapses affects pattern separation, implying that the subunit 396 

composition of postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 397 

(AMPA)-type glutamate receptors in INs is relevant. Thus, both pre- and postsynaptic 398 

molecular and subcellular specializations of PN–IN synapses contribute to the pattern 399 

separation at the network level. 400 

 Our model provides clues how the mossy fiber synapse contributes to pattern 401 

separation23,62. Pattern separation is not only relayed to the CA3 region, but rather 402 

conditionally amplified by the mossy fiber–CA3 synaptic connections (Fig. 1d, e; Fig. 5). 403 

The degree of amplification is determined by the properties of the synapse. 404 

Subdetonation properties will increase pattern separation, while detonation will reduce 405 

it. Previous work showed that the efficacy of mossy fiber synapses can be regulated by 406 

presynaptic plasticity mechanisms, which increase synaptic strength by almost an order 407 
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of magnitude25,40. This suggests that mossy fiber plasticity might tune the balance 408 

between pattern separation and pattern completion. As a corollary, bursts or 409 

superbursts in GCs may shift the network from strong to weaker pattern separation, i.e. 410 

in the direction of pattern completion33,40.  411 

 Hebbian synaptic plasticity is a hallmark property of PP EC–CA3 synapses28,29. 412 

Our results suggest that PP plasticity switches the network from pattern separation to 413 

completion. This may seem counter-intuitive, since a Hebbian rule based on presynaptic 414 

(original) patterns and postsynaptic (decorrelated) patterns might represent a feedback 415 

signal amplifying decorrelation15. However, in our simulations we applied 100 patterns 416 

with various degree of overlap. As plasticity induction requires multiple pre-post 417 

pairings, this preferentially strengthens the overlapping synapses, leading to an 418 

increase of correlation. Thus, whereas lateral inhibition consistently mediates pattern 419 

separation, PP plasticity may, at least with the chosen induction rules, promote pattern 420 

completion31. As a corollary, inhibition-based pattern separation could dominate at early 421 

time points (i.e. with novel patterns), whereas plasticity-based pattern completion may 422 

prevail later (i.e. with familiar patterns).  423 

 PP inputs not only innervate GCs, but also CA3 pyramidal neurons via PP EC–424 

CA3 synapses32. In a simplified model, the mossy fiber pathway conveys decorrelated 425 

patterns, whereas the PP input relays the original patterns to postsynaptic CA3 cells23. 426 

The effects of the excitatory drive from the EC–CA3 synapses are consistent with this 427 

idea. However, our analysis further suggests that increasing the EC–CA3 drive reduces 428 

the contribution of the mossy fiber synapses to the total pattern separation process (Fig. 429 

6f). Intuitively, the EC–CA3 drive regulates the detonator properties of the mossy fiber–430 

CA3 synapses by changing the effective firing threshold. Thus, complex interactions 431 

between excitatory and inhibitory synapses regulate the balance between pattern 432 

separation and completion.  433 

 Our biologically inspired network model is an efficient pattern separator. 434 

However, the network also may be able to perform other related higher-order 435 

computations. The pattern separation reliability ρ is close to 1, implying that rank 436 
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similarity in the patterns is accurately preserved during information processing. 437 

Furthermore, the pattern separation gain γ is highest (> 10) for very similar patterns, 438 

demonstrating that small differences at the input level are amplified into large 439 

differences at the output level. These functional properties will be suitable to run 440 

similarity searches (termed locality-sensitive hashing in computer science)35 or to 441 

perform similarity-based clustering of contextual input information63. Thus, the EC–DG–442 

CA3 network may be computationally more powerful than previously thought.  443 

 Finally, our network model may help to develop new algorithms and 444 

computational architectures of technical deep learning networks51. Deep learning 445 

algorithms successfully incorporated the multi-layer structure of biological networks, the 446 

hippocampal network being the “prototype”. Although such technical networks are 447 

remarkably powerful, they lack the robustness, energy efficiency, and memory capability 448 

of biological networks. Incorporation of fast lateral inhibition and presynaptic short-term 449 

memory may increase the efficacy of such systems.  450 

 Full-size implementation is a strength of the present study. However, limitations 451 

were unavoidable. These include use of simplified cellular units (i.e. integrate-and-fire 452 

neurons for GCs, single-compartment neurons for INs), lack of less abundant cell types 453 

(such as somatostatin+ or vasointestinal peptide+ GABAergic interneurons, mossy cells, 454 

and newborn GCs)64,65, and simplified connectivity rules (e.g. for EC–GC perforant path 455 

connections where experimental connectivity data are currently unavailable). Increase 456 

in computational power of modeling hardware may allow us to address these limitations 457 

in the future.  458 

 459 

 460 

 461 

Methods 462 

Topology of a full-size DG network model  463 
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The pattern separation network model consists of three layers, the first layer 464 

representing the EC, with 50,000 ECs, the second layer representing the DG, with 465 

500,000 GCs and 2,500 PV+-INs, and the third layer representing the CA3 region, with 466 

250,000 pyramidal cells. First and second layer were connected by EC–GC synapses, 467 

representing the PP input to the DG. A winner-takes-all mechanism mediated by lateral 468 

inhibition was implemented by connecting GCs and INs by excitatory E–I synapses in 469 

one direction and by inhibitory I–E synapses in the other direction. Second and third 470 

layer were connected by GC–CA3 pyramidal neuron synapses, representing 471 

hippocampal mossy fiber synapses.  472 

 Unlike many network models, our model was implemented in full size 473 

(Supplementary Table 1). The number of GCs was chosen to represent the DG of one 474 

hemisphere of adult laboratory mice13. Full-scale implementation was necessary: (1) to 475 

increase the realism of the simulations, (2) to be able to implement measured 476 

macroscopic connectivity rules without scaling66, and (3) to simulate sparse coding 477 

regimes, which were unstable in smaller networks. The model was designed to 478 

incorporate the connectivity rules of PV+-INs and GCs in the DG (Supplementary Table 479 

1)22. Other types of INs were not implemented in the default model, because of their 480 

lower connectivity22 and their slower signaling speed46. In total, the conclusions of the 481 

present paper were based on 784 full-scale simulations.  482 

 483 

Implementation of inhibitory INs 484 

INs were implemented as single-compartment, conductance-based neurons endowed 485 

with modified Hodgkin-Huxley-type conductances67 to capture the electrical properties 486 

of PV+-INs. Membrane potential was simulated by solving the equation: 487 

ௗ௏ௗ௧ = ଵ஼೘	(ܫௗ௥௜௩௘ − ே௔ܫ − ௄ܫ −  ௅) ,  (Eq. 1) 488ܫ

where V is membrane potential, t is time, Cm is membrane capacitance, Idrive is driving 489 

current, and INa, IK, and IL represent sodium, potassium and leakage current, 490 

respectively. INa was modeled as  491 
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ே௔ܫ = 	݃ே௔	݉ଷℎ	(ܸ −	 ேܸ௔) ,  (Eq. 2) 492 

where ݃ே௔	is the maximal sodium conductance, m is the activation parameter, h is the 493 

inactivation parameter, and VNa represents the sodium ion equilibrium potential.  494 

Similarly, IK was modeled according to the equation 495 ܫ௄ = 	݃௄	݊ସ	(ܸ −	 ௄ܸ) ,  (Eq. 3) 496 

where ݃௄	is the maximal potassium conductance, n is the activation parameter, and VK 497 

represents the potassium ion equilibrium potential.  498 

Finally, IL was given as 499 ܫ௅ = 	݃௅	(ܸ −	 ௅ܸ) ,  (Eq. 4) 500 

where gL is leakage conductance and VL is corresponding reversal potential.  501 

State parameters m, h, and n were computed according to the differential equation 502 

ௗ௠ௗ௧ = 	௠	(1 − 	݉) + ௠	݉	  (Eq. 5) 503 

and equivalent equations for h and n.  504 

αm, αh, αn values and βm, βh, βn values were calculated according to the equations αm = 505 

0.1 ms-1 × −(V+35 mV) / {Exp[−(V+35 mV)/10 mV] – 1}, βm = 4 ms-1 × 506 

Exp[−(V+60 mV)/18 mV], αh = 0.35 ms-1 × Exp[−(V+58 mV)/20 mV], βh= 5 ms-1 / 507 

{Exp[−(V+28 mV)/10 mV] + 1}, αn = 0.05 ms-1 × −(V+34 mV) / 508 

{Exp[−(V+34 mV)/10 mV] − 1}, and βn = 0.625 ms-1 × Exp[−(V+44 mV)/80 mV]67. Single 509 

neurons were assumed to be cylinders with diameter and length of 70 µm, giving a 510 

surface area of 15,394 µm2 and an input resistance of 65 MΩ47. Neurons showed a 511 

rheobase of 39 pA and a fast-spiking, type I AP phenotype68, as characteristic for PV+-512 

INs46. Maximal conductance values were set as ݃ே௔	 = 35 mS cm−2,  ݃௄	= 9 mS cm−2, 513 

and gL = 0.1 mS cm−2; VNa VK, and VL were assumed as 55 mV, −90 mV, and −65 mV, 514 

respectively67.  515 

 516 
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Implementation of GCs 517 

GCs were implemented as spiking neurons with leaky integrate-and-fire (LIF) firing 518 

properties, accelerating all computations by approximately an order of magnitude. To 519 

enable the integration of excitatory and inhibitory synaptic events with different kinetics, 520 

the standard LIF model was extended as follows69:  521 

The time course of synaptic excitation was described by the differential equation 522 

ௗ௘ௗ௧ = 	−݇௘	݁	,  (Eq. 6) 523 

where ke is the synaptic excitation rate constant, i.e. the inverse of the time constant.  524 

Likewise, the time course of synaptic inhibition was described by the differential 525 

equation 526 

ௗ௜ௗ௧ = 	−݇௜	݅	,  (Eq. 7) 527 

where ki is the synaptic inhibition rate constant.  528 

Finally, the firing of the neuron was controlled by a membrane state variable v; 529 

when v reaches 1, the cell fires, which resets the membrane by returning v to 0. The 530 

time course of v was determined by the differential equation 531 

ௗ௩ௗ௧ = 	−݇௠	ݒ + ܽ௘	݁	 + 	ܽ௜	݅	 + 	 ݅ௗ௥௜௩௘	,  (Eq. 8) 532 

where km is inverse of the membrane time constant, ae and ai are amplitudes of synaptic 533 

events, and idrive represents the excitatory drive any given neuron receives69. Excitation 534 

time constant, inhibition time constant, and membrane time constant were set to 3, 10, 535 

and 15 ms, respectively (Supplementary Table 1)22,48,70. The refractory period was 536 

assumed as 5 ms.  537 

 538 

Implementation of synaptic interconnectivity 539 

Synapses between neurons were placed with distance-dependent probability. 540 

Normalized distance was cyclically measured as  541 
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 x = 0.5 – abs{abs[(i / imax – j / jmax)] – 0.5} ,  (Eq. 9) 542 

where i and j are indices of pre- and postsynaptic neurons, imax and jmax are 543 

corresponding maximum index values, and abs(r) is the absolute value of a real number 544 

r. Connection probability was then computed with a Gaussian function as  545 

 p(x) = c ݁ି ೣమమ	మ ,  (Eq. 10) 546 

where c is maximal connection probability (cE–I, cI–E, cI–I, and cgap, respectively) and σ is 547 

the standard deviation representing the width of the distribution (σE–I, σI–E, σI–I, and σgap; 548 

Supplementary Table 1).  549 

The connection probability between ECs and GCs was computed from a 550 

Gaussian function with peak connection probability of 0.2 and a standard deviation of 551 

500 µm, to represent the divergent connectivity from the EC to the DG27,32,45. Binary 552 

activity patterns in upstream ECs were converted into patterns of excitatory drive of 553 

GCs. Although this drive was primarily intended to represent input from EC neurons, it 554 

may include contributions from other types of excitatory neurons64.  555 

Excitatory GC–IN synapses, inhibitory IN–GC synapses, and inhibitory IN–IN 556 

synapses were incorporated by random placement of NetCon objects in NEURON69; 557 

gap junctions between PV+-INs were implemented by random placement of pairs of 558 

point processes. For excitatory GC–IN synapses and inhibitory IN–IN synapses, 559 

synaptic events were simulated using the Exp2Syn class of NEURON. For excitatory 560 

GC–IN synapses, we assumed τrise,E = 0.1 ms, τdecay,E = 1 ms, and a peak conductance 561 

of 8 nS (Supplementary Table 1)21,22. For inhibitory IN–IN synapses, we chose τrise,I = 562 

0.1 ms, τdecay,I = 2.5 ms, and a peak conductance of 16 nS (Supplementary Table 563 

1)22,37,59. For inhibitory IN–GC synapses, the synaptic weight was chosen as 0.025 564 

(unitless, because GCs were modelled as LIF neurons). For all chemical synapses, 565 

synaptic latency was between 0 and 25 ms, according to distance between pre- and 566 

postsynaptic neuron. Gap junction resistance was assumed as 300 MΩ, approximately 567 

five times the input resistance of a single cell (Supplementary Table 1)22,37,59. Synaptic 568 

reversal potentials were 0 mV for excitation and −65 mV for inhibition. The maximal 569 
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length of the hippocampal network was assumed as 5 mm, consistent with anatomical 570 

descriptions in mice71.  571 

 572 

Detailed implementation and simulations  573 

Simulations of network activity were performed using NEURON version 7.6.2, 7.7.2, or 574 

7.8.269 in combination with Mathematica version 11.3.0.0 or 12.2.0.0 (Wolfram 575 

Research). Simulations were tested on a Lenovo T470p PC running under Windows 10. 576 

Final full-size simulations were run on the IST computer cluster under Debian 577 

GNU/Linux version 9 or 10 (https://www.debian.org/), the scheduling system slurm 578 

16.05, and the environment module system Lmod 7.7.  579 

Simulations were performed in four steps (Supplementary Fig. 1). First, we 580 

computed random binary activity patterns in ECs. To generate input patterns with 581 

defined correlations over a wide range, 100 uncorrelated random vectors ai of size nEC 582 

were computed, where individual elements are pseudorandom real numbers in range of 583 

0 to 1 and nEC is the number of ECs. Uncorrelated vectors were transformed into 584 

correlated vectors as r x a1 + (1 − r) x ai, where a1 is the first random vector and r is a 585 

correlation factor. r was varied between 0.1 and 1. Finally, a threshold function f(x) = 586 

H(x − θ) was applied to the vectors, where H is the Heaviside function and θ is the 587 

threshold that determines the activity level in the pattern. Empirically, 100 input patterns 588 

were sufficient to continuously cover the chosen range of input correlations. Unless 589 

stated differently, the average activity in EC neurons (αEC), i.e. the proportion of spiking 590 

cells, was assumed to be 0.1.  591 

Second, the patterns in the upstream neurons were converted into patterns of 592 

excitatory drive in GCs, by multiplying the activity vectors with the previously computed 593 

connectivity matrix between EC neurons and GCs. Unless otherwise indicated, the 594 

mean tonic current value was set to 1.8 times the threshold value of the GCs (i.e. Iµ = 595 

1.8; unitless, since GCs were implemented as LIF units; Supplementary Table 1).  596 
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Third, we computed the activity of the network for all 100 patterns. Simulations 597 

were run with 5 µs fixed time step over a total duration of 50 or 60 ms. At the beginning 598 

of each simulation, random number generators were initialized with defined seeds to 599 

ensure reproducibility. At time 0, an inhibitory synaptic event of weight 1 (relative to 600 

threshold) was simulated in all GCs to mimic recovery from gamma-modulated 601 

inhibition19. Spikes were detected when membrane potential reached a value of 1 in the 602 

GCs and 0 mV in the INs. Subsequently, spike times were displayed in raster plot 603 

representations. Furthermore, 100 binary output vectors were computed, by setting the 604 

value to 1 if a cell generated ≥ 1 spikes in the simulation time interval, and to 0 605 

otherwise.  606 

Finally, Pearson’s correlation coefficients were calculated for all pairs of patterns 607 

(൫ଵ଴଴ଶ ൯ = 4,950 points), at both input and output level in parallel as  608 

 R = 
େ୭୴(୬భ,୬మ)ඥ୚ୟ୰(୬భ)௏௔௥(୬మ) ,  (Eq. 11)  609 

where Cov is covariance, Var is variance, and n1 and n2 are two given pattern 610 

vectors. Because of mean value subtraction and normalization, this correlation measure 611 

is per se independent of activity53. Next, output correlation coefficients (Rout) were 612 

plotted against input correlation coefficients (Rin). For models activated by Poisson 613 

trains of PP input (Supplementary Fig. 3) or implementing variation of synaptic 614 

amplitude (Supplementary Fig. 7), Rout–Rin curves were normalized to the average Rout 615 

values obtained for identical patterns (Rin = 1), which were < 1 because of the stochastic 616 

nature of the models. For models with heterogeneity of excitability (Supplementary Fig. 617 

8), Rout–Rin curves were normalized to the average Rout values obtained for uncorrelated 618 

patterns (Rin  0), which were > 0 because the cells with the highest excitability were 619 

consistently firing, whereas the cells with the lowest excitability were consistently silent. 620 

Pattern separation was quantitatively characterized by three parameters: (1) The 621 

efficacy of pattern separation (ψ) was quantified by an integral-based index, defined as 622 

the area between the identity line and the Rout versus Rin curve, normalized by the area 623 

under the identity line (
ଵଶ). Thus,  624 
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 ψ = 2	 ׬ (x - f(ݔ))	݀ݔ	ଵ	௫ୀ଴  ,  (Eq. 12) 625 

where f(x) represents the input-output correlation function. In practice, data points were 626 

sorted by Rin values, and points with same Rin were averaged. f(x) was determined as a 627 

5th or 10th-order polynomial function f(x) fit to the Rout versus Rin data points; f(x) was 628 

constrained to pass through points (0|0) and (1|1). Based on the definition of Eq. 12, a ψ 629 

value close to 1 would correspond to an ideal pattern separator. In contrast, ψ = 0 would 630 

represent pattern identity, whereas ψ < 0 would indicate pattern completion. (2) The 631 

gain of pattern separation (γ) was quantified from the maximal slope of the Rout versus 632 

Rin curve. In practice, this value was determined from the first derivative of the 633 

polynomial function f(x) fit to the Rout versus Rin data points as lim௫→	ଵ	 ቀௗ௙(௫)ௗ௫ ቁ. A γ value 634 

>> 1 would correspond to an ideal pattern separator. In contrast, γ  = 1 would represent 635 

pattern identity, whereas γ < 1 may indicate pattern completion. (3) The reliability of 636 

pattern separation (ρ) was quantified by the Pearson’s correlation coefficient of the 637 

ranks of all Rout versus the ranks of the corresponding Rin data points. An ideal pattern 638 

separator will maintain the order of pairwise correlations: if a pair of patterns is more 639 

similar than another pair at the input level, it will be also more similar at the output level. 640 

Thus, for an ideal pattern separator, ρ will be close to 1 (Refs. 34–36). 641 

 To analyze the effects of convergence and divergence on pattern separation 642 

(Fig. 3a–d), activity was simulated in ECs, converted into drive patterns in GCs by 643 

multiplication with the EC–GC connectivity matrix, and finally converted into binary 644 

activity values in GCs by applying a threshold corresponding to the desired activity level 645 

α. This simplified approach permitted systematic variation of model parameters (e.g. cell 646 

numbers and connection probabilities) over a wide range. In the simulations, both nEC 647 

and nGC was varied between 10,000 and 100,000, yielding ratios ranging from 1 : 10 to 648 

10 : 1. Unless specified differently, in these simplified simulations activity in the EC (αEC) 649 

was set to 0.1, and EC–GC connectivity was assumed to be random with an average 650 

connection probability (cEC-GC) of 0.05 651 
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To address the effects of plasticity at PP synapses on pattern computations (Fig. 652 

6a–c), we introduced an associative synaptic plasticity rule at EC–GC synapses. We 653 

first simulated the responses of the network to 100 EC patterns with the default 654 

parameter set in a control run. Coincident pre- and postsynaptic activity was 655 

cumulatively recorded for all synapses across all patterns. Next, we computed the 656 

extent of potentiation for each EC–GC synapse according to a sigmoidal function of the 657 

form  658 

f(x) = fpot / (1 + exp[−(x − xhalf) / k]),  (Eq. 13) 659 

where fpot is the potentiation, x is the number of coincident APs, xhalf is the number of 660 

APs leading to half-maximal potentiation, and k is a slope factor. As default values, xhalf 661 

= 5 and k = 5 were used. Finally, we simulated the responses of the network to 100 EC 662 

patterns with the potentiated synapses in a test run (Fig. 6a–c).  663 

 664 

Robustness of the pattern separation mechanism  665 

Unless specified differently, standard parameter values (Supplementary Table 1) were 666 

used for all simulations. However, several additional simulations were performed to test 667 

the robustness of pattern separation against parameter variation. (1) To test the effects 668 

of conductance-based synapses against current-based synapses (Supplementary Fig. 669 

2), GCs were simulated as single-compartment conductance-based neurons with 670 

passive properties. (2) To test the effects of temporal structure of the excitatory drive 671 

(Supplementary Fig. 3), the tonic current was replaced by Poisson trains of excitatory 672 

postsynaptic currents (EPSCs). In these simulations, events were simulated by NetStim 673 

processes. (3) To generate spatially correlated patterns (Supplementary Fig. 4), random 674 

numbers were drawn from a multinormal distribution with exponential spatial correlation 675 

(length constant 15,000 cells) and thresholded to give a spatially correlated binary 676 

pattern with appropriate activity level. (4) To implement feedforward inhibition 677 

(Supplementary Fig. 5), the tonic excitatory drive computed from EC activity and EC–678 

GC connectivity was applied in parallel to INs after appropriate scaling. (5) To replace 679 

PV+-INs with CCK+-like IN subtypes (e.g. hilar INs with axons associated with the 680 
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commissural / associational pathway; Supplementary Fig. 6a)72–75, model parameters 681 

were changed to account for reduced connectivity, altered synaptic strength, and slower 682 

signaling according to the replacement rules cE–I = 0.1  0.02, cI–E = 0.3  0.1, JE–I = 683 

0.008  0.004 nS, JI–E = 0.025  0.05, τI–E = 10  20 ms, and τm = 10  20 ms. In 684 

addition, to incorporate CCK+-like IN subtypes in the network (Supplementary Fig. 6b), 685 

an increasing number of neurons with the following connectivity parameters were added 686 

to the model: cCCK–CCK = 0.2, cPV–CCK = 0.6, cCCK–PV = 0.2, cE–CCK = 0.02, cCCK–E = 0.1, JE–687 

CCK = 4 nS, JCCK–E = 0.05, JCCK–CCK = 16 nS, JPV–CCK = 16 nS, and JCCK–PV = 16 nS. (6) 688 

To incorporate PP inputs to CA3 pyramidal neurons (Fig. 6d–f)32, the tonic excitatory 689 

drive computed from EC activity and EC–GC connectivity was applied in parallel to CA3 690 

pyramidal neurons. (7) To test the effects of synaptic heterogeneity (Supplementary Fig. 691 

7), synaptic amplitudes at all synapses were drawn from normal distributions with 692 

specified coefficient of variation, CV. Both trial-to-trial (“type 1”) and synapse-to-synapse 693 

(“type 2”) variability were examined. (8) Finally, to test the effects of heterogeneity in GC 694 

excitability (Supplementary Fig. 8), the constant firing threshold (by default 1 in LIF 695 

neurons) was replaced by random threshold values for individual cells drawn from a 696 

normal distribution with mean 1 and standard deviation σthres.  697 

 698 

Conventions 699 

Throughout the paper, model parameters given in Supplementary Table 1 are referred 700 

to as standard parameters. In summary bar graphs, black bars indicate these standard 701 

values, light blue bars reduced values, and light red bars increased values in 702 

comparison to the default parameter set. In functional analysis of ψ, γ, and ρ, standard 703 

parameters are indicated as vertical dashed. Throughout the paper, the term “pattern” is 704 

defined as a vector of real values (for excitatory drive) or a vector of binary values (for 705 

activity, 1 if the cell fires, 0 otherwise). In both cases, the vector length corresponds to 706 

the number of cells. 707 

 708 

Data availability  709 
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Source Data for Figures 1–6 and Extended Data Figure 1 are provided with this 710 

manuscript. Output data sets can be regenerated from the code76. As the full output 711 

dataset generated in this work is huge (> 10 Terabyte), deposit in a publicly available 712 

repository is not practical at the current time point. Specific data will be provided by the 713 

corresponding author upon request (Peter.Jonas@ist.ac.at).  714 

 715 

Code availability  716 

A minimal version of the Neuron simulation code is provided as Supplementary 717 

Software. A full version of the simulation and analysis code has been deposited in a 718 

publicly available DOI-minting repository under the GNU General Public License version 719 

3, as published by the Free Software Foundation (Ref. 76).  720 

 721 

References 722 

1. Yassa, M.A., & Stark, C.E. Pattern separation in the hippocampus. Trends in 723 

Neurosciences 34, 515–525 (2011). 724 

2. Rolls, E.T. Pattern separation, completion, and categorisation in the 725 

hippocampus and neocortex. Neurobiology of Learning and Memory 129, 4–28 726 

(2016). 727 

3. Chavlis, S., & Poirazi, P. Pattern separation in the hippocampus through the eyes 728 

of computational modeling. Synapse 71, e21972 (2017). 729 

4. Cayco-Gajic, N.A., & Silver, R.A. Re-evaluating circuit mechanisms underlying 730 

pattern separation. Neuron 101, 584–602 (2019). 731 

5. Leutgeb, J.K., Leutgeb, S., Moser, M.B., & Moser, E.I. Pattern separation in the 732 

dentate gyrus and CA3 of the hippocampus. Science 315, 961–966 (2007). 733 

6. Scharfman, H.E. The dentate gyrus: A comprehensive guide to structure, 734 

function, and clinical implications. Progress in Brain Research 163, 627–637 735 

(2007). 736 



27 

 

7. Bischofberger, J., Engel, D., Frotscher, M., & Jonas, P. Timing and efficacy of 737 

transmitter release at mossy fiber synapses in the hippocampal network. Pflügers 738 

Archiv 453, 361–372 (2006). 739 

8. Guzman, S.J., Schlögl, A., Frotscher, M., & Jonas, P. Synaptic mechanisms of 740 

pattern completion in the hippocampal CA3 network. Science 353, 1117–1123 741 

(2016). 742 

9. Marr, D. A theory of cerebellar cortex. Journal of Physiology 202, 437–470 743 

(1969). 744 

10. Albus, J.S. A Theory of Cerebellar Function. Mathematical Biosciences 10, 25–745 

61 (1971). 746 

11. Amaral, D.G., Ishizuka, N., & Claiborne, B. Neurons, numbers and the 747 

hippocampal network. Progress in Brain Research 83, 1–11 (1990). 748 

12. Boss, B.D., Turlejski, K., Stanfield, B.B., & Cowan, W.M. On the numbers of 749 

neurons in fields CA1 and CA3 of the hippocampus of Sprague-Dawley and 750 

Wistar rats. Brain Research 406, 280–287 (1987). 751 

13. Amrein, I., Slomianka, L., & Lipp, H.P. Granule cell number, cell death and cell 752 

proliferation in the dentate gyrus of wild-living rodents. European Journal of 753 

Neuroscience 20, 3342–3350 (2004). 754 

14. Coultrip, R., Granger, R., & Lynch, G. A cortical model of winner-take-all 755 

competition via lateral inhibition. Neural Networks 5, 47–54 (1992). 756 

15. Wiechert, M.T., Judkewitz, B., Riecke, H., & Friedrich, R.W. Mechanisms of 757 

pattern decorrelation by recurrent neuronal circuits. Nature Neuroscience 13, 758 

1003–1010 (2010). 759 

16. Papadopoulou, M., Cassenaer, S., Nowotny, T., & Laurent, G. Normalization for 760 

sparse encoding of odors by a wide-field interneuron. Science 332, 721–725 761 

(2011). 762 

17. Lin, A.C., Bygrave, A.M., de Calignon, A., Lee, T., & Miesenböck, G. Sparse, 763 

decorrelated odor coding in the mushroom body enhances learned odor 764 

discrimination. Nature Neuroscience 17, 559–568 (2014). 765 

18. Maass, W. On the computational power of winner-take-all. Neural Computation 766 

12, 2519–2535 (2000). 767 



28 

 

19. de Almeida, L., Idiart, M., & Lisman, J.E. A second function of gamma frequency 768 

oscillations: an E%-max winner-take-all mechanism selects which cells fire. 769 

Journal of Neuroscience 29, 7497–7503 (2009). 770 

20. Tetzlaff, T., Helias, M., Einevoll, G.T., & Diesmann, M. Decorrelation of neural-771 

network activity by inhibitory feedback. PLoS Computational Biology 8, e1002596 772 

(2012). 773 

21. Geiger, J.R.P., Lübke, J., Roth, A., Frotscher, M., & Jonas, P. Submillisecond 774 

AMPA receptor-mediated signaling at a principal neuron-interneuron synapse. 775 

Neuron 18, 1009–1023 (1997). 776 

22. Espinoza, C., Guzman, S.J., Zhang, X., & Jonas, P. Parvalbumin+ interneurons 777 

obey unique connectivity rules and establish a powerful lateral-inhibition 778 

microcircuit in dentate gyrus. Nature Communications 9, 4605 (2018). 779 

23. O'Reilly, R.C., & McClelland, J.L. Hippocampal conjunctive encoding, storage, 780 

and recall: avoiding a trade-off. Hippocampus 4, 661–682 (1994). 781 

24. Neunuebel, J.P., & Knierim, J.J. CA3 retrieves coherent representations from 782 

degraded input: direct evidence for CA3 pattern completion and dentate gyrus 783 

pattern separation. Neuron 81, 416–427 (2014). 784 

25. Vyleta, N.P., Borges-Merjane, C., & Jonas, P. Plasticity-dependent, full 785 

detonation at hippocampal mossy fiber-CA3 pyramidal neuron synapses. Elife 5, 786 

e17977 (2016). 787 

26. Cayco-Gajic, N.A., Clopath, C., & Silver, R.A. Sparse synaptic connectivity is 788 

required for decorrelation and pattern separation in feedforward networks. Nature 789 

Communications 8, 1116 (2017). 790 

27. Witter, M.P. The perforant path: projections from the entorhinal cortex to the 791 

dentate gyrus. Progress in Brain Research 163, 43–61 (2007). 792 

28. Bliss, T.V.P., & Lømo, T. Long-lasting potentiation of synaptic transmission in the 793 

dentate area of the anaesthetized rabbit following stimulation of the perforant 794 

path. Journal of Physiology 232, 331–356 (1973). 795 



29 

 

29. McNaughton, B.L., Douglas, R.M., & Goddard, G.V. Synaptic enhancement in 796 

fascia dentata: cooperativity among coactive afferents. Brain Research 157, 797 

277–293 (1978). 798 

30. McHugh, T.J., Jones, M.W., Quinn, J.J., Balthasar, N., Coppari, R., Elmquist, 799 

J.K., Lowell, B.B., Fanselow, M.S., Wilson, M.A., & Tonegawa, S. Dentate gyrus 800 

NMDA receptors mediate rapid pattern separation in the hippocampal network. 801 

Science 317, 94–99 (2007). 802 

31. McNaughton, B.L., & Morris, R.G.M. Hippocampal synaptic enhancement and 803 

information storage within a distributed memory system. Trends Neuroscience 804 

10, 408–415 (1987). 805 

32. Steward, O. Topographic organization of the projections from the entorhinal area 806 

to the hippocampal formation of the rat. Journal of Comparative Neurology 167, 807 

285–314 (1976). 808 

33. Zhang, X., Schlögl, A., & Jonas, P. Selective routing of spatial information flow 809 

from input to output in hippocampal granule cells. Neuron 107, 1212–1225 810 

(2020). 811 

34. Valiant, L.G. The hippocampus as a stable memory allocator for cortex. Neural 812 

Computation 24, 2873–2899 (2012). 813 

35. Dasgupta, S., Stevens, C.F., & Navlakha, S. A neural algorithm for a 814 

fundamental computing problem. Science 358, 793–796 (2017). 815 

36. Sharma J., & Navlakha, S. Improving similarity search with high-dimensional 816 

locality-sensitive hashing. arXiv:1812.01844v1 (2018). 817 

37. Bartos, M., Vida, I., Frotscher, M., Meyer, A., Monyer, H., Geiger, J.R.P., & 818 

Jonas, P. Fast synaptic inhibition promotes synchronized gamma oscillations in 819 

hippocampal interneuron networks. Proceedings of the National Academy of 820 

Sciences of the United States of America 99, 13222–13227 (2002). 821 

38. Claiborne, B.J., Amaral, D.G., & Cowan, W.M. A light and electron microscopic 822 

analysis of the mossy fibers of the rat dentate gyrus. Journal of Comparative 823 

Neurology 246, 435–458 (1986). 824 



30 

 

39. Henze, D.A., Wittner, L., & Buzsáki, G. Single granule cells reliably discharge 825 

targets in the hippocampal CA3 network in vivo. Nature Neuroscience 5, 790–826 

795 (2002). 827 

40. Vandael, D., Borges-Merjane, C., Zhang, X., & Jonas, P. Short-term plasticity at 828 

hippocampal mossy fiber synapses is induced by natural activity patterns and 829 

associated with vesicle pool engram formation. Neuron 107, 509–521 (2020). 830 

41. Bragin, A., Jandó, G., Nádasdy, Z., Hetke, J., Wise, K., & Buzsáki, G. Gamma 831 

(40–100 Hz) oscillation in the hippocampus of the behaving rat. Journal of 832 

Neuroscience 15, 47–60 (1995). 833 

42. Pernía-Andrade, A.J., & Jonas, P. Theta-gamma-modulated synaptic currents in 834 

hippocampal granule cells in vivo define a mechanism for network oscillations. 835 

Neuron 81, 140–152 (2014). 836 

43. Majani, E., Erlanson, R., & Abu-Mostafa, Y. On the k-winners takes-all network. 837 

Advances in Neural Information Processing Systems 1, 634–642 (1989). 838 

44. Ellias, S.A., & Grossberg, S. Pattern formation, contrast control, and oscillations 839 

in the short term memory of shunting on-center off-surround networks. Biological 840 

Cybernetics 20, 69–98 (1975). 841 

45. Tamamaki, N., & Nojyo, Y. Projection of the entorhinal layer II neurons in the rat 842 

as revealed by intracellular pressure-injection of neurobiotin. Hippocampus 3, 843 

471–480 (1993). 844 

46. Hu, H., Gan, J., & Jonas, P. Fast-spiking, parvalbumin⁺ GABAergic interneurons: 845 

from cellular design to microcircuit function. Science 345, 1255263 (2014). 846 

47. Nörenberg, A., Hu, H., Vida, I., Bartos, M., & Jonas, P. Distinct nonuniform cable 847 

properties optimize rapid and efficient activation of fast-spiking GABAergic 848 

interneurons. Proceedings of the National Academy of Sciences of the United 849 

States of America 107, 894–899 (2010). 850 

48. Kraushaar, U., & Jonas, P. Efficacy and stability of quantal GABA release at a 851 

hippocampal interneuron-principal neuron synapse. Journal of Neuroscience 20, 852 

5594–5607 (2000). 853 



31 

 

49. Chamberland, S., Timofeeva, Y., Evstratova, A., Volynski, K., & Tóth, K. Action 854 

potential counting at giant mossy fiber terminals gates information transfer in the 855 

hippocampus. Proceedings of the National Academy of Sciences of the United 856 

States of America 115, 7434–7439 (2018). 857 

50. Toth, K., Suares, G., Lawrence, J.J., Philips-Tansey, E., & McBain, C.J. 858 

Differential mechanisms of transmission at three types of mossy fiber synapse. 859 

Journal of Neuroscience 20, 8279–8289 (2000). 860 

51. LeCun, Y., Bengio, Y., & Hinton, G. Deep learning. Nature 521, 436–444 (2015). 861 

52. Babadi, B., & Sompolinsky, H. Sparseness and expansion in sensory 862 

representations. Neuron 83, 1213–1226 (2014). 863 

53. de la Rocha, J., Doiron, B., Shea-Brown, E., Josić, K., & Reyes, A. Correlation 864 

between neural spike trains increases with firing rate. Nature 448, 802–806 865 

(2007). 866 

54. Hoeffding, W. Masstabinvariante Korrelationsstheorie. Schriften des 867 

Mathematischen Instituts und des Instituts für Angewandte Mathematik der 868 

Universität Berlin 5, 179–233 (1940). 869 

55. Kowalski, J., Gan, J., Jonas, P., & Pernía-Andrade, A.J. Intrinsic membrane 870 

properties determine hippocampal differential firing pattern in vivo in anesthetized 871 

rats. Hippocampus 26, 668–682 (2016). 872 

56. Engin, E., Zarnowska, E.D., Benke, D., Tsvetkov, E., Sigal, M., Keist, R., 873 

Bolshakov, V.Y., Pearce, R.A., & Rudolph, U. Tonic inhibitory control of dentate 874 

gyrus granule cells by α5-containing GABAA receptors reduces memory 875 

interference. Journal of Neuroscience 35, 13698–13712 (2015). 876 

57. Espinoza Martinez, C.M. Parvalbumin+ interneurons enable efficient pattern 877 

separation in hippocampal microcircuits. IST Austria, DOI: 878 

10.15479/AT:ISTA:6363 (2019). 879 

58. Braganza, O., Mueller-Komorowska, D., Kelly, T., & Beck, H. Quantitative 880 

properties of a feedback circuit predict frequency-dependent pattern separation. 881 

Elife 9, e53148 (2020). 882 



32 

 

59. Bartos, M., Vida, I., Frotscher, M., Geiger, J.R.P. & Jonas, P. Rapid signaling at 883 

inhibitory synapses in a dentate gyrus interneuron network. Journal of 884 

Neuroscience 21, 2687–2698 (2001). 885 

60. Hu, H., & Jonas, P. A supercritical density of Na+ channels ensures fast signaling 886 

in GABAergic interneuron axons. Nature Neuroscience 17, 686–693 (2014). 887 

61. Bucurenciu, I., Kulik, A., Schwaller, B., Frotscher, M., & Jonas, P. Nanodomain 888 

coupling between Ca2+ channels and Ca2+ sensors promotes fast and efficient 889 

transmitter release at a cortical GABAergic synapse. Neuron 57, 536–545 890 

(2008). 891 

62. Jones, B.W., Deem, J., Younts, T.J., Weisenhaus, M., Sanford, C.A., Slack, 892 

M.C., Chin, J., Nachmanson, D., McKennon, A., Castillo, P.E., & McKnight, G.S. 893 

Targeted deletion of AKAP7 in dentate granule cells impairs spatial 894 

discrimination. Elife 5, e20695 (2016). 895 

63. Pehlevan, C., Sengupta, A.M., & Chklovskii, D.B. Why do similarity matching 896 

objectives lead to Hebbian/Anti-Hebbian networks? Neural Computation 30, 84–897 

124 (2018).   898 

64. Myers, C.E., & Scharfman, H.E. A role for hilar cells in pattern separation in the 899 

dentate gyrus: a computational approach. Hippocampus 19, 321–337 (2009). 900 

65. Johnston, S.T., Shtrahman, M., Parylak, S., Gonçalves, J.T., & Gage, F.H. 901 

Paradox of pattern separation and adult neurogenesis: A dual role for new 902 

neurons balancing memory resolution and robustness. Neurobiology of Learning 903 

and Memory 129, 60–68 (2016).    904 

66. Schneider, C.J., Bezaire, M., & Soltesz, I. Toward a full-scale computational 905 

model of the rat dentate gyrus. Frontiers in Neural Circuits 6, 83 (2012). 906 

67. Wang, X.J., & Buzsáki, G. Gamma oscillation by synaptic inhibition in a 907 

hippocampal interneuronal network model. Journal of Neuroscience 16, 6402–908 

6413 (1996). 909 

68. Ermentrout, B. Type I membranes, phase resetting curves, and synchrony. 910 

Neural Computation 8, 979–1001 (1996). 911 

69. Carnevale, N.T., & Hines, M.L. The Neuron book. Cambridge University Press 912 

(2006).   913 



33 

 

70. Schmidt-Hieber, C., Jonas, P., & Bischofberger, J. Subthreshold dendritic signal 914 

processing and coincidence detection in dentate gyrus granule cells. Journal of 915 

Neuroscience 27, 8430–8441 (2007). 916 

71. Paxinos, G., & Franklin, K. The mouse brain in stereotaxic coordinates. 917 

Academic Press, Cambridge, MA, 4th Edition (2012). 918 

72. Han, Z.S., Buhl, E.H., Lörinczi, Z., & Somogyi, P. A high degree of spatial 919 

selectivity in the axonal and dendritic domains of physiologically identified local-920 

circuit neurons in the dentate gyrus of the rat hippocampus. European Journal of 921 

Neuroscience 5, 395–410 (1993). 922 

73. Hefft, S., & Jonas, P. Asynchronous GABA release generates long-lasting 923 

inhibition at a hippocampal interneuron-principal neuron synapse. Nature 924 

Neuroscience 8, 1319–1328 (2005). 925 

74. Hosp, J.A., Strüber, M., Yanagawa, Y., Obata, K., Vida, I., Jonas, P., & Bartos, 926 

M. Morpho-physiological criteria divide dentate gyrus interneurons into classes. 927 

Hippocampus 24, 189–203 (2014). 928 

75. Armstrong, C., & Soltesz, I. Basket cell dichotomy in microcircuit function. Journal 929 

of Physiology 590, 683–694 (2012).   930 

76. Guzman, S.J. Schlögl, A., Espinoza, C., Zhang, X., Suter, B.A. & Jonas, P. 931 

Pattern separation network. DOI https://doi.org/10.15479/AT:ISTA:10110 (2021).     932 

  933 

Acknowledgments 934 

We thank Drs. Ad Aertsen, Nancy Kopell, Wolfgang Maass, Arnd Roth, Federico Stella, 935 

and Tim Vogels for critically reading earlier versions of the manuscript. We are grateful 936 

to Florian Marr and Christina Altmutter for excellent technical assistance, Eleftheria 937 

Kralli-Beller for manuscript editing, and the Scientific Service Units of IST Austria for 938 

efficient support. Finally, we thank Drs. Ted Carnevale, Laszlo Erdös, Michael Hines, 939 

Duane Nykamp, and Dominik Schröder for useful discussions, and Rainer Friedrich and 940 

Simon Wiechert for sharing unpublished data. This project received funding from the 941 

European Research Council (ERC) under the European Union’s Horizon 2020 research 942 



34 

 

and innovation programme (grant agreement No 692692, P.J.) and the Fond zur 943 

Förderung der Wissenschaftlichen Forschung (Z 312-B27, Wittgenstein award to P.J. 944 

and P 31815 to S.J.G.).  945 

 946 

Author contributions 947 

P.J. and S.J.G. designed the model and the layout of the simulations, P.J. and A.S. 948 

performed large-scale simulations on computer clusters, C.E., X.Z., and B.A.S. provided 949 

experimental data, P.J. and S.J.G. analyzed data, and P.J. wrote the paper. All authors 950 

jointly revised the paper.  951 

 952 

Competing interest 953 

The authors declare no conflict of interest.  954 

 955 

 956 



35 

 

Figure legends 957 

Figure 1 | Pattern separation in a biologically realistic full-scale network model.  958 

a, Structure of the biologically inspired full-scale model based on experimental data on 959 

synaptic connectivity and biophysical properties of cells and synapses. EC neurons, 960 

entorhinal cortex neurons; GCs, DG granule cells, PV+-INs, parvalbumin-expressing 961 

interneurons; CA3, CA3 pyramidal neurons. GCs and CA3 neurons were implemented 962 

as LIF neurons. PV+-INs were represented as single-compartment conductance-based 963 

models endowed with modified Hodgkin-Huxley-type conductances67 to convey maximal 964 

realism to the pattern separation mechanism. GCs were activated by a tonic excitatory 965 

drive (Iµ), and an external inhibitory conductance was simulated to mimic gamma 966 

oscillations (Jgamma). Cell numbers (right) were chosen to represent the hippocampus of 967 

one hemisphere in rodents13. 968 

b, Activity in the pattern separation network model. Top, membrane potential in GCs 969 

(left, black), INs (center, red), and CA3 pyramidal neurons (right, gray). Traces from 970 

every 10th IN (250 traces total) and every 1,000th GC or CA3 pyramidal cell (500 and 971 

250 traces total, respectively) were superimposed. For GCs and CA3 pyramidal cells, 972 

membrane potential is unitless, since cells were simulated as LIF neurons. Bottom, 973 

rasterplots of AP generation in GCs (left, black), INs (center, red), and CA3 pyramidal 974 

neurons (right, gray). Each point indicates an AP. t = 0 corresponds to onset of 975 

inhibitory conductance representing a gamma oscillation cycle in the network19.  976 

c–e, Input–output correlation (Rout–Rin) graphs at different levels of the network 977 

(standard parameter settings). Data points represent pairwise correlation coefficients 978 

between input patterns (Rin) and corresponding output patterns (Rout). Input-output 979 

correlation at first layer, measured between EC neurons and GCs (c), at second layer, 980 

measured between GCs and CA3 neurons (d), and across the entire network, 981 

measured between EC and CA3 neurons (e). Red dashed line, identity line; gray 982 

shaded area, area between data points and identity line, used for computation of 983 

integral-based pattern separation index, ψ. Blue line and light blue shaded area, tangent 984 

line at Rin = 1 and corresponding slope triangle of a polynomial function fit to the data 985 
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points, used for computation of slope-based pattern separation index, γ. Insets, 986 

horizontally expanded view of tangent and slope triangle used to compute γ.  987 

f–h, Preservation of rank order similarity between patterns at input and output. The 988 

rank-based pattern separation index, ρ, was computed as the correlation coefficient of 989 

ranked Rout versus ranked Rin data. Rank analysis at first layer, measured between EC 990 

and DG (f), at second layer, measured between DG and CA3 (g), and across the entire 991 

network, measured between EC and CA3 (h).  992 

 993 

 994 

Figure 2 | Dependence of pattern separation on gamma rhythm and lateral inhibition.  995 

a, Analysis of effects of inhibition on pattern separation in a biologically inspired full-996 

scale model of the DG. Lateral inhibition was mediated by PV+-INs included in the 997 

models. Gamma-modulated inhibition was included as synchronized external inhibitory 998 

conductance.  999 

b, Plot of ψ (red), γ (blue), ρ (green), and average activity α (magenta) against 1000 

excitatory drive in GCs (Iµ), relative to threshold. Top left, default model, with both 1001 

gamma inhibition and lateral inhibition intact (Jgamma = 1 relative to threshold, JE–I = 8 nS, 1002 

JI–E = 0.025, relative to threshold). Top right, gamma inhibition deleted (Jgamma = 0). 1003 

Bottom left, lateral inhibition removed (JE–I = 0, JI–E = 0). Bottom right, both gamma 1004 

inhibition and lateral inhibition cancelled from the default model (Jgamma = 0, JE–I = 0, JI–E 1005 

= 0). LI, lateral inhibition.  1006 

c, Contour plot of ψ against the mean excitatory drive (Iµ, abscissa) and amplitude of 1007 

gamma inhibition (Jgamma, ordinate). Contour lines indicate ψ; warm colors represent 1008 

high values, cold colors indicate low values.  1009 

d, Similar contour plot as shown in (c), but after removal of lateral inhibition. Analysis of 1010 

pattern separation was restricted to the region of the Iµ–Jgamma parameter space in 1011 

which activity α was < 0.5 (otherwise white).  1012 
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e–g, Interfering with lateral inhibition in different ways similarly affects pattern 1013 

separation. Top, ψ for different values of peak connection probability of excitatory E–I 1014 

connectivity (cE–I, e), width of excitatory E–I connectivity (σE–I, f), and synaptic strength 1015 

of excitatory E–I synapses (JE–I, g). Bottom, similar analysis, but for inhibitory I–E 1016 

connectivity (cI–E, e; σI–E, f; JI–E, g). Increasing cI–E, σE–I or σI–E, and JI–E increased 1017 

pattern separation efficacy only minimally, whereas increasing cE–I and JE–I led to much 1018 

larger improvement. Thus, cI–E, σE–I or σI–E, and JI–E appear to be near the optimum that 1019 

provides maximal pattern separation, whereas cE–I and JE–I are below the optimum. 1020 

 1021 

 1022 

Figure 3 | Independence of pattern separation on divergent excitatory connectivity 1023 

between EC neurons and GCs.  1024 

a, Analysis of divergence and convergence in a simplified connectivity–thresholding 1025 

network. Binary activity vectors of the presynaptic layer were multiplied by a connectivity 1026 

matrix, resulting in drive vectors in the postsynaptic layer. Drive vectors were then 1027 

converted into binary vectors by thresholding. The threshold was set to obtain a defined 1028 

average activity level α.  1029 

b, Rout versus Rin plots for finite neuronal populations with different convergence–1030 

divergence ratios. Top, nEC : nGC = 10,000 : 100,000; bottom, nEC : nGC = 100,000 : 1031 

10,000.  1032 

c, Contour plot of ψ against the number of presynaptic neurons (nEC, abscissa) and the 1033 

number of postsynaptic neurons (nGC, ordinate). Contour lines indicate ψ; warm colors 1034 

represent high values, cold colors indicate low values. In all simulations, the activity 1035 

level was set to α = 0.01. 1036 

d, Plot of ψ against presynaptic–postsynaptic divergence ratio for different activity levels 1037 

(red, α = 0.1; green, α = 0.01; blue, α = 0.001).  1038 
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e, Analysis of divergence and convergence in a full-scale biologically inspired model of 1039 

the EC–DG circuit.  1040 

f, Effects of changes in number of ECs (nEC, top) and activity level in EC neurons (αEC, 1041 

bottom).  1042 

g, Effects of maximal connection probability (cEC–GC, top) and width of EC–GC 1043 

connectivity (σEC–GC, bottom).  1044 

 1045 

 1046 

Figure 4 | Requirement for local PN–IN interconnectivity and fast IN signaling.  1047 

a, Analysis of lateral inhibition mechanisms in a biologically inspired full-scale model of 1048 

the GC–PV+-IN circuit. To determine the effects of local connectivity, the width of 1049 

excitatory GC–PV+-IN connectivity (σE–I) and inhibitory PV+-IN–GC connectivity (σI–E) 1050 

was varied. 1051 

b, Effects of local connectivity on pattern separation. Summary bar graph of ψ for 1052 

different values of excitatory σE–I (top) or inhibitory σI–E (bottom) connectivity in the 1053 

network. Right bar in each bar graph (“Random”) represents uniform random 1054 

connectivity. Peak connectivity (and, if required, synaptic strength) was compensated to 1055 

maintain the total synaptic efficacy (different from Fig. 2f).  1056 

c, Contour plot of ψ against width of excitatory E–I connectivity (σE–I) and inhibitory I–E 1057 

connectivity (σI–E). Peak connectivity (and, if required, synaptic strength) was 1058 

compensated to maintain the total synaptic efficacy. Asymmetry in spatial connectivity 1059 

rules enhances pattern separation, consistent with experimental observation of 1060 

narrower excitatory E–I connectivity and broader inhibitory I–E connectivity22.  1061 

d, Distribution of axonal delay values in the network with standard parameters for 1062 

excitatory E–I (top) and inhibitory I–E synapses (bottom). 1063 
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e, Summary bar graph of pattern separation index ψ for impairment of fast IN signaling 1064 

by changes in synaptic delays at excitatory synapses (δsyn,E ; top), and inhibitory 1065 

synapses (δsyn,I; bottom). Note that the effects of synaptic delay are more powerful than 1066 

the effects of propagation velocity (Supplementary Fig. 9a), highlighting the importance 1067 

of synaptic properties, e.g. Ca2+ channel–release sensor coupling distance61.  1068 

f, Summary bar graph of pattern separation index ψ for impairment of fast IN signaling 1069 

by changes in the decay time constant of excitatory postsynaptic conductance τdecay,E 1070 

(top) and the membrane time constant of the interneuron τm (bottom). Interfering with 1071 

fast signaling at multiple levels of the lateral inhibition pathway consistently impairs 1072 

pattern separation.  1073 

 1074 

 1075 

Figure 5 | Contribution of hippocampal mossy fiber synapses to pattern separation.  1076 

a, Analysis of effects of multi-layer structure of the hippocampal network on pattern 1077 

separation in a biologically inspired full-scale model of the EC–DG–CA3 circuit. To 1078 

address the effects of mossy fiber output, the GC–PV+ interneuron network was 1079 

connected to a CA3 network via synapses with mossy fiber-like properties.  1080 

b, Rout–Rin graph for the EC–DG component of the network. Same graph as shown in 1081 

Fig. 1c.  1082 

c, Rout–Rin graphs for the DG–CA3 component of the network (top) and the entire 1083 

system (bottom) for different numbers of mossy fiber boutons per axon.  1084 

d, Pattern separation index ψ plotted against number of mossy fiber boutons per axon. 1085 

Blue, isolated EC–DG component; red, isolated DG–CA3 mossy fiber component; 1086 

green, total EC–DG–CA3 system. In both (c) and (d), synaptic strength was 1087 

compensated to maintain the total synaptic efficacy. 1088 

e, f, Similar plots as in (c, d), but for variation of synaptic strength of mossy fiber 1089 

synapses relative to threshold. Blue, isolated EC–DG component; red, isolated DG–1090 
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CA3 mossy fiber component; green, total EC–DG–CA3 system. Inset, schematic 1091 

illustration of how presynaptic plasticity at mossy fiber synapses affects pattern 1092 

separation. Left, situation before induction of synaptic plasticity (control); right, situation 1093 

after induction of presynaptic plasticity, for example facilitation or PTP25,40. Two patterns 1094 

are efficiently separated in the absence of PTP (left), but less so after PTP induction 1095 

(right).  1096 

 1097 

 1098 

Figure 6 | Contribution of PP input to pattern computations.  1099 

a–c, Hebbian plasticity at PP EC–GC synapses switches the network from pattern 1100 

separation to pattern completion.  1101 

a, Schematic illustration of the model that incorporates Hebbian plasticity at PP EC–GC 1102 

synapses. Synaptic plasticity was implemented according to a Hebbian rule and a 1103 

sigmoidal relation between potentiation and the number of coincident APs (Methods). b, 1104 

Rout–Rin curve with 120% (a) and 600% (b) plasticity factor at PP EC–GC synapses. c, 1105 

Summary bar graph of pattern separation indices ψ for various Hebbian synaptic 1106 

plasticity potentiation factors. ψ in control conditions (100%; black) was slightly lower 1107 

than in Fig. 1, because Rin was computed from binary EC patterns rather than analogue 1108 

drive patterns.  1109 

d–f, Direct PP input to CA3 pyramidal neurons (EC–CA3 input) regulates the balance 1110 

between pattern separation and pattern completion.  1111 

d, Schematic illustration of the model incorporating a direct PP connection from the EC 1112 

to the CA3 region.  1113 

e, Rout–Rin graphs for the DG–CA3 component of the network (left) and the entire EC–1114 

DG–CA3 network (right) for Iµ EC–CA3 = 0 (top) and Iµ EC–CA3 = 1 (bottom).  1115 

f, Pattern separation index ψ plotted against Iµ EC–CA3. Blue, isolated EC–DG 1116 

component; red, isolated DG–CA3 mossy fiber component; green, total EC–DG–CA3 1117 
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system. Plateaus in the relation correspond to different integer numbers of mossy fiber 1118 

terminals required for postsynaptic spiking.  1119 

 1120 
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