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Abstract 13 

Many studies have quantified the distribution of heterozygosity and relatedness in natural 14 

populations, but few have examined the demographic processes driving these patterns. In this 15 

study, we take a novel approach by studying how population structure affects both pairwise 16 

identity and the distribution of heterozygosity in a natural population of the self-incompatible 17 

plant Antirrhinum majus. Excess variance in heterozygosity between individuals is due to 18 

identity disequilibrium (ID), which reflects the variance in inbreeding between individuals; it 19 

is measured by the statistic g2. We calculated g2 together with FST and pairwise relatedness 20 

(Fij) using 91 SNPs in 22,353 individuals collected over 11 years. We find that pairwise Fij 21 

declines rapidly over short spatial scales, and the excess variance in heterozygosity between 22 

individuals reflects significant variation in inbreeding. Additionally, we detect an excess of 23 

individuals with around half the average heterozygosity, indicating either selfing or matings 24 

between close relatives. We use two types of simulation to ask whether variation in 25 

heterozygosity is consistent with fine-scale spatial population structure. First, by simulating 26 

offspring using parents drawn from a range of spatial scales, we show that the known pollen 27 

dispersal kernel explains g2. Second, we simulate a 1000-generation pedigree using the 28 

known dispersal and spatial distribution and find that the resulting g2 is consistent with that 29 

observed from the field data. In contrast, a simulated population with uniform density 30 

underestimates g2, indicating that heterogeneous density promotes identity 31 

disequilibrium. Our study shows that heterogeneous density and leptokurtic dispersal can 32 

together explain the distribution of heterozygosity.  33 
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 37 

Introduction 38 

For most organisms, gene dispersal and therefore relatedness are spatially structured, such 39 

that individuals closer in space are more likely to mate, and be more closely related, than 40 

individuals further apart [1], [2]. Such spatial population structure causes decreasing genetic 41 

similarity with geographic distance (isolation-by-distance [3]); this reduces the mean 42 

heterozygosity of the whole population relative to a well-mixed population. Despite the 43 

ubiquity of these patterns in nature, the role of demography and gene dispersal in determining 44 

the spatial pattern of genetic variation has not been thoroughly explored. Commonly used 45 

spatial models typically assume discrete demes and/or a uniform population density. 46 

However, natural populations are typically patchy, with heterogeneity in both the distribution 47 
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and density of individuals. Patchy and heterogeneous spatial distributions within natural 48 

populations should result in spatial variation in inbreeding and, consequently, excess variance 49 

in heterozygosity. Despite this prediction, the effect of spatial heterogeneity on 50 

heterozygosity has rarely been examined in the population structure literature. Moreover, it is 51 

the interplay of heterogeneous density and dispersal that likely shapes the spatial structuring 52 

of genetic relatedness between individuals. This highlights the importance of understanding 53 

the factors (e.g., life history, demography, population structure) that contribute to shaping the 54 

full distribution of heterozygosity and relatedness in a spatially structured population. 55 

 56 

Understanding the drivers of variation in inbreeding within populations is fundamental, given 57 

its importance to genetic diversity and to fitness. Quantifying variation in inbreeding and 58 

combining this with measures of fitness (or fitness proxies) makes it possible, in principle, to 59 

estimate inbreeding depression either through pedigrees [4], [5] or heterozygosity-fitness 60 

correlations (HFCs). For HFCs, inbreeding depression is estimated by comparing proxy 61 

measures of fitness against heterozygosity, with the expectation that offspring from related 62 

individuals will have lower heterozygosity. Variance in inbreeding is therefore essential for 63 

HFCs to be detected [6]. In addition, variance in inbreeding is interesting per se because it 64 

depends on both demographic history (e.g., [7]) and mating system (selfing, partial selfing or 65 

outcrossing) [8]. Outcrossing species, with generally low levels of inbreeding, provide an 66 

opportunity to examine factors other than mating system variation that may affect inbreeding 67 

variation, and thus, variance in heterozygosity. 68 

 69 

If there is variation in inbreeding between individuals, heterozygosity at different loci will be 70 

correlated. The covariance between loci in heterozygous state is termed identity 71 

disequilibrium (ID), by analogy with linkage disequilibrium, which is the covariance in 72 

allelic state between loci. ID can be calculated across individuals and divided by the square of 73 

the mean heterozygosity to calculate the population statistic g2, which is a measure of 74 

variance in identity by descent [6] amongst individuals. For an outcrossing organism with 75 

fine-scale population structure, spatial patterns of density and mating could have strong 76 

effects on the degree of mating with related individuals, and thus affect identity 77 

disequilibrium and g2. Furthermore, as sessile organisms, mating and offspring dispersal in 78 

plants are mediated by external vectors (pollinators and seed dispersal mechanisms) [9]. 79 

Consequently, the shape of the distribution of dispersal of both pollen and seed will also have 80 

an impact on g2. Additionally, as partial selfing will produce identity disequilibria across loci 81 

for selfed individuals, g2 can be used to estimate the selfing rate of a population, with this 82 

estimator being robust to null alleles and biparental inbreeding [10], [11]. If the sources of 83 

variation in inbreeding are better understood, we may be able to combine g2 with other 84 

statistics of population structure to improve inferences about demographic history [12], [13]. . 85 

 86 

For over a decade, we have sampled a population of the self-incompatible plant Antirrhinum 87 

majus, the long-term aim being to build a pedigree that will allow us to estimate fitness and 88 

dispersal directly. Through that project, we have collected an exceptionally large sample of 89 

individuals with SNP genotypes that are spatially mapped. This dataset enables a powerful 90 

test of whether the observed density and dispersal in this population can account for both the 91 

decay of pairwise relatedness with distance, and for the distribution of heterozygosity across 92 

individuals. Here, we first verify that there is excess variance in heterozygosity, which 93 

reflects an underlying variance in inbreeding. Second, to understand the role of spatial 94 

patterns of dispersal in generating variance in heterozygosity, we compare the empirical 95 

distribution of heterozygosity with that of offspring from simulated matings where parents 96 

were drawn from different dispersal scales. Third, we ask whether heterogeneous population 97 
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density promotes variation in inbreeding, by comparing simulated pedigrees conditioned on 98 

uniform density versus on the observed locations of plants. Taken together, addressing these 99 

questions provides insight into the underlying drivers of the distribution of heterozygosity 100 

and relatedness, and provides novel ways to study the effects of mating patterns and 101 

demography in nature.  102 

 103 

Methods 104 

 105 

Study system 106 

 107 

Antirrhinum majus is a self-incompatible, hermaphroditic, short-lived perennial herb native to 108 

the Iberian Peninsula. It has a seed bank with most individuals’ parents recorded 3-4 years 109 

before they are sampled (D. Field, unpublished data). It grows in a variety of microhabitats 110 

with relatively bare soil or frequent disturbance, including rail embankments, rocky cliffs, 111 

and regularly mowed roadsides. Our study includes two “subspecies” that differ only in 112 

flower color: A. majus pseudomajus has magenta flowers and occurs in northern Spain and 113 

south-western France, including the Pyrenees. A. majus striatum has yellow flowers and a 114 

smaller range, encircled by A. m. pseudomajus. The subspecies are parapatric; narrow clines 115 

with intermediate color hybrids form wherever they meet, and there is no evidence for post-116 

zygotic reproductive barriers [14]. We focus on such a hybrid zone in the Vall de Ribès, 117 

Spain [15], where we have collected demographic data annually since 2009. Across nearly all 118 

of the genome, there is little divergence within our study area between plants with different 119 

flower color, except for limited regions associated with floral pigmentation, which show 120 

steep clines [16]. Thus, the study area can be considered as a single population for studying 121 

neutral genetic variation. 122 

 123 

 124 
 125 

Figure 1: Distribution of A. majus individuals (shown as white circles) in Vall de Ribès, 126 

Spain from the years 2009 to 2019. 127 

 128 

Field sampling 129 

 130 

Genetic samples were obtained annually from 2009-2019 from every accessible flowering 131 

individual in ~5 km stretches of two parallel roads that cross the Vall de Ribès, dubbed the 132 

“lower road” (GIV-4016; ~1150 m elevation) and “upper road” (N-260; ~1350 m) (Fig. 1). 133 

We also sampled along small side roads, railroad embankments, rivers, and hiking trails. The 134 

plants grow preferentially along exposed areas such as roads, therefore, density was very low 135 

away from these disturbed areas between the main sampling sites of the lower and upper 136 
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roads. In some years, we were limited to genotyping only in the core area, ~1 km along each 137 

road. The total genotyped sample summed over the eleven years is 22,353 plants, ranging 138 

from ~750 plants in the smallest year (2018), to ~5500 plants in the largest year (2014). 139 

Eighteen percent of individuals were sampled in more than one year. Sampling was 140 

conducted during peak flowering (early June to late-July). Each year there were fewer than 141 

100 visible but inaccessible plants; consequently, we estimate that we found the majority of 142 

individuals in the sampled area. 143 

 144 

For each plant, we collected leaf samples for genotyping, and recorded spatial locations with 145 

GeoXT handheld GPS units (Trimble, Sunnydale, CA, USA). These devices are accurate to 146 

within 3.7 m, determined by the mean distance between samples comparing samples that had 147 

been inadvertently recorded twice in the field (individuals with similar geographic location 148 

and near-identical genotypes, allowing for SNP errors). Leaf samples were refrigerated upon 149 

return to the field station, dried in silica gel and stored for several weeks. 150 

 151 

SNP panel 152 

 153 
Previously, a panel of 248 SNPs spread throughout the genome was designed for the focal 154 

population (see methods in [17]). We follow these methods but include an additional five 155 

years of data (2015-2019) and use a subset of 91 non-clinal SNPs; the mean sample size per 156 

SNP was 21,212, or ~95% of the total. (see Supplemental Material 1.1 (SM1.1) for SNP 157 

filtering methods). 158 

 159 

Identity by descent vs identity in state 160 

 161 

Throughout this paper, it will be important to distinguish between identity by descent (IBD) 162 

and identity in state. We denote the probability that two genes are identical by descent by F; 163 

this is defined relative to an ancestral reference population, and can in principle be calculated 164 

from the pedigree that descends from that population, independent of the actual allelic state. 165 

What we observe are biallelic SNP genotypes; the two homologous genes in a diploid 166 

individual will be identical in state if the genes are identical by descent, or if the ancestral 167 

genes carried the same allele. Thus, probabilities of identity by descent (F) can be estimated 168 

from observed identities in state. We denote the heterozygosity at locus i in a particular 169 

individual by hi, with hi=0 if the genes are identical in state, and hi=1 otherwise. The mean 170 

heterozygosity of an individual is the average of hi over n loci, denoted multilocus 171 

heterozygosity H = 
1

𝑛
σ ℎ𝑖

𝑛
𝑖=1 .  172 

 173 

 Isolation by distance 174 

  175 

The panel of 91 SNPs was used to calculate FST and isolation by distance, both of which 176 

relate to the mean heterozygosity. We imputed the ~5% missing genotypes for each SNP by 177 

randomly assigning genotypes according to the population-wide allele frequencies at each 178 

marker. FST is defined as the average identity by descent among individuals within a 179 

subpopulation, FS, relative to the total population, FT: 𝐹𝑆𝑇 =
𝐹𝑆−𝐹𝑇

1−𝐹𝑇
 [18]. These identities are 180 

estimated from SNP genotypes since we do not have the full pedigree. Two genes will have a 181 

different allelic state only if they are not identical by descent, and if they derive from 182 

different alleles in the ancestral population. Given overall ancestral allele frequencies p+q=1, 183 

the expected heterozygosity (H̅) of offspring from parents whose genes have a probability of 184 

identity by descent F is 𝐻̅ = (1 − 𝐹)2𝑝𝑞̅̅ ̅̅ ̅, where 2𝑝𝑞̅̅ ̅̅ ̅ is an average over loci. Thus, there is a 185 
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direct relation between FST and the mean heterozygosity: 𝐹𝑆𝑇 = 
𝐻̅̅̅𝑇 − 𝐻̅̅̅𝑆

𝐻̅̅̅𝑇
 . We use this relation to 186 

compute FST for this dataset [19]. (Note that here, H is the probability of non-identity in state, 187 

which depends on the SNP genotype. The subscripts S and T refer to the specified quantity 188 

within subpopulation and total population, respectively). Since we have a single continuous 189 

population, a subpopulation is defined as the set of pairs of individuals within a geographic 190 

separation of 20m and total population denotes all distinct pairs of individuals in the 191 

population. Note that 20m is an arbitrary choice of distance class used to define FST. 192 

 193 

Isolation-by-distance – the decay of genetic similarity with geographic distance – can be 194 

observed by measuring pairwise relatedness between individuals. If individuals are separated 195 

by a distance r, then pairwise relatedness can be calculated as an extension of FST (which we 196 

refer to as pairwise Fij, denoting the relatedness between individuals i and j) by setting FS to 197 

be the probability of identity by descent and, correspondingly, 𝐻𝑆
̅̅ ̅̅  to be the probability of 198 

non-identity in state between genes which are at a distance r apart, thereby extending the idea 199 

of FS from subpopulation to a set of pairs of individuals separated by any geographic distance 200 

class. 𝐻𝑆
̅̅ ̅̅  is calculated by finding the average pairwise heterozygosity between every pair of 201 

individuals which are within some interval {r, r+𝛿r} of distance apart. This formulation is 202 

used to estimate Fij between every pair of individuals relative to the total population, as a 203 

function of their geographic separation. Pairs of individuals are binned into distance classes 204 

of 20m each (i.e individuals within 20m, 21-40m, and so on) and the average pairwise Fij and 205 

the distance corresponding to each bin is calculated. This was done for every year from 2009 206 

to 2019, and the average calculated.  207 

 208 

Variation in inbreeding 209 

 210 

We calculated multilocus heterozygosity for each individual pooling across all years, denoted 211 

here by H, defined as the fraction of heterozygous loci in an individual. In this system 212 

“generations” cannot be clearly defined because of seed dormancy and perenniality. 213 

However, pooling data across years only reduced H by 0.08%. 214 

 215 

We observed an excess of individuals with around half the mean heterozygosity (see Results). 216 

To check whether the pattern was consistent with rare selfing, we compared the likelihood of 217 

a single Gaussian to a mixture of two Gaussian distributions, one with the observed mean and 218 

variance and the other with half its mean and variance.  219 

 220 

The variance in individual heterozygosity consists of two components. The first is due to the 221 

variance in whether an individual locus is heterozygous, and decreases in proportion to the 222 

number of SNP, n: it equals (1 − 𝐹)22𝑝𝑞(1 − 2𝑝𝑞)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ /𝑛. The second is due to covariance in 223 

heterozygosity between loci, which is termed the identity disequilibrium (ID). For a given 224 

pedigree, unlinked genes flow independently. Thus, heterozygosity is independent across 225 

unlinked loci, and so this second component is proportional to the variance in inbreeding 226 

across individuals, var(F). The first component can be estimated from the allele frequencies, 227 

or simply by shuffling the data across individuals within loci, to eliminate ID. The excess 228 

variance is then proportional to the variance in F across individuals, and is measured by the 229 

statistic g2: 230 

 231 

𝑔2  =  
𝛴𝑖≠𝑗 𝑐𝑜𝑣ൣℎ𝑖,ℎ𝑗൧

𝐸ሾℎሿ2
 =  

𝑣𝑎𝑟(𝐹)

(1 − 𝐸ሾ𝐹ሿ)2
 232 

 233 
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(from Eq. 1 in [6]). Here, cov[ℎ𝑖, ℎ𝑗] is the ID between loci i and j, and the sum over all 234 

distinct i,j is the excess variance in H due to ID. Dividing by the square of the mean 235 

heterozygosity E[h]2 eliminates dependence on allele frequency, such that g2 estimates the 236 

variance in F across individuals.  237 

 238 

To describe the variance of inbreeding across individuals, we first check if the variance in the 239 

distribution of individual heterozygosity is significantly greater than the average variance 240 

obtained from 100 replicates. This was done by shuffling heterozygous status randomly 241 

across individuals within loci, which would eliminate correlations between loci generated by 242 

ID. We then computed g2 using the g2_snps function from the R package InbreedR (in R 243 

version 3.6.1 [20]), which implements a modified formula for large data sets to estimate g2, 244 

and provides confidence intervals via bootstrapping to account for the finite number of 245 

individuals sampled [21]. We decomposed ID into components due to linked and unlinked 246 

SNPs by comparing correlations of H for all individuals to those with low H, at several 247 

scales: across all pairs, within linkage groups, and between adjacent SNPs (SM1.2: Table 248 

S1).  249 

 250 

Additionally, g2 can be used to estimate selfing rate within a population [10]. Using the 251 

software SPAGeDi [22], which implements the g2-based selfing rate calculation described in 252 

[10], the selfing rate was estimated for the full population using the 91 SNP data.   253 

 254 

Effects of pollen dispersal on heterozygosity 255 
 256 
With isolation by distance, the distribution of heterozygosity is expected to depend on the 257 

distance between parents: heterozygosity of offspring from nearby parents will have a lower 258 

mean and higher variance compared to offspring from distant parents. To test this prediction, 259 

we simulated offspring using all field individuals as mothers and choosing fathers from a 260 

given distance away (detail in SM1.3). Then we compared the distribution of H between the 261 

field data and offspring simulated from matings with three models of pollen dispersal: the 262 

nearest neighbor to the mother, a Gaussian distribution (σ = 300 m), and a leptokurtic 263 

dispersal kernel sampled from 1463 empirical measurements of pollen dispersal, estimated as 264 

the distances between assigned parents (electronic supplementary material; D. Field, 265 

unpublished data). A CDF of the latter distribution (SM1.3: Fig. S3) shows that 75% of the 266 

matings occur within 60m and has a kurtosis of 16.5 showing that the distribution is indeed 267 

leptokurtic. The genotype of the offspring was assigned using Mendelian inheritance, either 268 

without linkage between markers, or using the known linkage map (electronic supplementary 269 

material; courtesy of Yongbiao Xue, Beijing Institute of Genomics). Including linkage did 270 

not substantially change results, so we mainly show results for simulations without linkage. 271 

We compared distributions, means, and variance of H using Kolmogorov-Smirnov tests, t-272 

tests, and F-tests, respectively. For the leptokurtic pollen dispersal simulation, we checked for 273 

an excess of low-heterozygosity individuals generated by mating between close relatives by 274 

asking whether a mixture of two Gaussian distributions is more likely than a single Gaussian 275 

distribution. 276 

 277 

Heterozygosity in a simulated spatial pedigree 278 

 279 

In order to compare the actual distribution of heterozygosity with that expected for a spatially 280 

structured population, we simulated a continuous two-dimensional population, conditioned 281 

on the known locations of the individuals and the empirically measured seed and pollen 282 

dispersal distances (electronic supplementary material; D. Field, unpublished data), using 283 
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Mathematica 12.0 [23]. Our simulation differs from commonly used models (e.g., island [18], 284 

stepping stone [24] and continuous Wright-Malécot model [3], [25]) in that we include 285 

heterogeneity in density by specifying actual locations to determine relationships in the 286 

pedigree. Thus, our simulation parameters should be seen as “effective” values, analogous to 287 

the traditional Ne. Additionally, we also validated our simulation by comparing pairwise 288 

relatedness directly from the simulated pedigree and from replicate genotypes, and compared 289 

the realized and proposed dispersal kernels (SM1.4: Fig. S6, S7). 290 

 291 

First, we simulated a population with uniform density (the continuous Wright-Malécot 292 

model) as a null model, to compare expected heterozygosity with and without heterogeneous 293 

spatial structure. We simulate a region of ~1.1 x 1.8 km that was sampled consistently in the 294 

A. majus focal population (SM1.4: Fig. S4). Locations were assigned by randomly sampling 295 

N points from a uniform distribution each generation, for 1000 generations. Genetic diversity 296 

is shaped over the coalescent timescale (2Ne, ~170,000 generations in A. majus [16]), which 297 

is far longer than the 1000 generations that we simulate. However, we are concerned here 298 

with the local population structure that determines the variation in inbreeding amongst 299 

individuals within an area of a few km2, which will equilibrate rapidly [25]. The spatial 300 

pedigree was generated by choosing parents for each individual according to a backwards 301 

dispersal distribution measured empirically. The seed and pollen dispersal distances are 302 

estimated respectively as the distance between offspring and nearest parent (assumed to be 303 

the mother) and between parents (electronic supplementary material; D. Field, unpublished 304 

data). For every offspring, the mother and father are chosen from randomly drawn distances 305 

from the seed and pollen dispersal distributions. To choose a parent from a distance r, 6 306 

points are assigned randomly on a circle of radius r centred at the focal individual and the 307 

nearest individual to each of them are found. The closest individual to any of these points is 308 

then chosen as the parent. The accuracy of our algorithm is verified by comparing the 309 

specified and realised seed and pollen dispersal distributions for the simulated pedigrees 310 

(SM1.4: Fig. S7, Table S4). The same procedure is repeated for the father, taking the mother 311 

as the starting point. Since A. majus is self-incompatible, the mother and father are not 312 

allowed to be the same individual.  313 

 314 

Once the spatial pedigree is generated, 10 replicate sets of genotypes are assigned by 315 

dropping genes down the pedigree, starting with equal expected frequencies of both alleles at 316 

each of 91 loci. In fact, one could start with any initial frequencies, since FST-like measures 317 

are independent of them. Population size was adjusted so that FST matched the empirical data 318 

for the simulated sampling area. This was done by first simulating the population with an 319 

initial population size (N) and then repeating the process with higher or lower N until the 320 

desired FST is attained. 321 

 322 

Next, we simulated a population with realistic heterogeneous spatial structure by using the 323 

individual locations available for the years 2009 to 2019 in the A. majus focal population 324 

(SM1.4: Fig. S5). There were fewer individuals from 2017-2018, so these were merged, 325 

giving distribution data for 10 time points. We randomly sample from the ten consecutive 326 

time points, and repeat for 100 cycles, thus iterating for 1000 generations. We sub-sample 327 

from these locations to maintain a constant population size (N). If N is greater than the 328 

number of plants available in a given time point, say k, all k plants are first included and the 329 

remaining N-k locations were re-sampled from the same time point, displaced at a random 330 

angle on a circle of radius 3m to avoid having plants in the same location. This naïve 331 

approach allows us to simulate a spatial structure that is realistic over at least small scales. 332 

We then generated a pedigree following the procedure used for the uniform population, again 333 
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adjusting population size to match the empirically observed FST. Ten replicate sets of 334 

genotypes were run for each of five replicate pedigrees.  335 

 336 

Patterns of isolation by distance, heterozygote deficit (FIS) and identity disequilibrium were 337 

compared between the two simulation types and the field data (calculated from the simulated 338 

sub-area of the field site). As the fitted population sizes were large (see Results), obtaining 339 

direct estimates of identity by descent and thus FST from the pedigrees was not feasible. 340 

Instead, FST was obtained for a pedigree as the average of replicate genotype sets generated 341 

from that pedigree. FIS was calculated from the observed and expected heterozygosity. Values 342 

of g2 were calculated for each replicate from each pedigree using InbreedR (in R version 343 

3.6.1 [20]).  344 

 345 

Results 346 

 347 

Isolation by distance 348 

If we consider pairs of individuals within 20m of each other, the average FST over the eleven 349 

years is 0.0244; however, this is an average over a quantity that depends strongly on distance. 350 

The average pairwise Fij was calculated each year for individuals separated by different 351 

distance classes and then averaged across years. Pairwise relatedness (pairwise Fij) between 352 

individuals decreased rapidly with geographic distance, showing isolation by distance (Fig. 353 

2A). The sharp decline in pairwise identity over short spatial scales corresponds precisely to a 354 

rapid increase in H with distance between parents (SM1.3: Fig. S1), since heterozygosity is 355 

determined by the probability of identity by descent between the genes from each parent. 356 

Note that over large separations (>1Km), pairwise Fij values are necessarily negative, because 357 

distant individuals are less closely related than the average for the whole population. 358 

Variation in inbreeding  359 

Excess variance in the distribution of individual heterozygosity (H) in the field data shows 360 

that there is variance in inbreeding in the population (Fig. 2B). Furthermore, there is an 361 

excess of individuals with around half the mean heterozygosity (i.e., with H~0.22, rather than 362 

0.44; Fig. 2B, blue, lower left). These might be due to a low rate of selfing, and using the g2 363 

estimator calculated with SPAGeDi, the selfing rate for the population is estimated to be 364 

1.2%. Indeed, a mixture between two Gaussian with means ~ 0.22 and 0.44, and variances in 365 

the same ratio, fits significantly better than a single Gaussian (Fig. 2B, compare red and black 366 

to blue) with an increased likelihood of 11.3. However, we shall see in the next section that 367 

this excess is also consistent with matings between close relatives, without the need to invoke 368 

a breakdown in self-incompatibility.  369 

 370 

To examine whether the observed distribution of heterozygosity is significantly different to a 371 

distribution taken from a population with zero identity disequilibrium (ID), we compared the 372 

field data with heterozygous values shuffled across individuals, which eliminates ID by 373 

removing correlations between loci. We found greater variance in heterozygosity in the 374 

observed compared to the randomly shuffled field data (Fig. 2B, gray). For both data sets, the 375 

mean heterozygosity (0.44602) necessarily remains the same, but the observed variance in the 376 

field data (var(H) = 0.00336) was significantly higher than the average variance in 100 377 

shuffled replicates (mean var(H) = 0.00282, s.d. 0.000029). This excess variance between the 378 

observed and shuffled data implies that the mean standardized ID is g2 = 0.0029 (95% CI: 379 

0.0026-0.0033), representing a significant variance in inbreeding between individuals. 380 
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 381 

 382 

 383 
 384 

Figure 2. A: Pairwise relatedness (pairwise Fij) between individuals decreases rapidly with 385 

geographic distance showing isolation- by- distance in the field data. B: Probit transform of 386 

the cumulative distribution function (CDF) of the distribution of individual heterozygosity 387 

(H). A Gaussian appears as a straight line on a probit scale, and the y-axis is the number of 388 

standard deviations of the standard normal distribution. 389 

 390 

The overall ID, as measured by g2, is due to correlations in heterozygosity between all pairs 391 

of loci, most of which are unlinked. We expect stronger correlations between linked loci, 392 

because relatives will share blocks of genome. We found that the mean covariance in 393 

heterozygosity between SNP on the same linkage group is substantially stronger than the 394 

overall mean (0.00265 vs. 0.00056). If we restrict attention to those individuals with H<0.3, 395 

we find that the covariance in heterozygosity between SNP on the same linkage group is still 396 

higher (0.00649), as expected if close relatives share long blocks of genome IBD. This higher 397 

covariance in heterozygosity translates to higher mean g2, which is seen within linkage 398 

groups compared to the overall value (SM1.2: Table S1).  399 

 400 

Effects of pollen dispersal on heterozygosity 401 

The heterozygosity of simulated offspring depends on distance between their parents, with a 402 

rapid increase in mean H with distance (SM1.3: Fig. S1). We compared the observed 403 

distribution of heterozygosity with three alternative scenarios for pollen dispersal. There was 404 

no significant difference between the mean and variance of heterozygosity between the field 405 

data and offspring simulated from the observed leptokurtic dispersal . However, the mean and 406 

variance of heterozygosity differed between the field data and simulated matings with either 407 

nearest neighbors, or with Gaussian dispersal (Fig. 3A, SM1.3: Tables S2-S3). While all three 408 

dispersal schemes differed in the distribution tail as assessed by Kolmogorov-Smirnov tests, 409 

Gaussian and nearest neighbour matings are very different from the field data compared to 410 

the leptokurtic distribution (SM1.3: Table S3). These comparisons were made for a single 411 

replicate, but because each involves 22,353 individuals, there was little variation in the mean 412 

and variance between replicates. 413 

We next examined deviations in the left tail of the distribution, where an excess of low 414 

heterozygosity individuals might arise from selfing or from matings between close relatives. 415 

We focused on the leptokurtic dispersal curve, which was the distribution closest to the field 416 

data. We estimated the increase in likelihood between fitting a single versus mixed Gaussian 417 

distribution (see “Variation in inbreeding”) for 100 replicate simulations. We found that the 418 

mixed Gaussian was a better fit than a single Gaussian, with an increase in log likelihood 419 
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greater than 2 for 69 of 100 replicates. The estimated fraction of putatively “selfed” 420 

individuals was 0.00043, averaged over replicates, which is about half the estimate from the 421 

actual data, 0.00086. In comparison, only 4/100 replicates gave higher estimates than that 422 

observed (SM1.3: Fig. S2). This suggests that the excess of individuals with low 423 

heterozygosity can to a large extent be explained by matings between relatives under 424 

leptokurtic pollen dispersal. Nevertheless, there is a marginally significant excess of such 425 

individuals, with twice as many being seen as expected from our simulations. There is 426 

considerable variation in fit between replicates, simply because deviations in the tail involve 427 

few individuals. 428 

The coefficient g2 reflects excess variation due to identity disequilibrium, and showed similar 429 

patterns as the variance in H. Here, we found no significant difference between g2 from field 430 

data and offspring from simulated matings with leptokurtic pollen dispersal. However, g2 431 

from Gaussian and neighbor matings were 80% higher than g2 from field data and leptokurtic 432 

matings. This nominally represents a significant difference given that the 95% confidence 433 

intervals between these groups do not overlap (Fig. 3B). However, as we discuss below, these 434 

confidence intervals only include sampling error, and not the additional variance due to 435 

random evolutionary realizations. 436 

 437 

 438 
Figure 3. A: Probit transform of the CDF of multilocus heterozygosity, H, for the field data 439 

(blue) versus a single replicate of offspring simulated from Gaussian pollen dispersal 440 

(orange), nearest neighbor matings (gray), and leptokurtic pollen dispersal (green). A normal 441 

distribution (black) with the same mean and standard deviation as the field data is included 442 

for comparison B: Identity disequilibrium (g2) for the same data as above indicating mean 443 

and 95% CI.  444 

 445 

Heterozygosity in a simulated spatial pedigree 446 

 447 

In the previous section, we simulated offspring across one generation. To examine whether 448 

the observed heterozygosity is consistent with a spatially structured model, we simulated 449 

pedigrees over 1000 generations with uniform and heterogeneous density, conditioned on the 450 

locations of individuals observed over ten years, repeated over 100 cycles for the latter case. 451 

The realized seed and pollen dispersal matched the empirical seed and pollen dispersal 452 

distribution for both density types (SM1.4: Fig. S7, Table S4). We required N = 15500 453 

individuals for the heterogeneous density model and 40000 individuals for the uniform 454 

density, in order to match the observed FST ~ 0.022 calculated over a 20m scale from the 455 

simulated sub-area of the field site (SM1.4: Table S5). Up to distances of 1km, the decline in 456 

pairwise identity with distance matched between the field data and the five replicate 457 

pedigrees simulated with heterogeneous density (Fig. 4A, SM1.4: Fig. S8A). High variation 458 
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among replicates suggests that many more SNPs would be needed to match the pattern from 459 

the pedigree (SM1.4: Fig. S8B); moreover, linkage would increase this variance to some 460 

extent. We also compared the pattern of isolation by distance from the field data to that from 461 

the pedigrees generated for both the heterogeneous and uniform density scenarios (Fig 4B, 462 

SM1.4: Fig. S9); the heterogeneous density is a much better fit than the uniform density 463 

(SM1.4: Table S5).  464 

 465 

 466 
Figure 4. A:. Isolation by distance compared between the field data (blue) and five replicate 467 

simulated pedigrees (gray) based on a heterogeneous population density. B: Isolation by 468 

distance from the field data (blue) compared between the simulated pedigree with a 469 

heterogeneous (gray) and uniform (orange) population density.  470 

 471 

Identity disequilibrium (g2) estimates from the genotypes from pedigrees simulated with 472 

heterogeneous density showed substantial variation between the five simulated pedigrees, and 473 

between the ten draws of 91 SNPs from each pedigree (Fig. 5). The average g2 estimated 474 

from the five pedigrees (each with 10 replicates) is 0.00264, which is consistent with the 475 

observed mean annual g2 from the field of 0.00262. On the other hand, when assuming a 476 

uniform density, the average g2 of 0.00171 is significantly lower than the field data. Note that 477 

the confidence limits for the field data, generated by InbreedR, only include error due to 478 

sampling a limited number of individuals. These errors do not account for sampling a limited 479 

number of SNPs, or the random variation between evolutionary realizations (see Discussion).  480 

 481 

 482 
Figure 5. Identity disequilibrium (g2) calculated from field data versus simulated pedigrees. 483 

Five of ten replicates per pedigree are shown (gray: heterogeneous density, with five 484 

simulated pedigrees; orange: uniform density, with one simulated pedigree). Mean from the 485 

field (light blue) is across 2009-2019, while mean from the heterogeneous (black) and 486 

uniform (yellow) simulations is across all replicates. The final year of field data (dark blue) is 487 

comparable to g2 calculated from the final year of pedigree replicates (gray and orange).  488 
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 489 

Discussion 490 

 491 

An enduring problem in evolutionary biology is understanding how demographic processes, 492 

such as heterogeneous density and dispersal, interact with spatial structure to determine the 493 

distribution of heterozygosity within populations. In this study of a long-term dataset, 494 

including more than 20,000 plants sampled over 11 years, we combine field data and 495 

simulations to address questions central to understanding how demography can influence 496 

patterns of heterozygosity. Namely, can we predict the distribution of heterozygosity for an 497 

outcrossing species from key demographic parameters? To address this question, we first 498 

confirmed that there was significant correlation in heterozygosity between markers (g2, a 499 

measure of identity disequilibrium), which implies variation in inbreeding. By simulating 500 

offspring from matings between geo-referenced, genotyped individuals, we show that the 501 

mean heterozygosity increases, and the variance of heterozygosity decreases, with increasing 502 

distance between parents; strikingly, these changes occur over very short scales (~10m, 503 

SM1.3: Fig. S1). We found that the observed distribution of heterozygosity is consistent with 504 

the known leptokurtic distribution of pollen dispersal. We also simulate the population over 505 

1000 generations using the actual seed and pollen dispersal kernels, and the observed 506 

heterogeneous density. We found that this model matches the observed identity 507 

disequilibrium, whereas a model with uniform density substantially underestimates the 508 

observed patterns. Thus, we explain the distribution of heterozygosity (mean, variance and 509 

tails) using known features of the population. Moreover, our results also highlight the 510 

limitations of making theoretical predictions from simulations that only assume simple 511 

demographies. Taken together, our findings highlight the potential for using the observed 512 

demography to explain the distribution of genetic diversity, and specifically the variance in 513 

inbreeding in spatially continuous populations.  514 

 515 

Variation in heterozygosity within populations provides the potential for selection to reduce 516 

the frequency of less fit, inbred individuals. The association between inbreeding and fitness is 517 

often tested through heterozygosity-fitness correlations (HFC), which quantify inbreeding 518 

depression in natural populations by correlating measures of fitness with heterozygosity [6]. 519 

Many studies that test for HFCs find that the excess variation in heterozygosity, g2, which 520 

arises from identity disequilibrium, is low and rarely significant [26]. In our study, we 521 

estimate a significant g2 of 0.0029 (95% CI: 0.0026-0.0033). Although low, this estimate is of 522 

the same order as most of the g2 values found across 105 vertebrate populations in a meta-523 

analysis of 50 HFC studies (average of 0.007) [26], and on the same order as ~60% of the 524 

local populations surveyed in a long-lived tree [27]. Our estimate of significant variation in 525 

heterozygosity provides the opportunity to examine potential drivers of this variance and 526 

examine how density, spatial structure and dispersal contribute to a non-uniform distribution 527 

of heterozygosity. 528 

 529 

In our study, beyond simply estimating identity disequilibrium, we use two types of 530 

simulation to explore how demography shapes variation in inbreeding. The first simulation 531 

shows how the spatial pattern of pollen dispersal affects the distribution of heterozygosity. 532 

Simulated matings with the empirically measured leptokurtic pollen dispersal curve were 533 

consistent with the actual g2, compared to matings with nearest neighbors or a Gaussian 534 

pollen dispersal. This result is somewhat surprising because we did not include the 535 

complexities of the mating system of A. majus. Antirrhinum majus has a gametophytic self-536 

incompatibility system (GSI [28]), whereby the pollen detoxifies secretions from the style 537 

unless the pollen and style genotypes share alleles at the S-locus [29]. This system not only 538 
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prevents selfing, but also reduces mating among relatives (i.e., biparental inbreeding) because 539 

related plants are more likely to share S-alleles [4], [30]. Thus, we might expect that our 540 

simulated matings would have lower mean heterozygosity than the empirical measurement; 541 

yet we found no evidence for such an effect. Indeed, we found that the excess of individuals 542 

with low heterozygosity, around half the mean, can be explained largely by a small amount of 543 

bi-parental inbreeding with leptokurtic pollen dispersal (Fig. 3, SM1.3: Fig. S2). However, 544 

we have little statistical power to distinguish this from rare selfing, which can occur in self-545 

incompatible species. In fact, using the g2 estimator of selfing rate from eq. 9 in [10], our 546 

significant g2 value would imply a selfing rate of 1.2% for this population. However, as 547 

shown by [11], this estimate could be within the bounds of the upward bias of the estimator if 548 

strong biparental inbreeding is present, hence, this does not necessarily imply a breakdown of 549 

self-incompatibility. We believe that our method, fitting a model of two Gaussians, is a more 550 

robust way to estimate selfing than using g2, since it focuses on the low-H individuals rather 551 

than the whole variance. However, it is still challenging to distinguish selfing from close 552 

inbreeding.   553 

 554 

Our second simulation approach asked whether heterogeneous density promotes variation in 555 

inbreeding, given strong fine-scale population structure indicated by a rapid decay in pairwise 556 

Fij (over a few metres, Fig. 2A). We only provide a proof-of-principle, by asking whether a 557 

plausible model of spatial structure can explain the observed heterozygosity. We do not 558 

include all features of the actual population – in particular, we extrapolate by repeatedly 559 

sampling ten years of spatial distributions; we ignore linkage; we simplify the self-560 

incompatibility system; and we assume an annual life cycle (no perenniality or seed bank). 561 

Indeed, simulated pedigrees with uniformly distributed plants gave less identity 562 

disequilibrium than we observed. In contrast, simulated pedigrees conditioned on the actual, 563 

heterogeneous density of plants were consistent with identity disequilibrium measured in the 564 

field. This indicates that patchiness combined with leptokurtic dispersal shapes the 565 

distribution of heterozygosity. Simulations with heterogeneous density also better capture 566 

empirical isolation-by-distance patterns than those with a uniform density (Fig 4B, SM1.4: 567 

Fig. S9). However, the effective population size of 15,500 individuals in the heterogeneous-568 

density simulations is an order of magnitude larger than the average number of plants 569 

observed in a year (~2500). We believe that most plants are sampled each year, so that this 570 

discrepancy is more likely to be due to a seed bank, which is expected to substantially 571 

increase the effective population size [31]. Nevertheless, despite simplifications such as non-572 

overlapping generations, no seed bank, and a simple SI system, the heterogeneous-density 573 

simulation accurately captures patterns of identity disequilibrium and isolation-by-distance.  574 

 575 

Our estimation of identity disequilibrium illustrates a general problem with statistical 576 

comparisons in evolutionary biology. There are three sources of error in estimating g2: firstly, 577 

error generated from sampling a limited number of individuals, secondly, from sampling a 578 

limited number of SNPs, and thirdly from random variation between evolutionary realizations 579 

or trajectories. In our study, the first source (a limited number of individuals) is shown by the 580 

confidence intervals in Fig. 5, obtained by bootstrapping across individuals [21]. The second 581 

source of error (a limited number of SNPs) is shown by the substantial variation in g2 of the 582 

ten replicates of each of five pedigrees. Here, variation is generated by random meiosis 583 

amongst unlinked markers on a fixed pedigree. This variation could be reduced by increasing 584 

the number of SNPs, but the effective number of segregating sites that can be included in the 585 

analysis is fundamentally limited by the length of the genetic map. Finally, there is additional 586 

variation between pedigrees, due to the random assignment of parents in the simulations, 587 

which generates a random pedigree. The wide variation in estimates of g2 due to random 588 
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meiosis, and to the random generation of the pedigree (Fig. 5) is an important reminder that 589 

estimates of parameters are typically limited by the randomness of evolution. The 590 

stochasticity of evolution can potentially generate error variance far higher than that due to 591 

the limited number of individuals or SNPs sampled. 592 

 593 

In addition to analyzing the effect of population structure on the distribution of 594 

heterozygosity, our study highlights the potential of utilizing multiple statistics to estimate 595 

population structure. We have shown that the variance of heterozygosity due to identity 596 

disequilibrium can distinguish alternative dispersal and density distributions, which implies 597 

that in combination with pairwise Fij as a function of distance, g2 can help estimate the 598 

demography. Genetic data contain far more information than is described by FST and g2; for 599 

example, the mean squared disequilibrium can be used to estimate effective population size 600 

[32], [33], and this extends naturally to the covariance of pairwise linkage disequilibrium as a 601 

function of distance. We could simply use a set of such statistics to inform demographic 602 

inference via ABC [34]. However, our preference would be to first develop a theoretical 603 

understanding of how realistic demographies influence statistical measures of spatial 604 

covariance in allele frequency, identity disequilibria, and linkage disequilibria. 605 

 606 

The distribution of heterozygosity has often been measured to estimate inbreeding depression 607 

and examine correlation with fitness. Yet, this type of data has rarely been used to investigate 608 

population structure per se and as a complement to the more widely used pairwise identity, 609 

FST. By bringing together local inbreeding and isolation-by-distance, our study provides a 610 

novel assessment of how dispersal and population density can explain both pairwise identity 611 

and the distribution of heterozygosity in spatially continuous populations. However, we have 612 

only begun to investigate how the distribution of heterozygosity can be shaped by population 613 

structure and demographic parameters. Our future work will focus on understanding how 614 

other features such as a seed bank influence genetic diversity, with the ultimate goal of 615 

deriving information about demographic history from the distribution of heterozygosity in 616 

populations that have fewer measured parameters. New models that include these 617 

complexities, as well as ecological, mating system and life history factors are required to 618 

extend our understanding of the drivers of population structure in natural populations.  619 

 620 

Data availability 621 
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All data and code used to generate simulated data and carry out analysis is available at: 623 

https://doi.org/10.15479/AT:ISTA:11321. Data includes processed field data for 11 years of 624 

Antirrhinum majus sample collection, including SNP values, GPS locations and trait 625 

measurement values for each plant. Also included are dispersal data and a linkage map of 91 626 
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