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Abstract

Understanding the properties of neural networks trained via stochastic gradient descent
(SGD) is at the heart of the theory of deep learning. In this work, we take a mean-
field view, and consider a two-layer ReLU network trained via noisy-SGD for a univariate
regularized regression problem. Our main result is that SGD with vanishingly small noise
injected in the gradients is biased towards a simple solution: at convergence, the ReLU
network implements a piecewise linear map of the inputs, and the number of “knot” points
– i.e., points where the tangent of the ReLU network estimator changes – between two
consecutive training inputs is at most three. In particular, as the number of neurons of the
network grows, the SGD dynamics is captured by the solution of a gradient flow and, at
convergence, the distribution of the weights approaches the unique minimizer of a related
free energy, which has a Gibbs form. Our key technical contribution consists in the analysis
of the estimator resulting from this minimizer: we show that its second derivative vanishes
everywhere, except at some specific locations which represent the “knot” points. We also
provide empirical evidence that knots at locations distinct from the data points might
occur, as predicted by our theory.

Keywords: Stochastic Gradient Descent, Implicit Bias, ReLU Activation, Overparame-
terized Models, Mean-Field

1. Introduction

Neural networks are the key ingredient behind many recent advances in machine learning.
They achieve state-of-the-art performance on various practical tasks, such as image clas-
sification (He et al., 2016) and synthesis (Brock et al., 2019), natural language processing
(Vaswani et al., 2017) and reinforcement learning (Silver et al., 2016). However, these re-
sults would not be possible without computational advances which enabled the training
of highly overparameterized models with billions of weights. Such complex networks are
capable of extracting more sophisticated patterns from the data than their less parameter-
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heavy counterparts. Nonetheless, in the view of classical learning theory, models with a
large number of parameters are prone to over-fitting (Von Luxburg and Schölkopf, 2011).
Contrary to the conventional statistical wisdom, overparameterization turns out to be a
rather desirable property for neural networks. This was even observed in a classical paper
by Bartlett (1998), which demonstrated that in the overparameterized setting, the size of
the network is less important than the magnitude of the weights. More recently, phenomena
such as double descent (Belkin et al., 2019; Spigler et al., 2019; Nakkiran et al., 2020) and
benign overfitting (Bartlett et al., 2020; Li et al., 2021; Bartlett et al., 2021) suggest that
understanding the generalization properties of overparameterized models lies beyond the
scope of the usual control of capacity via the size of the parameter set (Neyshabur et al.,
2015).

One way to explain the generalization capability of large neural networks lies in char-
acterizing the properties of solutions found by stochastic gradient descent (SGD). In other
words, the question is whether the optimization procedure is implicitly selective, i.e., it
finds the functionally simple solutions that exhibit superior generalization ability in com-
parison to other candidates with roughly the same value of the empirical risk. For instance,
Chizat and Bach (2020) consider shallow networks minimizing the logistic loss, and show
that SGD converges to a max-margin classifier on a certain functional space endowed with
the variation norm. In the machine learning literature, it has been suggested that large
margin classifiers inherently exhibit better performance on unseen data (Bartlett et al.,
2021; Cortes and Vapnik, 1995).

Constraints on the functional class of network solutions can also be imposed explicitly,
e.g., via `2 regularization or by adding label noise. In some cases, it has been shown that
the presence of parameter penalties or noise results in surprising implications. Depending
on the regime, it biases optimization to find smooth solutions (Sahs et al., 2020; Jin and
Montúfar, 2020; Savarese et al., 2019) or piecewise linear functions (Blanc et al., 2020; Ergen
and Pilanci, 2021). The study by Balestriero and Baraniuk (2018) proposes an alternative to
conventional `p regularization inspired by max-affine spline operators. It enforces a neural
network to learn orthogonal representations, which significantly improves the performance
and does not require any modifications of the network architecture.

In this work, we develop a novel approach towards understanding the implicit bias of
gradient descent methods applied to overparameterized neural networks. In particular, we
focus on the following key questions:

Once stochastic gradient descent has converged, how does the distribution of
the weights of the neural network look like? What functional properties of
the resulting solution are induced by this stationary distribution? Can we
quantitatively characterize the trade-off between the complexity of the solution
and the size of the training data in the overparameterized regime?

To answer these questions, we consider training a wide two-layer ReLU (rectified linear
unit) network for univariate regression, and we focus on the mean-field regime (Mei et al.,
2018; Rotskoff and Vanden-Eijnden, 2018; Chizat and Bach, 2018; Sirignano and Spiliopou-
los, 2020). In this regime, the idea is that, as the number of neurons of the network grows,
the weights obtained via SGD are close to i.i.d. samples coming from the solution of a
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Figure 1: Example of functions learnt by a two-layer ReLU network with N = 1000 neurons on
different training data. Solutions (a)-(b) are obtained with no regularization and label noise, i.e.,
λ = 0 and β = +∞, while in (c) we have a sufficiently large regularization coefficient, which does not
allow the network to fit the training data perfectly. Note that the piecewise linear solution exhibits
tangent changes also at points different from the training data. Furthermore, the number of “knot”
points may differ from the minimum required to fit the data: for instance, in (a) the minimum
amount of tangent changes is 1, but the solution has two of them.

certain Wasserstein gradient flow. As a consequence, the output of the neural network
approaches the following quantity:

yσ
∗
ρ (x) =

∫
σ∗(x,θ)ρ(θ)dθ.

Here, x is the input, σ∗ denotes the activation function, and ρ is the solution of the Wasser-
stein gradient flow minimizing the free energy

F(ρ) =
1

2
E(x,y)∼P

{
(y − yσ∗ρ (x))2

}
+
λ

2

∫
‖θ‖22ρ(θ)dθ + β−1

∫
ρ(θ) log ρ(θ)dθ. (1.1)

The first term corresponds to the expected squared loss (under the data distribution P);
the second term comes from the `2 regularization; the differential entropy term is linked
to the noise introduced into the SGD update, and it penalizes non-uniform solutions. The
coefficient β is often referred to as inverse temperature. In Mei et al. (2018), it is also shown
that the minimizer of the free energy, call it ρ∗, has a Gibbs form for a sufficiently regular
activation function σ∗. We review the connection between the dynamics of gradient descent
and the solution ρ of the Wasserstein gradient flow in Section 3.1.

A number of works has exploited this connection to provide a rigorous justification
to various phenomena attributed to neural networks. Mei et al. (2018, 2019) give global
convergence guarantees for two-layer networks by studying the energy dissipation along the
trajectory of the flow. The paper by Chizat and Bach (2018) takes a different route and
exploits a lifting property enabled by a certain type of initialization and regularization,
and Javanmard et al. (2020) put forward an argument based on displacement convexity.
Nguyen and Pham (2020) and Araújo et al. (2019) tackle the multi-layer case, and, in
particular, Nguyen and Pham (2020) establish convergence guarantees for a three-layer
network. Fang et al. (2021) introduce a mean-field dynamics capturing the evolution of
the features (instead of the network parameters) and show global convergence of ResNet
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type of architectures. Shevchenko and Mondelli (2020) prove two properties commonly
observed in practice (see e.g. Garipov et al. (2019); Draxler et al. (2018); Kuditipudi et al.
(2019)), namely dropout stability and mode connectivity, for multi-layer networks trained
under the mean-field regime. De Bortoli et al. (2020) consider different scalings of the step
size of SGD, and identify two regimes under which different mean-field limits are obtained.
Williams et al. (2019) show that the gradient flow for unregularized objectives forces the
neurons of a two-layer ReLU network to concentrate around a subset of the training data
points.

In this paper, we take a mean-field view to show that SGD is biased towards functionally
simple solutions, namely, piecewise linear functions. Our idea is to analyze the stationary
distribution ρ∗ minimizing the free energy (1.1). We show that, in the low temperature
regime (β →∞), the estimator’s curvature vanishes everywhere except for a certain cluster
set. More precisely, for each interval between two consecutive training inputs, aside for a
set of small measure, the second derivative vanishes, i.e.,

∂2

∂x2
yσ
∗
ρ∗ (x)→ 0, as β →∞.

Furthermore, we provide a characterization of the cluster set and show that its measure
vanishes while it concentrates around at most 3 points per interval. Ultimately, this analysis
guarantees that, in the regime of decreasing temperature (corresponding to a small noise
injected in the gradient updates), the solution found by SGD is piecewise linear. Our main
contribution can be summarized in the following informal statement:

Theorem (Informal). Under the low temperature regime, i.e., β → ∞, the estimator ob-
tained by training a two-layer ReLU network via noisy-SGD converges to a piecewise linear
solution. Furthermore, the number of “knot” points – i.e., points at which distinct linear
pieces connect – between two consecutive training inputs is at most 3.

Let us remark on a few important points. In the overparameterized regime, the number
of neurons N is significantly larger than the number of training samples M , i.e., N � M .
The output of the two-layer ReLU network is a linear combination of N ReLU units, hence
the function implemented by the network is clearly piecewise linear with O(N) knot points.
Here, we show that the number of knot points is actually O(M) � O(N). Our analysis
applies for both constant (λ → λ̄ > 0) and vanishing (λ → 0) regularization, and it does
not require a specific form for the initialization of the parameters of the networks (as long
as some mild technical conditions are satisfied).

In a nutshell, we establish a novel technique that accurately characterizes the solution
to which gradient descent methods converge, when training overparameterized two-layer
ReLU networks. Our analysis unveils a behaviour which is qualitatively different from that
described in recent works (Williams et al., 2019; Blanc et al., 2020; Ergen and Pilanci, 2021)
(see also a detailed comparison in Section 8): knot points are not necessarily allocated at
the training points, or in a way that results in a function with the minimum number of
tangent changes required to fit the data. We provide also numerical simulations to validate
our findings (see Section 7 and Figure 1 above). We suggest that this novel behaviour is
likely due to the difference in settings and the additional `2 regularization (including of the
bias parameters).
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Organization of the paper. The rest of the paper is organized as follows. In Section
2, we review the related work and a more detailed comparison is deferred to Section 8. In
Section 3, we provide some preliminaries, including a background on the mean-field analysis
in Section 3.1. Our main results are stated in Section 4 and proved in Section 5. In Section
6, we provide an example of a dataset for which the estimator found by SGD has a knot
at a location different from the training inputs. We validate our findings with numerical
simulations for different regression tasks in Section 7. We conclude and discuss some future
directions in Section 9. Some of the technical lemmas and the corresponding proofs are
deferred to Appendix A.

Notation. We use bold symbols for vectors a, b, and plain symbols for real numbers
a, b. We use capitalized bold symbols to denote matrices, e.g., Θ. We denote the `2 norm
of vectors a, b by ‖a‖2, ‖b‖2. Given an integer N , we denote [N ] = {1, . . . , N}. Given a
discrete set A, |A| is its cardinality. Similarly, given a Lebesgue measurable set B ⊂ Rd
its Lebesgue measure is given by |B|. Given a sequence of distributions {ρn}n≥0, we write
ρn ⇀ ρ to denote the weak L1 convergence of the corresponding measures. For a sequence
of functions {fn}n≥0 we denote by fn → f the pointwise convergence to a function f . Given
a real number x ∈ R, the closest integer that is not greater than x is defined by bxc.

2. Related Work

The line of works (Williams et al., 2019; Jin and Montúfar, 2020) shows that, in the lazy
training regime (Chizat et al., 2019; Jacot et al., 2018) and for a uniform initialization,
SGD converges to a cubic spline interpolating the data. Furthermore, for multivariate re-
gression in the lazy training regime, Jin and Montúfar (2020) proved that the optimization
procedure is biased towards solutions minimizing the 2-norm of the Radon transform of
the fractional Laplacian. Similar results (although without the connection to the training
dynamics) are obtained in (Savarese et al., 2019; Ongie et al., 2020), which analyze the
solutions with zero loss and minimum norm of the parameters. Ergen and Pilanci (2021)
develop a convex analytic framework to explain the bias towards simple solutions. In par-
ticular, an explicit characterization of the minimizer is provided, which implies that an
optimal set of parameters yields linear spline interpolation for regression problems involv-
ing one dimensional or rank-one data. Cao et al. (2021) show that, for overparameterized
models, the lower degree spherical harmonics are easier to learn. This observation comes
from the fact that, in the lazy training regime, the convergence occurs faster along the
directions given by the top eigenfunctions of the neural tangent kernel. Classification with
linear networks on separable data is considered in (Soudry et al., 2018), where it is shown
that gradient descent converges to the max-margin solution. This max-margin behavior is
demonstrated in (Chizat and Bach, 2020) for non-linear wide two-layer networks using a
mean-field analysis. In particular, in the mean-field regime, optimizing the logistic loss is
equivalent to finding the max-margin classifier in a certain functional space. The paper by
Zhang et al. (2020) focuses on the lazy training regime, and it shows that the optimization
procedure finds a solution that fits the data perfectly and is closest to the starting point
of the dynamics in terms of Euclidean distance in the parameter space. Wu et al. (2021)
characterize the directional bias of GD and SGD in the case of moderate (but annealing)
learning rate.
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The behavior of SGD with label noise near the zero-loss manifold is studied in (Blanc
et al., 2020). Here, it is shown that the training algorithm implicitly optimizes an auxiliary
objective, namely, the sum of squared norms of the gradients evaluated at each training
sample. This allows the authors of (Blanc et al., 2020) to show that SGD with label noise
for a two-layer ReLU network with skip-connections is biased towards a piecewise linear
solution. In particular, this piecewise linear solution has the minimum number of tangent
changes required to fit the data. Williams et al. (2019) consider the Wasserstein gradient
flow on a certain space of reduced parameters (in polar coordinates), and show that the
points where the solution changes tangent are concentrated around a subset of training
examples. A trade-off between the scale of the initialization and the training regime is also
provided in (Williams et al., 2019; Sahs et al., 2020). Maennel et al. (2018) prove that the
gradient flow enforces the weight vectors to concentrate at a small number of directions
determined by the input data. Through the lens of spline theory, Parhi and Nowak (2020b)
explain that a number of best practices used in deep learning, such as weight decay and
path-norm, are connected to the ReLU activation and its smooth counterparts. Neyshabur
et al. (2019) suggest a novel complexity measure for neural networks that provides a tighter
generalization for the case of ReLU activation.

3. Preliminaries

3.1 Mean-field Background

We consider a two-layer neural network with N neurons and one-dimensional input x ∈ R:

ŷN (x,Θ) =
1

N

N∑
i=1

σ∗(x,θi), (3.1)

where ŷN (x,Θ) ∈ R is the output of the network, Θ = (θ1, . . . ,θN ) ∈ RD×N , with θi ∈ RD,
are the parameters of the network, D is the dimension of parameters of each neuron, and
σ∗ : R × RD → R represents the activation function. A typical example is σ∗(x,θ) =
a(wx+ b)+, where θ = (a,w, b) ∈ R3 and (·)+ : R→ R is a rectified linear unit activation.

We consider a regression problem for a dataset {(xj , yj)}Mj=1 containing M points, and
we aim to minimize the following expected squared loss with `2 regularization:

E
{

(ŷN (x,Θ)− y)2
}

+
λ

N

N∑
i=1

‖θi‖22 =
1

M

M∑
j=1

(ŷN (xj ,Θ)− yj)2 +
λ

N

N∑
i=1

‖θi‖22. (3.2)

On the LHS of (3.2), the expectation is taken over (x, y) ∼ P, with P = M−1
∑M

j=1 δ(xj ,yj)

and xj < xj+1 ∀j ∈ [M − 1]. Here, δ(a,b) stands for a delta distribution centered at (a, b) ∈
R2.

We are given samples (x̃k, ỹk)k≥0 ∼i.i.d. P, and we learn the network parameters Θ via
stochastic gradient descent (SGD) with step size sk and additive Gaussian noise scaled by
a factor β−1 > 0 (often referred to as a temperature):

θk+1
i = (1− 2λsk)θ

k
i + 2sk

(
ỹk − ŷN (x̃k,Θ

k)
)
∇θi

(
σ∗(x̃k,θ

k
i )
)

+
√

2sk/βg
k
i , (3.3)
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where Θk stands for the network parameters after k steps of the optimization procedure,
{gki }i∈[N ],k≥0 ∼i.i.d. N (0, ID), and the term −2λskθ

k
i corresponds to `2 regularization.

The parameters are initialized independently according to a given distribution ρ0, i.e.,
{θ0

i }i∈[N ] ∼i.i.d. ρ0.
For some ε > 0, we assume that the step size of the noisy SGD update (3.3) is given by

sk = εξ(εk), where ξ : R≥0 → R≥0 is a sufficiently regular function. Let ρ̂Nk := 1
N

∑N
i=1 δθki

denote the empirical distribution of weights after k steps of noisy SGD. Then, in Mei et al.
(2018), it is proved that the evolution of ρ̂Nk is well approximated by a certain distributional
dynamics. In formulas,

ρ̂
(N)
bt/εc ⇀ ρt,

almost surely along any sequence (N → ∞, εN → 0) such that N/ log (N/εN ) → ∞ and
εN log (N/εN )→ 0. (Here, we have put the subscript N in εN to emphasize that the choice
of the learning rate depends on N .) The distribution ρt is the solution of the following
partial differential equation (PDE):

∂tρt = 2ξ(t)∇θ · (ρt∇θΨλ(θ, ρt)) + 2ξ(t)β−1∆θρt,

Ψλ(θ, ρ) : =
1

M

M∑
i=1

(
yσ
∗
ρ (xi)− yi

)
· σ∗(xi,θ) +

λ

2
‖θ‖22. (3.4)

Here,∇θ·v(θ) stands for the divergence of the vector field v(θ), and ∆θf(θ) =
∑D

j=1 ∂
2
θj
f(θ)

is the Laplacian of the function f : RD → RD. To describe the next result, we first introduce
a few related quantities. Define the infinite-width network with activation σ∗ : R×RD → R
and weight distribution ρ : RD → [0,+∞) as follows:

yσ
∗
ρ (x) =

∫
σ∗(x,θ)ρ(θ)dθ,

where the integral is taken over the support of ρ. For the forthcoming analysis, a certain
regularity is required for the weight distribution ρ. In particular, the weight distribution is
restricted to a set of admissible densities

K :=

{
ρ : RD → [0,+∞) measurable:

∫
ρ(θ)dθ = 1, M(ρ) <∞

}
,

where M(ρ) =
∫
‖θ‖22ρ(θ)dθ. The expected risk attained on the distribution ρ by the

infinite-width network with activation σ∗ is defined by

Rσ
∗
(ρ) :=

1

M

M∑
i=1

(
yσ
∗
ρ (xi)− yi

)2
.

The quantity

H(ρ) := −
∫
ρ(θ) log ρ(θ)dθ

stands for the differential entropy of ρ, which is equal to −∞ if the distribution ρ is sin-
gular. In this view, the distributional dynamics (3.4) is the Wasserstein gradient flow that

7



Shevchenko, Kungurtsev and Mondelli

minimizes the free energy

Fσ∗(ρ) =
1

2
Rσ
∗
(ρ) +

λ

2
M(ρ)− β−1H(ρ), (3.5)

over the set of admissible densities K. Furthermore, this free energy has a unique minimizer
and the solution of (3.4) converges to it as t→∞:

ρt ⇀ ρ∗σ∗ ∈ arg min
ρ′∈K

Fσ∗(ρ′), as t→∞.

The unique minimizer ρ∗σ∗ is absolutely continuous, and it has the Gibbs form

ρ∗σ∗(θ) =
exp

{
− βΨλ(θ, ρ∗σ∗)

}
Zσ∗(β, λ)

, (3.6)

where Zσ∗(β, λ) is the normalization constant, also referred to as partition function.

3.2 Approximation of the ReLU Activation

Let us elaborate on the properties which σ∗ should satisfy so that the results of Section
3.1 hold. First, the distributional dynamic (3.4) is known to be well-defined for a smooth
and bounded potential Ψλ. In particular, it suffices to choose a bounded, Lipschitz σ∗ with
Lipschitz gradient, see assumptions A2-A3 in Mei et al. (2018). Furthermore, the minimizer
of the free energy (3.5) exists and has a Gibbs form even for non-smooth potentials and, in
particular, it suffices that σ∗ is bounded and Lipschitz (this allows the first derivative to be
discontinuous), see Lemmas 10.2-10.4 in Mei et al. (2018).

In the case of a ReLU activation, the corresponding σ∗ has the following form

σ∗(x,θ) = a(wx+ b)+ = amax{0, wx+ b}, θ = (a,w, b) ∈ R3,

which does not satisfy some of the aforementioned conditions. The first salient problem is
the lack of continuity of the derivative at zero. This issue can be dealt with by considering
a soft-plus activation with scale τ :

(x)τ :=
log(1 + eτx)

τ
.

Notice that, as τ grows large, we have that (·)τ → (·)+. Another issue is that the function
σ∗(x,θ) is not Lipschitz in the parameters θ, and it is unbounded. This problem can be
solved by an appropriate truncation applied to the parameter a of the activation. The
truncation should be Lipschitz and smooth for the dynamics to be well-defined.

In this view, we now provide the details of the approximation of the ReLU activation.
For a parameter v ∈ R, we denote by vm its m-truncation defined as

vm := 1{|v|>m} ·m · sign(v) + 1{|v|≤m} · v.

Notice that the function f(v) = vm is Lipschitz continuous and bounded. For a parameter
v ∈ R, we denote by vτ,m its τ -smooth m-truncation defined as follows: vτ,m converges
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Figure 2: Visualization of the functions involved in the approximation of the ReLU activation.

pointwise to vm as τ → ∞, vτ,m = v inside the ball {v ∈ R : |v| < m − 1
τ }, and the map

v 7→ vτ,m is odd and belongs to C4(R). For a visualization of vm and vτ,m, see Figure 2a.
We define the smooth m-truncation (·)m+ of the ReLU activation as

(x)m+ := 1{x≤m2}(x)+ + 1{x>m2}φm(x),

where φm is chosen so that the following holds: (x)m+ ∈ C4(R), (x)m+ ≤ (x)+ for all x ∈ R,
and |φ′′m(x)| ≤ 1

m2 for x > m. Note that these conditions imply that φm(m2) = m2 and
φ′m(m2) = 1. Furthermore, in order to enforce the bound on φ′′m, we pick φm so that
limx→+∞ φm(x) = 2m2, and limx→+∞ φ

′
m(x) = limx→+∞ φ

′′
m(x) = 0. For a visualization of

(·)m+ , see Figure 2b.
Finally, we define the smooth m-truncation (·)mτ of the softplus activation as

(x)mτ := 1{x≤xm}(x)τ + 1{x>xm}φτ,m(x), (3.7)

where xm ∈ R is such that (xm)τ = m2. As in the truncation of ReLU, we choose φτ,m
so that (x)mτ ∈ C4(R) and |φ′′τ,m(x)| ≤ 1

m2 for x > xm. Furthermore, we require that
(·)mτ converges pointwise to (·)m+ as τ → ∞ (which we can guarantee since (·)τ → (·)+, as
τ → ∞). To enforce these conditions, we pick φτ,m so that φτ,m(xm) = m2, φ′τ,m(xm) =
(x)′τ

∣∣
x=xm

, limx→+∞ φτ,m(x) = 2m2, and limx→+∞ φ
′
τ,m(x) = limx→+∞ φ

′′
τ,m(x) = 0. For a

visualization of (·)mτ , see Figure 2c.
Notice that, for τ ≥ 1, the soft-plus activation can be sandwiched as follows:

(x)+ −
1

τ
≤ (x)τ ≤ (x)+ +

1

τ
.

In order to establish the continuity of a certain limit and smoothness properties, we also pick
φτ,m such that the smooth m-truncation of soft-plus activation satisfies a similar bound:

(x)+ −
1

τ
≤ (x)mτ ≤ (x)+ +

1

τ
. (3.8)

At this point, we remark that the activation (θ, x) 7→ aτ,m(wτ,mx+ b)mτ satisfies all the
conditions necessary for the results of Section 3.1 to hold. In what follows, we will also use
the activation (θ, x) 7→ am(wmx + b)mτ as an auxiliary object. This map is not smooth,
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but it satisfies all the assumptions required for the existence of a free energy minimizer
ρ∗σ∗ . We also note that the truncation of the parameter w might seem unnatural (we are
truncating the ReLU activation anyway), but it simplifies our analysis. In particular, it
allows us to establish a connection between the derivatives (w.r.t. the input x) of the
predictor implemented by the solution of the flow (3.4) and the same quantity evaluated on
the minimizer, as t grows large.

We will use the following notation for the values of the risks corresponding to different
activations

Rτ,mi (ρ) := − 1

M

(
yi −

∫
aτ,m(wτ,mxi + b)mτ ρ(θ)dθ

)
, Rτ,m(ρ) := M

M∑
i=1

(Rτ,mi (ρ))
2
,

Rmi (ρ) := − 1

M

(
yi −

∫
am(wmxi + b)m+ρ(θ)dθ

)
, Rm(ρ) := M

M∑
i=1

(Rmi (ρ))2 ,

and for the related free-energies

Fτ,m(ρ) :=
1

2
Rτ,m(ρ) +

λ

2
M(ρ)− β−1H(ρ),

Fm(ρ) :=
1

2
Rm(ρ) +

λ

2
M(ρ)− β−1H(ρ).

Here, Rτ,mi and Rmi represent the rescaled error on the i-th training sample, and Rτ,m and
Rm are the standard expected square losses. In this way, we can write the Gibbs minimizers
in a compact form, namely,

ρ∗τ,m(θ) = Z−1
τ,m(β, λ) exp

{
−β

[
M∑
i=1

Rτ,mi (ρ∗τ,m) · aτ,m(wτ,mxi + b)mτ +
λ

2
‖θ‖22

]}
, (3.9)

ρ∗m(θ) = Z−1
m (β, λ) exp

{
−β

[
M∑
i=1

Rmi (ρ∗m) · am(wmxi + b)m+ +
λ

2
‖θ‖22

]}
, (3.10)

where Zτ,m(β, λ) and Zm(β, λ) denote the partition functions.

4. Main Results

Before presenting the main results, let us introduce the notion of a cluster set. This set allows
us to identify the locations of the knot points of an estimator function that is implemented
by the neural network. In particular, we consider the second derivative of the predictor
evaluated at the Gibbs distribution with activation (θ, x) 7→ aτ,m(wτ,mx+ b)mτ , for large τ ,
i.e.,

lim
τ→∞

∂2

∂x2

∫
aτ,m(wτ,mx+ b)mτ ρ

∗
τ,m(θ)dθ. (4.1)

Then, the cluster set is associated to the inputs on which the quantity (4.1) might grow
unbounded in absolute value, in the low temperature regime (β−1 → 0). Intuitively, this in-
dicates that on some points of the cluster set, the tangent of the predictor changes abruptly,
resulting in “knots”. We denote the cluster set by Ω(m,β, λ), and we define it below.

10
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xj xj+1

fj(x)

f j(x)
(a)

xj xj+1

fj(x)

f j(x)

(b)

xj xj+1

fj(x)f j(x)

(c)

Figure 3: Three different configurations of the polynomials f j(x) and fj(x), together with the
corresponding cluster set. The dark blue curves show the shape of polynomials, and the red bold
intervals indicate the set on which polynomials attain non-positive value.

Let I be the set of prediction intervals, i.e.,

I =
{

[x0 := −L, x1], [x1, x2], · · · , [xM−1, xM ], [xM , xM+1 := L]
}
,

where L > max{|x1|, · · · , |xM |} is any fixed positive constant independent of (τ,m, β, λ).
For each Ij := [xj , xj+1] ∈ I, the intersection of the cluster set with the prediction interval
Ij is denoted by Ωj(m,β, λ), i.e.,

Ωj(m,β, λ) = Ω(m,β, λ) ∩ Ij . (4.2)

Thus, in order to define the cluster set Ω(m,β, λ), it suffices to give the definition of
Ωj(m,β, λ). To do so, consider the second-degree polynomials f j(x) and fj(x) given by

f j(x) := 1 + x2 − (Ajx−Bj)2,

fj(x) := 1 + x2 − (Ajx−Bj)2,
(4.3)

with coefficients

Aj :=
1

λ

M∑
i=j+1

Rmi (ρ∗m), Aj :=
1

λ

j∑
i=1

Rmi (ρ∗m),

Bj :=
1

λ

M∑
i=j+1

Rmi (ρ∗m)xi, Bj :=
1

λ

j∑
i=1

Rmi (ρ∗m)xi. (4.4)

Here, if the summation set is empty (e.g., for A0), the corresponding coefficient is equal
to zero. Then, the set Ωj(m,β, λ) is defined as the union of the non-positive sets of the
second-degree polynomials f j(x) and fj(x):

Ωj(m,β, λ) = Ωj(m,β, λ) ∪ Ωj(m,β, λ), (4.5)

where

Ωj(m,β, λ) := {x ∈ Ij : f j(x) ≤ 0},
Ωj(m,β, λ) := {x ∈ Ij : fj(x) ≤ 0}. (4.6)

11
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x xc = xminxj xj+1

(a)

x xc = xj+1xj

(b)

xxcxj xj+1

(c)

xj xj+1xc x xmax

(d)

xc = xj+1xxmaxxj

(e)

xcx

xmin
xj xj+1

(f)

Figure 4: Representation of the critical point xc for different configurations of the polynomial f j

and evaluation point x. The red dot indicates the location of the critical point. The dashed line
indicates the value of f j attained at the corresponding point. The dark blue curve shows the shape
of the polynomial f j .

We now provide an informal explanation on how the non-positive sets of the second-degree
polynomials f j(x) and fj(x) come into play. A central object of interest in our analysis is the
second derivative of the estimator implemented by the neural network, and our strategy is to
bound its magnitude by a particular Gaussian-like integral. This integral does not diverge
as long as the corresponding covariance matrix is non-degenerate, i.e., it has strictly positive
eigenvalues. In this view, the non-positive sets of the polynomials f j(x) and fj(x) precisely
characterize the inputs x for which this covariance matrix is degenerate. Hence, for such
inputs x, this upper bound on the second derivative of the estimator diverges, which implies
that the predictor may have a “knot”.

Since f j(x) and fj(x) are second-degree polynomials, the set Ωj(m,β, λ) can be always
written as the union of at most 3 intervals. Moreover, Ωj(m,β, λ) depends only on the
errors of the estimator at the training points and on the penalty parameter λ. Thus, if
one has access to the value of the errors at each training point for the optimal estimator,
i.e., Rmi (ρ∗m), an explicit expression for the cluster set can be readily obtained. Figure 3
shows three different configurations of the polynomials f j(x) and fj(x), together with the
corresponding cluster set.

The size of the set Ωj(m,β, λ) can be controlled explicitly as a function of the parameters
(m,β, λ). More formally, in Lemma 5.3, we show that the Lebesgue measure of Ωj(m,β, λ)
can be upper bounded as

|Ωj(m,β, λ)| ≤ eCβ

m2
, (4.7)

12
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where C > 0 denotes a numerical constant independent of (τ,m, β, λ) and we have made
the following assumption:

A1. τ ≥ 1, β ≥ max
{
C1,

1
λ ,

1
λ log 1

λ

}
, m > C2 and λ < C3 for some numerical constants

C1, C2, C3 > 0.

In particular, (4.7) implies that the cluster set vanishes as β →∞ and m = eΘ(β). Therefore,
as Ωj(m,β, λ) is the union of at most 3 intervals, the cluster set concentrates on at most 3
points per prediction interval.

We note that our use of A1 throughout the sequel is with the flexibility of C1, C2, and
C3 in mind; we are interested in the behavior as m and β grow large, so we permit liberty
in the determination of the constants implying the formal statements we intend to show.

A key step of our analysis (cf. Theorem 1) consists in showing that, outside the cluster
set, the absolute value of the second derivative vanishes. Our bound on this absolute value
is connected to the speed of decay to zero of the polynomials f j(x) and fj(x), as the input
x approaches the cluster set. In order to establish a quantitative bound for such a decay,
we introduce an auxiliary quantity, namely, a critical point, that is associated to each input
point outside of the cluster set. Given the polynomial f j(·) and the input x ∈ Ij\Ωj(m,β, λ),
the critical point xc associated to x is defined below.

Definition 4.1 (Critical point). If fj(x̃) = 0 has no solutions for x̃ ∈ R, then the critical
point xc associated to x and Ij \ Ωj(m,β, λ) is defined to be the minimizer of fj(·) on Ij,
i.e., xc = arg minx̃∈Ij fj(x̃). In case of multiple minimizers, e.g., (a, b) = (1, 0), we set
xc = xj+1. If fj(x̃) = 0 has at least one solution for x̃ ∈ R, then we let xr be the root of
fj (in R and not necessarily in the segment Ij) which is the closest in Euclidean distance
to x, and we define the critical point xc to be the closest point to xr in Ij, i.e., xc = xr if
xr ∈ Ij and xc is one of the two extremes of the interval otherwise.

Figure 4 provides a visualization of the critical point associated to x for several config-
urations of f j . For the polynomial fj(·) and an input x ∈ Ij \Ωj(m,β, λ), the critical point
x̄c is defined in a similar fashion. In this view, we show in Lemma 5.5 that the following
lower bounds on f j , fj hold for x ∈ Ij \ Ω(m,β, λ),

Cj(x) := γ1(x− xc)2 + γ2 ≤ f j(x), Cj(x) := γ3(x− x̄c)2 + γ4 ≤ fj(x). (4.8)

The coefficients γ1, γ2, γ3, γ4 > 0 satisfy the following condition: either γ1 > ε or γ2 > ε,
and either γ3 > ε or γ4 > ε, where ε > 0 is a numerical constant independent of the choice
of (m,β, λ).

At this point, we are ready to state our upper bound on the second derivative outside
the cluster set.

Theorem 1 (Vanishing curvature). Assume that condition A1 is satisfied and that m >
eK1β for some numerical constant K1 > 0 independent of (τ,m, β, λ). Then, for each
x ∈ Ij \ Ωj(m,β, λ), the following upper bound on the second derivative holds

lim
τ→+∞

∣∣∣∣∣ ∂2

∂x2

∫
aτ,m(wτ,mx+ b)mτ ρ

∗
τ,m(θ)dθ

∣∣∣∣∣ ≤ O
(

1

mλ
+

1

βλ7/4(C̄j(x))2

)
, (4.9)
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x1 x2 x3 x4 x5

(a)

x1 x2 x3 x4 x5

(b)

x1 x2 x3 x4 x5

(c)

Figure 5: Three examples of piecewise linear functions that fit the data with zero squared error.
Dashed black line indicates the y value for each training input. Red dots are located at points where
the function changes its tangent. (a) and (b) illustrates two admissible piecewise linear solutions,
while (c) is not admissible due to the location of break points on interval [x2, x3].

where the coefficient C̄j(x) is defined as

C̄j(x) = min
{
Cj(x), Cj(x), 1

}
, (4.10)

with Cj(x) and Cj(x) given by (4.8). Furthermore, the following upper-bound on the size
of the cluster set holds

|Ω(m,β, λ)| ≤ K2

m
, (4.11)

for some numerical constant K2 > 0 independent of (τ,m, β, λ).

Some remarks are in order. First, the inequality (4.9) shows that, in the low temper-
ature regime, the curvature vanishes outside the cluster set, and it also provides a decay
rate. Second, we will upper bound the measure of the cluster set as in (4.7), thus the
condition m > eK1β ensures that the upper bound (4.11) holds. Finally, the presence of
the coefficient C̄j(x) is due to the fact that the second derivative can grow unbounded for
points approaching the cluster set. Let us highlight that this growth is solely dictated by the
distance to the cluster set, and it does not depend on (m,β, λ). In fact, (4.8) holds, where
one of the coefficients in {γ1, γ2} and in {γ3, γ4} is lower bounded by a strictly positive
constant independent of (m,β, λ).

From Theorem 1, we conclude that, as mλ→∞ and βλ7/4 →∞, the second derivative
vanishes for all x ∈ Ij \ Ωj(m,β, λ). Furthermore, for m > eCβ and β → ∞, the cluster
set concentrates on at most 3 points per interval. Therefore, the estimator

∫
aτ,m(wτ,mx+

b)mτ ρ
∗
τ,m(θ)dθ is piecewise linear with “knot” points given by the cluster set (cf. Theorem

2). To formalize this result, we define the notion of an admissible piecewise linear solution.

Definition 4.2 (Admissible piecewise linear solution). Given a set of prediction intervals
I, a function f : R → R is an admissible piecewise linear solution if f is continuous,
piecewise linear and has at most 3 knot points (i.e., the points where a change of tangent
occurs) per prediction interval Ij ∈ I. Moreover, the only configuration possible for 3 knots
to occur is the following: two knots are located strictly at the end points of the interval, and
the remaining point lies strictly in the interior of the interval.
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Figure 5 provides some examples of piecewise linear solutions: (a) and (b) are admissible
(in the sense of Definition 4.2), while (c) is not admissible, since it has two knots in the
interior of the prediction interval and one located at the right endpoint. As mentioned
before, the location of the knot points is associated with the limiting behaviour of the
corresponding polynomials f j(x) and fj(x). For instance, consider the prediction interval
[x2, x3] ∈ I. Then, the configuration of Figure 5a corresponds to the case described in
Figure 3a. In fact, f j has a negative leading coefficient, and its roots are converging to
the end points of the interval. Moreover, fj has positive curvature and the minimizer is
located inside the interval. The same parallel can be drawn between Figure 5b and Figure
3c. Furthermore, one can verify that the situation described in Figure 5c cannot be achieved
for any configuration of f j(x) and fj(x).

We are now ready to state our result concerning the structure of the function obtained
from the Gibbs distribution ρ∗τ,m.

Theorem 2 (Free energy minimizer solution is increasingly more piecewise linear). Assume
that condition A1 is satisfied and that m > eK1β, where K1 > 0 is a constant independent
of (τ,m, β, λ). Then, given a set of prediction intervals I, there exists a family of admissible
piecewise linear solutions {fm,β,λ} as per Definition 4.2, such that, for any I ∈ I and x ∈ I,
the following convergence result holds

lim
βλ7/4→+∞

lim
τ→+∞

∣∣∣∣∣fm,β,λ(x)−
∫
aτ,m(wτ,mx+ b)mτ ρ

∗
τ,m(θ)dθ

∣∣∣∣∣ = 0.

In words, Theorem 2 means that the solution resulting from the minimization of the free
energy (3.5) approaches a piecewise linear function, as the noise vanishes. Let us highlight
that our result tackles both the regularized case in which λ approaches a fixed positive
constant and the un-regularized one in which λ vanishes (as long as its vanishing rate is
sufficiently slow to ensure that βλ7/4 →∞). We also note that that the family {fm,β,λ} is
well-behaved, i.e., on each linear region the function fm,β,λ has the following representation:
fm,β,λ = ux + v for some u, v ∈ R, and the coefficients |u|, |v| are uniformly bounded in
(m,β, λ).

The proof of Theorem 2 crucially relies on the fact that the second moment of ρ∗τ,m is

uniformly bounded along the sequence βλ7/4 →∞. In fact, the uniform bound on the second
moment implies that the first derivatives of the predictors w.r.t. the input are uniformly
bounded (even for points inside the cluster set), and therefore the sequence of predictors
is equi-Lipschitz. This, in particular, allows us to show that the limit is well-behaved, as
function changes can be controlled via Lipschitz bounds.

Let us clarify that Theorem 2 does not establish the uniqueness of the limit in (m,β, λ),
i.e., that the limiting piecewise linear function is the same regardless of the subsequence.
Our numerical results reported in Figures 1, 6b, 7 and 8 suggest that the limit is unique.
However, a typical line of argument (see e.g. Jordan et al. (1998)) would require the lower-
semicontinuity of the free energy (which does not hold for m = ∞). Furthermore, even
the uniqueness of the minimizer for β = ∞ remains unclear in our setup. Nevertheless,
let us point out that the sequence {ρ∗τ,m} is tight, since the second moments are uniformly
bounded by Lemma A.6, and Proposition 2.3 in Hu et al. (2021) suggests that at least
the cluster points of the sequence {ρ∗τ,m} as β → ∞ coincide with the set of minimizers of
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the limiting objective (β = ∞). Another piece of evidence comes from the fact that the
annealed dynamics converges to the minimizers of the noiseless objective (Chizat, 2022).
We leave for future work the resolution of these issues.

We remark that providing a quantitative bound on the parameter τ appears to be
challenging. The current analysis relies on a dominated convergence argument which does
not lead to an explicit convergence rate. Obtaining such a rate requires understanding the
trade-off between the terms in the free energy (3.5) for varying τ , and it is also left for
future work.

Finally, by combining Theorem 2 with the mean-field analysis in Mei et al. (2018),
we obtain the desired result on finite-width networks trained via noisy SGD in the low
temperature regime.

Corollary 4.3 (Noisy SGD solution is increasingly more piecewise linear). Assume that
condition A1 holds and that m > eK1β, where K1 > 0 is a constant independent of
(τ,m, β, λ). Let ρ0 be absolutely continuous and K0 sub-Gaussian, where K0 > 0 is some
numerical constant. Assume also that M(ρ0) < ∞ and H(ρ0) > −∞. Let σ∗(x,θ) =
aτ,m(wτ,mx + b)mτ be the activation function, and let θk be obtained by running k = bt/εc
steps of the noisy SGD algorithm (3.3) with data (x̃k, ỹk)k≥0 ∼i.i.d. P and initialization ρ0.
Then, given a set of prediction intervals I, there exists a family of admissible piecewise
linear solutions {fm,β,λ} as per Definition 4.2, such that, for any I ∈ I and x ∈ I, the
following convergence result holds almost surely:

lim
βλ7/4→+∞

lim
τ→+∞

lim
t→+∞

lim
ε→0
N→∞

∣∣∣∣∣fm,β,λ(x)− 1

N

N∑
i=1

σ∗(x,θki )

∣∣∣∣∣ = 0,

where the limit in N, ε is taken along any subsequence {(N, ε = εN )} with N/ log (N/εN )→
∞ and εN log (N/εN )→ 0.

In words, Corollary 4.3 means that, at convergence, the estimator implemented by a wide
two-layer ReLU network approaches a piecewise linear function, in the regime of vanishingly
small noise. In fact, as τ,m → ∞, the activation function σ∗(x,θ) = aτ,m(wτ,mx + b)mτ
converges pointwise to the ReLU activation a(wx + b)+. We also remark that our result
holds for any initialization of the weights of the network, as long as some mild technical
conditions are fulfilled (absolute continuity, sub-Gaussian tails, finite second moment and
entropy).

Let us clarify some technical aspects of the statement of Corollary 4.3. The result holds
for a particular sequence of minimizers, since some of the limits (t→∞, (N, ε−1)→∞, and
β →∞) are not interchangeable. Furthermore, it appears to be difficult to prove the same
statement directly for the noiseless case (β =∞). We also point out that the stochasticity
of the gradient descent algorithm does not play a role in our analysis, since its impact is
seen to be inconsequential by the usual concentration argument (Mei et al., 2018) when
passing to its non-stochastic counterpart.

As concerns the limit in t, describing the dependence of the mixing time of the diffusion
dynamics (3.4) on the temperature parameter β is a cumbersome task. In particular,
Gayrard et al. (2004) show that an exponentially bad dependence could occur if the target
function has multiple small risk regions. However, some recent studies show an exponentially
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fast convergence of the noisy dynamics under some reasonable but particular conditions on
the objective landscape (Chizat, 2022; Nitanda et al., 2022).

As concerns the limit in (N, ε), the analyses in Mei et al. (2018, 2019) lead to an upper
bound on the error term that, with probability at least 1− e−z2

, is given by

CeCt
√

1/N ∨ ε ·
[√

1 + log(N(t/ε ∨ 1)) + z
]
, (4.12)

where a ∨ b denotes the maximum between a and b. The exponential dependence of (4.12)
in the time t of the dynamics is a common drawback of existing mean-field analyses, and
improving it is an open problem which lies beyond the scope of this work. Let us conclude
by mentioning that the numerical results presented in Section 7 suggest that, in practical
settings, the convergence to the limit occurs rather quickly in the various parameters.

5. Proof of the Main Results

5.1 Roadmap of the Argument

We start by providing an informal outline of the proof for the main statements. In Section
5.2, we show that, in the low temperature regime, the curvature of the predictor evaluated
at the Gibbs distribution ρ∗τ,m vanishes everywhere except at a small neighbourhood of at
most three points per prediction interval Ij ∈ I (Theorem 1). This is done in a few steps.
First, in Lemma 5.1, we show that, as τ → ∞, the density ρ∗τ,m acts similarly to a delta
distribution supported on the lower-dimensional linear subspace {b ∈ R : b = −wmx},
namely,

lim
τ→∞

∂2

∂x2

∫
aτ,m(wτ,mx+ b)mτ ρ

∗
τ,m(θ)dθ ≈

∫
am(wm)2ρ∗m(a,w,−wmx)dadw. (5.1)

To do so, in Lemma A.4 we prove that, as τ → ∞, the sequence ρ∗τ,m(θ) of minimizers of
the free energy Fτ,m converges pointwise for all θ to a minimizer ρ∗m(θ) of the free energy
Fm with truncated ReLU activation. Then, a dominated convergence argument allows us
to obtain (5.1). Next, in Lemma 5.7 we show that, as β → ∞, the absolute value of the
integral ∫

am(wm)2ρ∗m(a,w,−wmx)dadw (5.2)

can be made arbitrary small for all x except those in the cluster set. The idea is that the
absolute value of (5.2) can be bounded by a certain Gaussian integral, and the corresponding
covariance matrix is well-defined everywhere except in the cluster set (see Lemmas 5.4 and
5.5). The definition of the cluster set (see (4.2)-(4.6)) together with the fact that the
partition function of ρ∗m is uniformly bounded in m (see Lemma 5.2) allows us to show that
the cluster set concentrates on at most three points per interval as β →∞.

In Section 5.3, we show that the predictor evaluated at the Gibbs distribution ρ∗τ,m can be
approximated arbitrarily well by an admissible piecewise linear solution (Theorem 2). First,
via a Taylor argument, since the curvature vanishes, the estimator can be approximated by a
linear function on each interval of I\Ω(m,β, λ). Since the cluster set vanishes concentrating
on at most three points per prediction interval, the predictor converges to an admissible
piecewise linear solution. However, there is one technical subtlety to consider before reaching
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this conclusion. Namely, we must consider the possibility that the sequence of predictors
experiences unbounded oscillations inside the cluster set, which might ultimately result in
a discontinuous limit. Fortunately, this scenario is ruled out because the sequence ρ∗τ,m
has uniformly bounded second moments. This fact in conjunction with the structure of
the first derivative of the predictor yields the conclusion that the sequence of predictors is
equi-Lipschitz, and therefore the limit is well-behaved.

Finally, the proof of Corollary 4.3 follows from similar arguments together with the ap-
plication of the result established in Mei et al. (2018). More specifically, first, the truncation
of the parameter w ensures that, as t→∞, the curvature of the predictor evaluated on the
solution ρt of the flow (3.4) converges pointwise in x to the corresponding evaluation on the
Gibbs distribution ρ∗τ,m. Next, following Mei et al. (2018), we couple the weights obtained
after bt/εc steps of the SGD iteration (3.3) with N i.i.d. particles with distribution ρt, thus
obtaining that the curvature of the SGD predictor converges to the curvature of the flow
predictor. By using this coupling again, together with the fact that along the trajectory of
the flow M(ρt) < C (see Mei et al. (2018) or Jordan et al. (1998)), we obtain a uniform
bound on the second moment of the empirical distribution ρ̂Nbt/εc of the SGD weights. The
final result then follows from the same Lipschitz argument described above.

5.2 Proof of Theorem 1

Let us start with the proof of the vanishing curvature phenomenon. The quantity

∂2

∂x2

∫
aτ,m(wτ,mx+ b)mτ ρ

∗
τ,m(θ)dθ (5.3)

is hard to analyze directly due to the presence of the τ -smoothing in the soft-plus activation.
However, the structure of the activation (·)mτ alongside with the pointwise convergence of
the minimizers ρ∗τ,m to ρ∗m (cf. Lemma A.4) allows us to infer the properties of (5.3) through
the analysis of the auxiliary object:∫

am(wm)2ρ∗m(a,w,−wmx)dadw. (5.4)

Formally, we show that the approximation result below holds.

Lemma 5.1 (Convergence to delta). Assume that condition A1 holds. Let ρ∗τ,m and ρ∗m be
the minimizers of the free energy for truncated softplus and ReLU activations, respectively,
as defined in (3.9)-(3.10). Then,

lim
τ→∞

∣∣∣∣ ∂2

(∂x)2

∫
aτ,m [(wτ,mx+ b)mτ ] ρ∗τ,m(θ)dθ −

∫
am(wm)2ρ∗m(a,w,−wmx)dadw

∣∣∣∣ ≤ C

mλ
,

where C is a constant independent of (m, τ, β, λ).

Proof of Lemma 5.1. First, we show that

lim
τ→∞

∣∣∣∣∣
∫
aτ,m

[
∂2

(∂x)2 (wτ,mx+ b)mτ

]
ρ∗τ,m(θ)dθ

−
∫
am(wm)2ρ∗m(a,w,−wmx)dadw

∣∣∣∣∣ ≤ C

mλ
.

(5.5)
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Recall the definition of the activation (·)τm provided in (3.7). We can decompose the integral
into two pieces with respect to the domain of truncation and obtain∫

aτ,m
[

∂2

(∂x)2
(wτ,mx+ b)mτ

]
ρ∗τ,m(θ)dθ

=

∫
wτ,mx+b≤xm

aτ,m
[

∂2

(∂x)2
(wτ,mx+ b)τ

]
ρ∗τ,m(θ)dθ

+

∫
wτ,mx+b>xm

aτ,m(wτ,m)2

[
∂2

(∂u)2
φτ,m(u)

∣∣∣∣∣
u=wτ,mx+b

]
ρ∗τ,m(θ)dθ. (5.6)

Let us focus on the first term in the RHS of (5.6). The second derivative has the following
form

∂2

(∂x)2 (wτ,mx+ b)τ = (wτ,m)2 · τeτ(wτ,mx+b)(
eτ(wτ,mx+b) + 1

)2 > 0.

Thus, the following chain of equalities holds∫
wτ,mx+b≤xm

aτ,m
[

∂2

(∂x)2 (wτ,mx+ b)τ

]
ρ∗τ,m(θ)dθ

=

∫
wτ,mx+b≤xm

aτ,m(wτ,m)2 · τeτ(wτ,mx+b)(
eτ(wτ,mx+b) + 1

)2 ρ∗τ,m(θ)dθ

=

∫
1{y≤τxm} · a

τ,m(wτ,m)2 · ey

(ey + 1)2 ρ
∗
τ,m

(
a,w,

y

τ
− wτ,mx

)
d(a,w, y),

where in the last step we have performed the change of variables y = τ(wτ,mx + b). By
Lemma A.4, we have that, as τ →∞, ρ∗τ,m(θ) converges to ρ∗m(θ) pointwise in θ. Further-
more, as τ → ∞, aτ,m converges to am for any a, and wτ,m converges to wm for any w.
Thus, as the Gibbs distributions ρ∗τ,m(θ) and ρ∗m(θ) are continuous with respect to θ, we
have that

lim
τ→∞

[
1{y≤τxm} · a

τ,m(wτ,m)2 · ey

(ey + 1)2 ρ
∗
τ,m

(
a,w,

y

τ
− wτ,mx

)]
= am(wm)2 · ey

(ey + 1)2 ρ
∗
m (a,w,−wmx) .

Furthermore, combining (A.4) and (A.5) from Lemma A.2, we get the following bound

ρ∗τ,m(θ) ≤ C ′ exp

(
−βλ‖θ‖

2
2

2

)
, (5.7)

for some constant C ′ > 0 independent of θ and τ . Thus, we have

|aτ,m|(wτ,m)2 · ey

(ey + 1)2 ρ
∗
τ,m

(
a,w,

y

τ
− wτ,mx

)
≤C ′m3 · ey

(ey + 1)2 · exp

(
−βλ(a2 + w2)

2

)
,
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which is integrable in (y, a, w). Hence, by using the Dominated Convergence theorem and
integrating out y using Tonelli’s theorem, we have

lim
τ→∞

∣∣∣∣∣
∫
wτ,mx+b≤xm

aτ,m
[

∂2

(∂x)2
(wτ,mx+ b)τ

]
ρ∗τ,m(θ)dθ

−
∫
am(wm)2ρ∗m(a,w,−wmx)dadw

∣∣∣∣∣ = 0.

(5.8)

Now, by triangle inequality, it remains to show that the absolute value of the second term in
the RHS of (5.6) can be upper bounded by O

(
1
mλ

)
as τ →∞. Recall that, by construction,

|φ′′τ,m(x)| ≤ 1

m2
, |aτ,m| ≤ m, |wτ,m| ≤ |w|,

for any x > xm and any (a,w) ∈ R2. Thus, the following upper bound holds

lim
τ→∞

∫
wτ,mx+b>xm

|aτ,m|(wτ,m)2

∣∣∣∣∣ ∂2

(∂u)2
φτ,m(u)

∣∣∣∣∣
u=wτ,mx+b

∣∣∣∣∣ ρ∗τ,m(θ)dθ

≤ 1

m
lim
τ→∞

∫
w2ρ∗τ,m(θ)dθ. (5.9)

In addition, we have the following pointwise convergence of the integrand

lim
τ→∞

w2ρ∗τ,m(θ) = w2ρ∗m(θ).

Furthermore, by using (5.7), we conclude that the integrand can be dominated by an inte-
grable function. Hence, an application of the Dominated Convergence theorem gives that

1

m
lim
τ→∞

∫
w2ρ∗τ,m(θ)dθ =

1

m

∫
w2ρ∗m(θ)dθ ≤ C ′′

mλ
, (5.10)

where the last inequality follows from Lemma A.2, which gives that M(ρ∗m) < C ′′/λ for
some C ′′ > 0 that is independent of (m,λ). By combining (5.6), (5.8), (5.9) and (5.10), we
conclude that (5.5) holds. Finally, by using a standard line of arguments, i.e., Mean Value
theorem and Dominated Convergence, the derivative can be pushed inside the integral sign,
which finishes the proof.

Next, we study the set on which (5.4) might grow unbounded. In particular, in Lemma
5.3, we provide an upper bound on the measure of the set Ωj(m,β, λ) defined in (4.5)-(4.6).
To do so, we will first show that the partition function of ρ∗m is uniformly bounded in m,
as stated and proved below.

Lemma 5.2 (Uniform bound on partition function). Consider σ∗(θ, x) = aτ,m(wτ,mx+b)mτ
or σ∗(θ, x) = am(wmx+b)m+ , and let ρ∗σ∗ be the Gibbs distribution with activation σ∗. Then,
the following upper bound holds for its partition function Zσ∗(β, λ):

lnZσ∗(β, λ) ≤ βC + 1 + 3 log
8π

βλ
,

where C > 0 is a constant independent of (m, τ, β, λ).
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Proof of Lemma 5.2. Let Rσ
∗
i (ρ∗σ∗) be defined as follows

Rσ
∗
i (ρ∗σ∗) := − 1

M

(
yi − yσ

∗
ρ∗
σ∗

(xi)
)
.

By substituting the form (3.6) of the Gibbs distribution into the free energy functional
(3.5), we have that

Fσ∗(ρ) =
1

2M

M∑
i=1

(
yi − yσ

∗
ρ∗
σ∗

(xi)
)2

+
λ

2
M(ρ∗σ∗)

−
∫ M∑

i=1

[
Rσ
∗
i (ρ∗σ∗) · σ∗(xi,θ)

]
ρ∗σ∗(θ)dθ − λ

2

∫
‖θ‖22ρ∗σ∗(θ)dθ − 1

β
lnZσ∗(β, λ).

Note that, by Fubini’s theorem, we can interchange summation and integration in the first
integral, since the activation and the labels are bounded. By using also the definition of
Rσ
∗
i (ρ∗σ∗), we have that

Fσ∗(ρ) =
1

2M

M∑
i=1

y2
i +

1

2M

M∑
i=1

(
yσ
∗
ρ∗
σ∗

(xi)
)2
− 1

M

M∑
i=1

yi · yσ
∗
ρ∗
σ∗

(xi) +
λ

2
M(ρ∗σ∗)

− 1

M

M∑
i=1

(
yσ
∗
ρ∗
σ∗

(xi)
)2

+
1

M

M∑
i=1

yi · yσ
∗
ρ∗
σ∗

(xi)−
λ

2
M(ρ∗σ∗)−

1

β
lnZσ∗(β, λ)

= − 1

β
lnZσ∗(β, λ)− 1

2M

M∑
i=1

(
yσ
∗
ρ∗
σ∗

(xi)
)2

+
1

2M

M∑
i=1

y2
i

≤ − 1

β
lnZσ∗(β, λ) +

1

2M

M∑
i=1

y2
i

≤ − 1

β
lnZσ∗(β, λ) + C,

where C > 0 is independent of (m, τ, β, λ). From Lemma 10.2 in Mei et al. (2018), we
obtain that, for any ρ ∈ K,

F(ρ) ≥ 1

2
R(ρ) +

λ

4
M(ρ)− 1

β

[
1 + 3 log

8π

βλ

]
≥ − 1

β

[
1 + 3 log

8π

βλ

]
,

where the last inequality follows from non-negativity of R(ρ) and M(ρ). Combining the
upper and lower bounds gives

− 1

β
lnZσ∗(β, λ) + C ≥ − 1

β

[
1 + 3 log

8π

βλ

]
.

After a rearrangement, we have

lnZσ∗(β, λ) ≤ βC + 1 + 3 log
8π

βλ
,

which concludes the proof.
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In order to bound the measure of Ωj(m,β, λ), the idea is to combine the upper bound
on the partition function of Lemma 5.2 with a lower bound that diverges in m unless
|Ωj(m,β, λ)| vanishes. In particular, we derive a lower bound with the structure of a
Gaussian integral which grows unbounded for a certain set of inputs. This set of inputs
corresponds to the scenario when the Gaussian covariance has non-positive eigenvalues, and
it can be expressed as the set in which the polynomials fj and f j defined in (4.3) are non-
negative. For brevity, we suppress the dependence of Ωj and Ωj on (m,β, λ) in the proofs
below.

Lemma 5.3 (Bound on measure of cluster set). Assume that condition A1 holds. For
j ∈ {0, . . . ,M}, let Ωj and Ωj be defined as in (4.6). Then,

|Ωj |, |Ωj | ≤ K1
eβK2

m2
, (5.11)

where K1,K2 > 0 is independent of (m,β, λ).

Proof of Lemma 5.3. We start with the proof for Ωj . For j = M , the corresponding
polynomial fM (x) is equal to 1 + x2 and therefore |ΩM | = 0. Let us now consider the case
j 6= M , and assume that µ(Ωj) > 0. (If that’s not the case, the claim trivially holds.)

Note that, as f j(x) is a polynomial of degree at most two in x, Ωj is the union of at
most two intervals. Then, the following set has a non-zero Lebesgue measure in R2:

Ω := {(w, b) ∈ R+ × R : b = −wmx, 0 < w < m, x ∈ Ωj}.

Now, we can lower bound the partition function as

Zm(β, λ) ≥
∫
{|a|<m}×Ω

exp

{
−βλ

2

[
2

λ

M∑
i=1

Rmi (ρ∗m) · am(wmxi + b)m+ + ‖θ‖22

]}
dθ

=

∫
{|a|<m}×Ω

exp

−βλ2
 2

λ

M∑
i=j+1

Rmi (ρ∗m) · am(wmxi + b) + ‖θ‖22

dθ.

(5.12)

Here, the equality in the second line follows from the following observation: if i ∈ [j] and
(w, b) ∈ Ω, then wmxi + b ≤ 0 and therefore (wmxi + b)m+ = 0; if i > j and (w, b) ∈ Ω,
then 0 < wmxi + b < m2 (|x|, |xi| ≤ L, hence |xi − x| ≤ m, as L is a numerical constant
independent of m and m is sufficiently large by assumption A1) and therefore (wmxi+b)

m
+ =

wmxi + b for all (w, b) ∈ Ω. Thus, after the change of variables (a,w, b) 7→ (a,w,−wmx)
and an application of Tonelli’s theorem, the RHS in (5.12) reduces to∫

x∈Ωj

∫
{|a|<m}×{0<w<m}

w · exp

{
−βλ

2

[
2aw(Bj −Ajx) + a2 + w2(1 + x2)

]}
d(a,w)dx.

(5.13)
Here the coefficients Aj and Bj are defined as per (4.4). The term under the exponent can
be rewritten as

2aw(Bj −Ajx) + a2 + w2(1 + x2) =
[
a w

]
Σ−1

[
a
w

]
,
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with

Σ−1 =

[
1 (Bj −Ajx)

(Bj −Ajx) 1 + x2

]
.

By definition of Ωj in conjunction with Sylvester’s criterion, we have that Σ−1 has a non-
positive eigenvalue with corresponding eigenvector

λ− =
1

2

(
−
√

4(Bj −Ajx)2 + x4 + x2 + 2

)
≤ 0, v− =

(
−
x2 +

√
4(Bj −Ajx)2 + x4

2(Bj −Ajx)
, 1

)
.

Furthermore, the other eigenvalue with corresponding eigenvector is given by

λ+ =
1

2

(√
4(Bj −Ajx)2 + x4 + x2 + 2

)
> 0, v+ =

(
−
x2 −

√
4(Bj −Ajx)2 + x4

2(Bj −Ajx)
, 1

)
.

Note that v− and v+ are orthogonal, and consider the following change of variables for the
integral

z =

[
z1

z2

]
=

[
v−/‖v−‖2
v+/‖v+‖2

] [
a
w

]
= QT

[
a
w

]
⇔ Qz =

[
a
w

]
⇔
[
a(z)
w(z)

]
:= Qz.

As the matrix Q is unitary, the quantity in (5.13) can be rewritten as∫
x∈Ωj

∫
{|a(z)|<m}×{0<w(z)<m}

w(z) · exp

{
−βλ

2

[
λ−z

2
1 + λ+z

2
2

]}
dzdx,

as the determinant of the Jacobian is 1 for any unitary linear transformation. As λ− ≤ 0,
this quantity is lower bounded by∫

x∈Ωj

∫
{|a(z)|<m}×{0<w(z)<m}

w(z) · exp

{
−βλ

2

[
λ+z

2
2

]}
dzdx. (5.14)

Notice that ‖v−‖ ≥ 1, ‖v+‖ ≥ 1 and w(z) = z1/‖v−‖2 + z2/‖v+‖2. Thus, picking z1 ∈
(0,m/2] and z2 ∈ (0,m/2] ensures that 0 < w(z) < m. Furthermore, these conditions on z
do not violate the requirement on a(z), since |a(z)| ≤ |z1|+ |z2| ≤ m. Consequently, as the
integrand is non-negative, the integral in (5.14) is lower bounded by∫

x∈Ωj

∫
{0<z1<m/2}×{0<z2<m/2}

w(z) · exp

{
−βλ

2

[
λ+z

2
2

]}
dzdx. (5.15)

By Lemma A.5, |Rmi (ρ∗m)| is bounded by a constant independent of (m,β, λ), since λ < C3

from condition A1. Hence, λ|Ajx − Bj | is also uniformly bounded in (m,β, λ). This, in
particular, implies that

λ · λ+ ≤ K1,

where K1 > 0 is independent of (m,β, λ). Furthermore, by definition of Ωj , |Bj − Ajx| >
1, which implies that ‖v+‖2 and ‖v−‖2 are also upper bounded by a constant K2 > 0
independent of (m,β, λ), and therefore

w(z) ≤ z1 + z2

K2
.
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With this in mind, we can then further lower bound the integral in (5.15) by∫
x∈Ωj

∫
{0<z1<m/2}×{0<z2<m/2}

1

K2
(z1 + z2) · exp

{
−K1β

2
· z2

2

}
dzdx

= |Ωj |
∫
{0<z1<m/2}×{0<z2<m/2}

1

K2
(z1 + z2) · exp

{
−K1β

2
· z2

2

}
dz

≥ |Ωj |
∫
{0<z1<m/2}×{0<z2<m/2}

1

K2
z1 · exp

{
−K1β

2
· z2

2

}
dz

=
|Ωj |
K2

[
m2

8

√
π

2K1β
erf

(
m
√
K1β

2
√

2

)]
≥ |Ωj |K3m

2

√
β

,

(5.16)

where K3 > 0 is independent of (m,β, λ) and in the last passage we have used that

erf
(
m
√
K1β

2
√

2

)
≥ 1/10 for sufficiently large m and β. By combining (5.16) with the up-

per bound on the partition function given by Lemma 5.2, the desired result immediately
follows and the proof for Ωj is complete.

In regards to the argument for Ωj , for j = 0 the result trivially holds, since f0(x) = 1+x2

and, thus, |Ω0| = 0. For j > 0, the partition function can be lower bounded by

∫
{|a|<m}×Ω

exp

{
−βλ

2

[
2

λ

j∑
i=1

Rmi (ρ∗m) · am(wmxi + b) + ‖θ‖22

]}
dθ, (5.17)

where the set Ω is defined on non-positive w and x ∈ Ωj , i.e.,

Ω := {(w, b) ∈ R+ × R : b = −wmx, −m < w < 0, x ∈ Ωj}.

The rest of the argument remains the same by noting that with the change of variable

(a,w, b) 7→ (−a,−w,wmx)

the quantity in (5.17) is equal to∫
x∈Ωj

∫
{|a|<m}×{0<w<m}

w · exp

{
−βλ

2

[
2aw(Bj −Ajx) + a2 + w2(1 + x2)

]}
d(a,w)dx,

which is exactly as in (5.13), but with x ∈ Ωj and the polynomial (Bj − Ajx) in place of
x ∈ Ωj and the polynomial (Bj −Ajx).

In order to control the magnitude of (5.4), it is also necessary to understand the behavior
of the polynomials defined in (4.3). The worst case scenario, in terms of presenting a
challenge to bounding the curvature, corresponds to f j or fj being arbitrarily close to zero
on the whole area outside of cluster set. In fact, this would imply that the Gaussian-like
integral arising in the computation of (5.4) has arbitrary small eigenvalues. More specifically,
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our plan is to exploit the following bound for x ∈ Ij \ Ωj(m,β, λ):

|(5.4)| ≤ C
∫
|a|w2

[
exp

{
−βλ

2
· f j(x) · (a2 + w2)

}

+ exp

{
−βλ

2
· fj(x) · (a2 + w2)

}]
dθ.

(5.18)

Now, the RHS of (5.18) diverges (and, therefore, the bound is useless), if either of the
polynomials is arbitrarily close to zero outside of the cluster set. Fortunately, we are able
to prove that this cannot happen: in Lemma 5.5 we show that f j(x) and fj(x) can be small
only when x approaches the cluster set, i.e.,

f j(x), fj(x) ≥ min{Cj(x), Cj(x), 1},

where Cj(x), Cj(x) are defined in (4.8) and, because of the condition on their coefficients
{Ki}4i=1, they cannot be arbitrarily close to 0 in any interval Ij .

As a preliminary step towards the proof of Lemma 5.5, we show an auxiliary result for
polynomials of a certain form. Fix some interval I = [Il, Ir] ⊂ R. Given two quantities
a, b ∈ R, consider the following polynomial of degree at most two

P2(x) := (1− a2) · x2 + 2ab · x+ (1− b2), x ∈ I, (5.19)

where we suppress the dependence on (a, b), i.e., P2(x; a, b) = P2(x), for more compact
notation. In addition, let Ω+ be the subset of I on which P2 is strictly positive, i.e.,

Ω+ := {x ∈ I : P2(x) > 0}.

For a fixed small constant CΩ > 0, define the set of admissible coefficients as follows

U := {(a, b) ∈ R2 : |Ω+| ≥ CΩ}. (5.20)

Given (a, b) ∈ U and x ∈ Ω+, we define the critical point xc of the polynomial P2 associated
with x and Ω+ in the same fashion as in Definition 4.1, after replacing f j(·) with P2(·) and
Ij \ Ωj(m,β, λ) with Ω+. Notice that, since Ω+ has strictly positive Lebesgue measure for
(a, b) ∈ U , the critical point is well-defined and, in particular, xc ∈ I always holds.

Lemma 5.4 (Lower bound on polynomial). Fix some CΩ such that U , as defined in (5.20),
is of positive measure. Pick some interval (a, b) ∈ U . Let x ∈ Ω+ and xc be the critical
point associated to x. Then, the following holds

P2(x) ≥ α2(x− xc)2 + α1|x− xc|+ α0, (5.21)

where α0, α1, α2 ≥ 0 and at least one of them is lower bounded by a strictly positive constant
depending on CΩ but independent of the choice of (a, b) ∈ U .

We defer the proof of Lemma 5.4 to Appendix A.3. Recall the definition of the polyno-
mial f j(x) given in (4.3), and notice that expression can be rearranged such that f j(x) is
in the form of (5.19), namely

f j(x) = 1 + x2 − (Ajx−Bj)2 = (1− (Aj)2)x2 + 2AjBjx+ (1− (Bj)2).

In this view, the following result follows from Lemma 5.4.
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Lemma 5.5 (Well-defined quadratic form). Assume that (Aj , Bj) ∈ U , i.e., |Ij\Ωj | is lower
bounded by a positive constant. Given x ∈ Ij \ Ωj, let xc be the critical point associated to
x. Then, we have that

f j(x) ≥ Cj(x) := γ1(x− xc)2 + γ2, (5.22)

where γ1, γ2 > 0 and either γ1 > ε or γ2 > ε for some ε > 0 that is independent of (Aj , Bj)
but depending on CΩ as appearing in the definition of U .

Proof of Lemma 5.5. Note that Ij \ Ωj is the set in which f j is strictly positive. Hence,
since |Ij \Ωj | is lower bounded by a positive constant independent of Aj , Bj , we can apply
Lemma 5.4 to get

f j(x) ≥ α2(x− xc)2 + α1|x− xc|+ α0,

where α0, α1, α2 ≥ 0 and at least one of them is lower bounded by a strictly positive constant
independent of (Aj , Bj). Thus, since each term of the RHS above is non-negative, we get

f j(x) ≥ αi|x− xc|i + α0,

where i = arg maxj∈{1,2} αj . Furthermore, as |x− xc| ≤ |Ij |, we have

f j(x) ≥ αi
|Ij |2−i

|x− xc|2 + α0.

Now, either αi or α0 as well as 1/|Ij | are lower bounded by strictly positive constants
independent of (Aj , Bj). Thus, taking γ1 = αi/|Ij |2−i and γ2 = α0 concludes the proof.

Let us point out that, although ε does not depend on the values of (Aj , Bj) ∈ U , the
position of a critical point xc depends on (Aj , Bj).

In a similar fashion, we define Ū to be the set of admissible (Aj , Bj) as in (5.20), and
given x ∈ Ij \ Ωj , we let x̄c be the critical point associated to x and Ωj . Then, a result
analogous to Lemma 5.5 holds for fj(x):

fj(x) ≥ Cj(x) := γ3(x− x̄c)2 + γ4, (5.23)

where γ3, γ4 > 0 and either γ3 > ε or γ4 > ε for some ε > 0 that is independent of the
choice of (Aj , Bj) ∈ Ū .

The last ingredient for the proof of the vanishing curvature phenomenon is the control
of the decay of the partition function Zm(β, λ) as β → 0.

Lemma 5.6 (Lower bound on partition function independent of m). Assume that condition
A1 holds. Then,

Zm(β, λ) ≥ C√
β3λ3/2

,

for some C > 0 that is independent of (m,β, λ).

The proof of Lemma 5.6 is deferred to Appendix A.2. At this point, we are ready to
provide an upper bound on the magnitude of (5.4).
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Lemma 5.7 (Integral upper bound). Assume that condition A1 holds. Furthermore, as-
sume that m > eβK2, where K2 is given in (5.11). Fix j ∈ {0, . . . ,M}. Then, for any
x ∈ Ij \

(
Ωj ∪ Ωj

)
,∣∣∣∣∫ am(wm)2ρ∗m(a,w,−wmx)dadw

∣∣∣∣ ≤ K

βλ7/4(C̄j(x))2
,

where K > 0 is independent of (m,β, λ), C̄j(x) := min
{
Cj(x), Cj(x), 1

}
, and Cj(x), Cj(x)

are given by (5.22) and (5.23), respectively.

Proof of Lemma 5.7. Note that the following upper bound holds∣∣∣∣∫ am(wm)2ρ∗m(a,w,−wmx)dadw

∣∣∣∣ ≤ I(x) :=

∫
|am|(wm)2ρ∗m(a,w,−wmx)dadw.

Let us now decompose the integral I(x) depending on the sign of w, i.e.,

Zm(β, λ) · I(x) = Ij(x) + Ij(x),

where

Ij(x) :=

∫
{a∈R}×{w≥0}

|am|(wm)2 exp
{
−βΨj(a,w, ρ∗m)

}
dadw,

Ij(x) :=

∫
{a∈R}×{w<0}

|am|(wm)2 exp {−βΨj(a,w, ρ
∗
m)}dadw,

and, recalling the form of ρ∗m(a,w,−wmx) from (3.10), the corresponding potentials are
given by

Ψj(a,w, ρ) =

M∑
i=j+1

Rmi (ρ) · amwm(xi − x) +
λ

2

{
a2 + w2 + (wm)2x2

}
,

Ψj(a,w, ρ) =

j∑
i=1

Rmi (ρ) · amwm(xi − x) +
λ

2

{
a2 + w2 + (wm)2x2

}
.

By recalling from (4.4) the definitions of Aj , Aj , B
j and Bj , we obtain the following upper

bounds.

Ij(x) ≤ 2

∫
{a≥0}×{w≥0}

aw2 exp

{
−βλ

2

[
−2awm|Bj −Ajx|+ a2 + w2 + (wm)2x2

]}
dadw,

(5.24)

Ij(x) ≤ 2

∫
{a≥0}×{w<0}

aw2 exp

{
−βλ

2

[
2awm|Bj −Ajx|+ a2 + w2 + (wm)2x2

]}
dadw.

(5.25)

Let us analyze the RHS of (5.24). This term can be rewritten as

2

∫
{a≥0}×{w≥0}

aw2 exp

{
−βλ

2

[
−2awm|Ajx−Bj |+ a2 + (wm)2(Ajx−Bj)2

]}
· exp

{
−βλ

2

[
w2 + (wm)2x2 − (wm)2(Ajx−Bj)2

]}
dadw.

(5.26)
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Note that

|Ωj | ≤ K1 e
βK2

m2
≤ K1

eβK2
,

where the first inequality follows from Lemma 5.3, and the second inequality uses that
m > eβK2 . Therefore, for sufficiently large β, |Ωj | is smaller than |Ij |/2, and therefore
|Ij \ Ωj | is lower bounded by |Ij |/2. At this point, we can apply Lemma 5.5 which gives
that 1 +x2− (Ajx−Bj)2 ≥ Cj(x) ≥ C̄j(x) := min

{
Cj(x), Cj(x), 1

}
. Thus, (5.26) is upper

bounded by

2

∫
{a≥0}×{w≥0}

aw2 exp

{
−βλ

2

(
a− |Bj −Ajx|wm

)2}
· exp

{
−βλ

2

[
w2 − (wm)2(1− C̄j(x))

]}
dadw

= 2

∫
{w≥0}

w2 exp

{
−βλ

2

[
w2 − (wm)2(1− C̄j(x))

]}√ 2π

βλ
E [(A)+] dw,

(5.27)

where A ∼ N (|Bj−Ajx|wm, (βλ)−1). Furthermore, the following chain of inequalities hold:

E [(A)+] ≤ E [|A|] ≤
√
E [A2] =

√
|Bj −Ajx|2(wm)2 +

1

βλ
, (5.28)

where the second passage follows from Jensen’s inequality. By using (5.28), the RHS of
(5.27) is upper bounded by

2
√

2π√
βλ

∫
{w≥0}

√
(Bj −Ajx)2(wm)2 +

1

βλ

· w2 exp

{
−βλ

2

[
w2 − (wm)2(1− C̄j(x))

]}
dw.

Applying Lemma 5.5 again to obtain (Ajx−Bj)2 ≤ 1 + x2− C̄j(x) ≤ 1 + x2 and noting by
definition that (wm)2 ≤ w2, we now upper bound this last term by

2
√

2π

∫
{w≥0}

√
w2(1 + x2)

βλ
+

1

β2λ2
· w2 exp

{
−βλ

2

[
w2 − (wm)2(1− C̄j(x))

]}
dw

≤ 2
√

2π

∫
{w∈R}

√
w2(1 + x2)

βλ
+

1

β2λ2
· w2 exp

{
−βλ

2

[
C̄j(x) · w2

]}
dw

≤ 2
√

2π

∫
{w∈R}

(√
w2(1 + x2)

βλ
+

√
1

β2λ2

)
· w2 exp

{
−βλ

2

[
C̄j(x) · w2

]}
dw,

(5.29)

where in the second line we use that 1− C̄j(x) ≥ 0 and again that (wm)2 ≤ w2, and in the
third line we use that

√
u+ v ≤

√
u+
√
v.

Finally, computing explicitly the last integral gives the following upper bound on the
RHS of (5.24) and consequently on Ij(x):

Ij(x) ≤ 4π

√
1

β2λ2
·

√
1

(C̄j(x))3β3λ3
+ 2
√

2π

√
1 + x2

βλ

√
1

(C̄j(x))4β4λ4
.
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By following the similar passages, we obtain the same upper bound for Ij(x). By using the
lower bound on the partition function shown in Lemma 5.6, we conclude that

I(x) =
Ij(x) + Ij(x)

Zm(β, λ)
≤ K

βλ7/4(C̄j(x))2
,

where K > 0 is independent of (m,β, λ), and the proof is complete.

The proof of Theorem 1 is an immediate consequence of the results presented so far.

Proof of Theorem 1. The proof of (4.9) follows from Lemmas 5.1 and 5.7, and the proof of
(4.11) follows from Lemma 5.3.

5.3 Proof of Theorem 2

To summarize, at this point we have shown that as β → ∞ the second derivative of the
predictor vanishes outside the cluster set, and that the size of the cluster set shrinks to
concentrate on at most 3 points per prediction interval. With these results in mind, we are
ready to provide the proof for Theorem 2.

Proof of Theorem 2. The predictor evaluated at the Gibbs distribution is given by

yn(x) =

∫
aτ,m(wτ,mx+ b)mτ ρ

∗
τ,m(θ)dθ,

where n = (τ,m, β, λ) denotes the aggregated index and we suppress the dependence on
(β, λ) in ρ∗τ,m for convenience. By Lemma A.6, there exists τ(m,β, λ) such that, for any
τ > τ(m,β, λ),

M(ρ∗τ,m) ≤ C, (5.30)

for some C > 0 independent of (τ,m, β, λ). We start by showing that the family of predictors
{yn} is equi-Lipschitz for ∞ > τ > τ(m,β, λ). First, note that

∂

∂x
yn(x) =

∫
∂

∂x

[
aτ,m(wτ,mx+ b)mτ

]
ρ∗τ,m(θ)dθ, (5.31)

since the derivative can be pushed inside by the same line of arguments as given in the proof
of Lemma 5.1. Next, we have that, by construction of the activation, the following holds∫

∂

∂x

[
aτ,m(wτ,mx+ b)mτ

]
ρ∗τ,m(θ)dθ ≤ C1

∫
|aτ,mwτ,m|ρ∗τ,m(θ)dθ,

where, from here on, C1 > 0 denotes a generic constant which might change from line
to line, but is independent of (τ,m, β, λ). By construction, for any u ∈ R, it holds that
|uτ,m| ≤ |u|. Thus, we have that∫

∂

∂x

[
aτ,m(wτ,mx+ b)mτ

]
ρ∗τ,m(θ)dθ ≤ C1

∫
|aw|ρ∗τ,m(θ)dθ.

Using the Cauchy-Schwartz inequality and (5.30), we obtain that∫
∂

∂x

[
aτ,m(wτ,mx+ b)mτ

]
ρ∗τ,m(θ)dθ ≤ C1M(ρ∗τ,m) ≤ C1. (5.32)
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By combining (5.31) and (5.32), we have shown that the family {yn} for τ > τ(m,β, λ) is
equi-Lipschitz, as the derivatives are uniformly bounded. By using a similar argument, we
can show that the same result holds for the predictor itself, i.e., for all x ∈

⋃M
j=0 Ij , yn(x)

is uniformly bounded.
Note that Theorem 1 considers the curvature of points outside the cluster set, and it

gives an upper bound which diverges when C̄j(x) approaches 0 for some j ∈ [M ]. Thus,
our next step is to develop the analytical machinery to make this scenario impossible. Let
us recall Definitions (4.8) and (4.10). Then, by Lemma 5.5, we have that

C̄j(x) ≥ min{γ1(x− xc)2 + γ2, γ3(x− x̄c)2 + γ4},

where γ1, γ2, γ3, γ4 > 0 and min{max{γ1, γ2},max{γ3, γ4}} > ε, for some ε > 0 that is
independent of (m,β, λ). Let us focus on the term γ1(x − xc)

2 + γ2. If γ2 = 0 or it
approaches 0 (as m,β →∞), then we extend Ωj(m,β, λ) as

extδ(Ω
j(m,β, λ)) :=

{
x ∈ Ij : min

x′∈Ωj(m,β,λ)∪{xc}
|x− x′| < δ

}
.

Note that adding the singleton {xc} to the argument of the min allows us to also cover
the case in which Ωj(m,β, λ) is empty. Otherwise, i.e., if γ2 > ε for some ε > 0 that is
independent of (m,β, λ), the upper bound on the curvature does not diverge and we set
extδ(Ω

j(m,β, λ)) := Ωj(m,β, λ). In a similar fashion, we define the extension of Ωj(m,β, λ)
by extδ(Ωj(m,β, λ)).

Let Ω̄j
ext be the union of extδ(Ω

j(m,β, λ)) and extδ(Ωj(m,β, λ)), where we drop the

explicit dependence of Ω̄j
ext on (δ,m, β, λ) for convenience. Then, since f j and fj are

polynomials of degree two, the extended set Ω̄j
ext (just like Ω̄j) is the union of at most three

disjoint open intervals, i.e.,
Ω̄j

ext = Aj1 ∪A
j
2 ∪A

j
3,

where {Aji}3i=1 denote such (possibly empty) open intervals. Furthermore, Ij \ Ω̄j
ext is the

union of at most three disjoint closed intervals, i.e.,

Ij \ Ω̄j
ext = Bj

1 ∪B
j
2 ∪B

j
3,

where {Bj
i }3i=1 denote such (possibly empty) closed intervals.

At this point, we are ready to show that, for all closed intervals {Bj
i }3i=1, the predictor

yn can be approximated arbitrarily well by a linear function (which may be different in
different closed intervals). Note that yn is twice continuously differentiable for τ <∞, and
fix x̃ ∈ Bj

i . Then, by combining Taylor’s theorem with the result of Theorem 1, we obtain

that, for any x ∈ Bj
i ,

lim
τ→∞

|yn(x)− yn(x̃)− y′n(x̃)(x− x̃)| ≤ O
(

1

mλ
+

1

δ4 · βλ7/4

)
, (5.33)

where we use that |x− xc| ≥ δ by construction of the extended set Ω̄j
ext. Let us define

f in(x) = yn(x̃)− y′n(x̃)(x− x̃).
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Then, by picking a sufficiently small δ, (5.33) implies that, as mλ → ∞ and βλ7/4 → ∞,
for all x ∈ Bj

i ,

|yn(x)− f in(x)| → 0. (5.34)

We remark that, as shown previously, the coefficients yn(x̃) and y′n(x̃) are uniformly bounded
in absolute value.

Let us now consider the open intervals {Aji}3i=1. For any x ∈ Aji , let

x′ = arg min
y 6∈Aji

|x− y|,

and note that, by definition, x′ ∈ Bj
ı̃ for some ı̃ ∈ {1, 2, 3}. By picking the linear approxi-

mation f in that corresponds to Bj
i and by using the triangle inequality, we obtain that

|yn(x)− f in(x)| ≤ |yn(x)− yn(x′)|+ |yn(x′)− f in(x′)|+ |f in(x′)− f in(x)|
≤ O

(
|x− x′|+ |yn(x′)− f in(x′)|

)
, (5.35)

where the second inequality is due to the fact that the families {yn} and {f in} are equi-
Lipschitz. From (5.34) the second term in the RHS in (5.35) vanishes. As for the first term,
by construction of the extension, together with the result of Lemma 5.3, we have that

|x− x′| ≤ O
(
eβK2

m2
+ δ

)
,

for some K2 > 0 independent of (m,β, λ). Thus, by picking a sufficiently small δ and
m > eβK2 , we conclude that the first term in the RHS in (5.35) also vanishes.

So far, we have showed that, both inside and outside of the extension of the cluster
set, the predictor yn is well approximated by linear functions. It remains to prove that the
linear pieces connect, i.e., there exists x̂ ∈ Ω̄j

ext such that, for two neighboring linearities f in
and f i+1

n (possibly belonging to different intervals), the following holds

f in(x̂)− f i+1
n (x̂) = 0.

This claim follows from Lipschitz arguments similar to those presented above, and the proof
is complete.

5.4 Proof of Corollary 4.3

At this point, we have proved a result about the structure of the predictor coming from the
minimizer of the free energy (3.5). By using the mean-field analysis in Mei et al. (2018),
we finally show that this structural result holds for the predictor obtained from a wide
two-layer ReLU network.

Proof of Corollary 4.3. First, we show that, as t→∞, the second derivative of the predictor
evaluated on the solution ρt of the flow (3.4) converges to the same quantity evaluated on
the Gibbs minimizer ρ∗τ,m. To do so, we decompose the integral involving ρt as in Lemma
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5.1 (cf. (5.6)):∫
aτ,m

[
∂2

(∂x)2
(wτ,mx+ b)mτ

]
ρt(θ)dθ

=

∫
wτ,mx+b≤xm

aτ,m
[

∂2

(∂x)2
(wτ,mx+ b)τ

]
ρt(θ)dθ

+

∫
wτ,mx+b>xm

aτ,m(wτ,m)2

[
∂2

(∂u)2
φτ,m(u)

∣∣∣∣∣
u=wτ,mx+b

]
ρt(θ)dθ. (5.36)

Next, we show that a technical condition bounding the free energy at initialization
appearing in the statement of Theorem 4 in Mei et al. (2018) is satisfied under the as-
sumption M(ρ0) < ∞ and H(ρ0) > −∞. Recalling the sandwich bound for the truncated
soft-plus activation (3.8) and the fact that that τ ≥ 1 by condition A1, an application of
Cauchy-Schwarz inequality gives

Rτ,m(ρ0) < CM(ρ0) + C ′ <∞,

where C,C ′ > 0 are some numerical constants independent of (τ,m). This readily implies
that

Fτ,m(ρ0) <∞,

since λ and β−1 are upper-bounded by assumption A1.
Now we can apply Theorem 4 in Mei et al. (2018) to conclude that, as t→∞,

ρt ⇀ ρ∗τ,m.

Thus, as the terms inside the integrals in (5.36) are all bounded for fixed (τ,m, β, λ),
by definition of weak convergence, we get that, as t→∞,∫

aτ,m
[

∂2

(∂x)2
(wτ,mx+ b)mτ

]
ρt(θ)dθ →

∫
aτ,m

[
∂2

(∂x)2
(wτ,mx+ b)mτ

]
ρ∗τ,m(θ)dθ.

Consequently, since the derivative operator can be pushed inside by the same arguments as
in Lemma 5.1, we have that, as t→∞, the following pointwise convergence holds

∂2

(∂x)2

∫
aτ,m(wτ,mx+ b)mτ ρt(θ)dθ → ∂2

(∂x)2

∫
aτ,m(wτ,mx+ b)mτ ρ

∗
τ,m(θ)dθ. (5.37)

Next, we show that the second derivative of the predictor obtained from the two-layer
ReLU network also converges to the same limit. Recall that σ∗(x,θ) = aτ,m(wτ,mx + b)mτ .
Then, by Theorem 3 in Mei et al. (2018), we have that, almost surely, as N →∞, εN → 0

∂2

(∂x)2

[
1

N

N∑
i=1

σ∗
(
x,θ

bt/εc
i

)]
→ ∂2

(∂x)2

∫
aτ,m(wτ,mx+ b)mτ ρt(θ)dθ (5.38)

along any sequence {εN} such that εN log(N/εN ) → 0 and N/ log(N/εN ) → ∞. By com-
bining (5.37) and (5.38), we obtain that the desired convergence result holds for the LHS
of (5.37).
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Figure 6: (a) The orange curve represents the function f∗(x) which interpolates the training data
(red dots) and exhibits a knot at the point (0, 0); the blue dashed curve is linear in the interval
between the training points (ε1 = −0.2, ε2 = 0.2). (b) We run noiseless SGD (β = ∞) with no
regularization (λ = 0) for a two-layer ReLU network with N = 500 neurons, trained on the dataset
(6.2). The resulting estimator (in blue) approaches the piecewise linear function f∗(x) with a knot
between the two training data points.

Another application of Theorem 3 of Mei et al. (2018), together with the fact that the
second moment of the flow solution ρt is uniformly bounded along the sequence t→∞ (cf.
Lemma 10.2 in Mei et al. (2018), following Proposition 4.1 in Jordan et al. (1998)), gives
that the gradients

∂

∂x

[
1

N

N∑
i=1

σ∗
(
x,θ

bt/εc
i

)]

are almost surely uniformly bounded. This fact, in turn, implies that the corresponding
predictor is almost surely equi-Lipschitz. In a similar fashion, we also have that the predictor
itself is almost surely uniformly bounded in absolute value.

At this point, the desired result follows from the same line of arguments as in the proof
of Theorem 2.

6. Knots Inside the Interval

In this section, we provide an explicit example of a 2-point dataset such that the SGD
solution exhibits a change of tangent (or “knot”) inside the training interval. To do so, we
will show that neural networks implementing a linear function without knots on the predic-
tion interval cannot minimize the free energy (3.5). To simplify the analysis, throughout
the section we omit the limits in (τ,m), i.e., we consider directly ReLU activations (this
corresponds to taking τ = m = ∞). Similar arguments apply to the case of sufficiently
large parameters τ and m.
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6.1 Noiseless Regime

We start with the case of noiseless SGD training, i.e., β = +∞. Here, the free energy has
no entropy penalty and it can be expressed as

F∞(ρ) =
1

2
R(ρ) +

λ

2
M(ρ). (6.1)

We consider the following dataset which consists of two points:

D = {(−x̄, ȳ), (x̄, ȳ)} = {(−10, 2), (10, 2)}. (6.2)

Let f∗(x) be the piecewise linear function that interpolates the training data {(−x̄, ȳ), (x̄, ȳ)}
and passes through the point (0, 0), where it exhibits a knot (see the orange curve in Figure
6a). Note that

f∗(x) =

∫
a(wx+ b)+ρ

∗(a,w, b)dadwdb,

where

ρ∗(a, b, w) =
1

2

[
δ(√

2 ȳ
x̄
,−
√

2 ȳ
x̄
,0
)(a,w, b) + δ(√

2 ȳ
x̄
,
√

2 ȳ
x̄
,0
)(a,w, b)

]
, (6.3)

and δ(a0,w0,b0) denotes the Dirac delta function centered at (a0, w0, b0). Note that R(ρ∗) = 0

and M(ρ∗) = 2
5 . Thus, the free energy is given by

F∞(ρ∗) =
1

2
R(ρ∗) +

λ

2
M(ρ∗) =

λ

5
. (6.4)

Let f(x) be a linear function on the interval [−x̄, x̄] such that f(−x̄) = ȳ + ε1 and
f(x̄) = ȳ + ε2 (see the blue dashed line in Figure 6a), and let ρ be the corresponding
distribution of the parameters, i.e.,

f(x) =

∫
a(wx+ b)+ρ(a,w, b)dadwdb. (6.5)

In the rest of this section, we will show that, for all λ ≤ 1,

min
ε1,ε2
F∞(ρ) > F∞(ρ∗). (6.6)

In words, the minimizer of the free energy cannot be a linear function on the interval [−x̄, x̄].
As f is linear, we have that

f(x) =
ε2 − ε1

2x̄
(x− x̄) + ȳ + ε2,

which implies that

f(0) = ȳ +
ε1 + ε2

2
=

∫
a(b)+ρ(a, b)dadb. (6.7)
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First, we consider the case f(0) = 0. From (6.7), we have that ε1 + ε2 = −2ȳ. Hence,

F∞(ρ) ≥ 1

2
R(ρ) =

1

4
(ε2

1 + ε2
2) ≥ 1

8
(ε1 + ε2)2 =

ȳ2

2
= 2. (6.8)

By combining (6.8) and (6.4), we conclude that (6.6) holds for all λ ≤ 1 (under the additional
restriction f(0) = 0).

Next, we consider the case f(0) 6= 0. By using (6.7) and applying Cauchy-Schwarz
inequality, we have that

|f(0)| =
∣∣∣∣∫ a(b)+ρ(a, b)dadb

∣∣∣∣ = |E[a(b)+]| ≤
√
E[a2]E[(b)2

+] =⇒ E[a2] ≥ (f(0))2

E[(b)2
+]
.

With this in mind, we can lower bound the regularization term as

M(ρ) ≥ E[a2] + E[b2] ≥ (f(0))2

E[(b)2
+]

+ E[b2] ≥ (f(0))2

E[(b)2
+]

+ E[(b)2
+] ≥ 2|f(0)| = 2

∣∣∣∣ȳ +
ε1 + ε2

2

∣∣∣∣ ,
where the last inequality follows from the fact that g(t) = (f(0))2/t + t is minimized over
t ≥ 0 by taking t = |f(0)|. Therefore, we have that

F∞(ρ) ≥ 1

4
(ε2

1 + ε2
2) + λ

∣∣∣∣ȳ +
ε1 + ε2

2

∣∣∣∣ .
Note that, for a fixed value of the sum ε1 + ε2, the quantity ε2

1 + ε2
2 is minimized when

ε1 = ε2. Thus, by recalling that ȳ = 2, we have

F∞(ρ) ≥ min
ε

{
1

2
ε2 + λ|2 + ε|

}
. (6.9)

One can readily verify that, for any λ ≤ 2, the minimizer is given by ε∗ = −λ. Thus,

F∞(ρ) ≥ 2λ− λ2

2
≥ 3λ

2
>
λ

5
= F∞(ρ∗), (6.10)

where the first inequality uses (6.9) and that the minimizer is ε∗ = −λ, and the next two
inequalities use that λ ≥ 1. Merging two cases regarding f(0), we conclude that (6.6) holds,
as desired.

6.2 Low Temperature Regime

We now focus on the case of noisy SGD with temperature β−1. Here, the free energy can
be expressed as

Fβ(ρ) =
1

2
R(ρ) +

λ

2
M(ρ)− β−1H(ρ). (6.11)

We consider the two-point dataset (6.2) and we recall that f∗(x) has a knot inside the
training interval. In this section we will show that the following two results hold for all
λ ≤ 1:
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(i) There exists a sequence of distributions {ρ∗β}β such that, for any x ∈ [−x̄, x̄],

lim
β→∞

∫
a(wx+ b)+ρ

∗
β(a,w, b)dadwdb = f∗(x), (6.12)

and

lim sup
β→∞

Fβ(ρ∗β) ≤ λ

5
. (6.13)

(ii) Let ρ be a distribution such that the function f(x) given by (6.5) is linear in the
interval [−x̄, x̄]. Pick a sequence of distributions {ρβ}β such that ρβ ⇀ ρ and for any
x ∈ [−x̄, x̄],

lim
β→∞

∫
a(wx+ b)+ρβ(a,w, b)dadwdb = f(x). (6.14)

Then, we have that

lim inf
β→∞

Fβ(ρβ) >
λ

5
. (6.15)

Combining these two results gives that, for sufficiently large β, the minimizer of the free
energy (6.11) cannot yield a linear estimator on the interval between the two data points.
In Figure 6b, we represent the function obtained by training via SGD a two-layer ReLU
network with 500 neurons on the dataset (6.2). Clearly, the blue curve approaches the
piecewise linear function f∗(x), which contains a knot inside the interval [−10, 10]. The
plot represented in the Figure corresponds to the case with no regularization (λ = 0), but
similar results are obtained for small (but non-zero) regularization.

Proof of (i). Let ρ∗β be defined as

ρ∗β =
1

2

[
N

([√
2
ȳ

x̄
,−
√

2
ȳ

x̄
, 0

]
, β−1I3×3

)
+N

([√
2
ȳ

x̄
,

√
2
ȳ

x̄
, 0

]
, β−1I3×3

)]
,

where N (µ,Σ) denotes the multivariate Gaussian distribution with mean µ and covariance
Σ. As β →∞, we have that ρ∗β ⇀ ρ∗, where ρ∗ is given by (6.3). However, weak convergence
does not suffice for pointwise convergence of the corresponding estimators, since the function
σ∗(x) = a(wx + b)+ is unbounded (in x). To solve this issue, we observe that the fourth
moment of ρ∗β is uniformly bounded as β →∞. Thus, by the de la Vallée Poussin criterion

(see e.g. Hu and Rosalsky (2011)), we have that the sequence of random variables {‖Xβ‖22}β
is uniformly integrable, with Xβ ∼ ρ∗β. Consider a ball Br = {v ∈ R3 : ‖v‖2 ≤ r}, for

r >
√

4ȳ/x̄. Then, we have∣∣∣∣∣
∫
R3

a(wx+ b)+(ρ∗β(a,w, b)− ρ∗(a,w, b))dadwdb

∣∣∣∣∣
≤

∣∣∣∣∣
∫
Br

a(wx+ b)+(ρ∗β(a,w, b)− ρ∗(a,w, b))dadwdb

∣∣∣∣∣
+

∣∣∣∣∣
∫
R3\Br

a(wx+ b)+ρ
∗
β(a,w, b)dadwdb

∣∣∣∣∣ ,
(6.16)
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Figure 7: Functions learnt by a two-layer ReLU network with N = 500 neurons, for different values
of the temperature parameter β−1. The regularization coefficient λ is set to zero.

where we have used that the support of ρ∗ lies inside the ball Br. The first term in the
RHS of (6.16) vanishes as β → ∞ by weak convergence, since the function a(wx + b)+ is
bounded inside Br. For the second term, we have that, for any x ∈ [−x̄, x̄],∣∣∣∣∣

∫
R3\Br

a(wx+ b)+ρ
∗
β(a,w, b)dadwdb

∣∣∣∣∣ ≤
∫
R3\Br

(|aw| · |x|+ |ab|)ρ∗β(a,w, b)dadwdb

≤ C
∫
R3\Br

(a2 + b2 + w2)ρ∗β(a,w, b)dadwdb,

where C > 0 is a constant independent of (β, r). Since the sequence {‖Xβ‖22}β is uniformly
integrable, we can make the RHS arbitrary small by picking a sufficiently large r (uniformly
for all β). As a result, (6.12) readily follows. Note that (6.12) immediately implies that,
as β → ∞, R(ρ∗β) → R(ρ∗) = 0. Furthermore, with similar arguments we obtain that, as

β → ∞, M(ρ∗β) → M(ρ∗). By convexity of the differential entropy, we have that H(1
2ρ1 +

1
2ρ2) ≥ 1

2H(ρ1) + 1
2H(ρ2). Hence, H(ρ∗β) ≥ C log(2πe/β), where C > 0 is independent of β.

By combining these bounds on R(ρ∗β), M(ρ∗β) and H(ρ∗β), we conclude that

lim sup
β→∞

Fβ(ρ∗β) ≤ F∞(ρ∗),

which, combined with (6.4), completes the proof of (6.13).

Proof of (ii). From (6.14), we obtain that limβ→∞R(ρβ) = R(ρ). As the second moment
is lower-semicontinuous and bounded from below, we have that lim infβ→∞M(ρβ) ≥M(ρ).
Furthermore, Lemma 10.2 in Mei et al. (2018) implies that

Fβ(ρβ) ≥ 1

2
R(ρβ) +

λ

4
M(ρβ)− β−1(1 + 3 log 8π) + β−1 log(βλ).

By combining these bounds, we have that

lim inf
β→∞

Fβ(ρβ) ≥ 1

2
R(ρ) +

λ

4
M(ρ). (6.17)
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By replicating the argument leading to (6.10) (but now with regularization coefficient λ/2
instead of λ), we obtain that the RHS of (6.17) can be lower bounded as

1

2
R(ρ) +

λ

4
M(ρ) ≥ λ− λ2

8
≥ 7λ

8
>
λ

5
, (6.18)

for all λ ≤ 1. Then, the desired result follows from (6.17) and (6.18).

7. Numerical Simulations

We consider training the two-layer neural network (3.1) with N neurons and ReLU activa-
tion functions, i.e., σ∗(x,θ) = a(wx+b)+, with θ = (a,w, b). We run the SGD iteration (3.3)
(no momentum or weight decay, batch size equal to 1), and we plot the resulting predictor
once the algorithm has converged. The results for two different unidimensional datasets are
reported in Figures 7 and 8. In these experiments, we set N = 500 and we remark that the
plots for wider networks (N ∈ {1000, 2000, 5000}) look identical. We also point out that
the shape of the predictor does not change for different runs of the SGD algorithm (with
different initializations, and order of the training samples). This is in agreement with the
mean-field predictions when β < ∞, λ > 0 and the variance of the initialization does not
depend on N . The same setup is employed to obtain the numerical results of Figure 1 and
6b, discussed in Section 1 and 6, respectively.

In Figure 7, we plot the shape of the function learnt by the network for different values
of the temperature parameter β−1. The learning rate is sk = 1, the total number of training
epochs required for SGD to converge is roughly 5×104, and no `2 regularization is enforced
(λ = 0). As predicted by our theoretical findings, the predictor approaches a piecewise
linear function whose number of tangent changes (or knots) is proportional to the number
of training samples (and not to the width of the network): if β−1 = 0.005, the predictor is
still rather smooth; if β−1 = 10−4, the predictor sharpens, except for a smoother tangent
change in the interval [4, 5]; and finally if β = 0, the predictor is piecewise linear. Let
us highlight that the knots sometimes do not coincide with the training data points, as
suggested by the results of Section 4 and demonstrated in the example of Section 6.

In Figure 8, we consider another dataset and plot the neural network predictor for four
different pairs of (β−1, λ). By comparing (a) with (b) and with the bottom plots (c)-(d),
it is clear that the solution becomes increasingly piecewise linear as the noise decreases.
Furthermore, the effect of regularization can be noticed by comparing plots (a)-(c) on the
left with plots (b)-(d) on the right: adding an `2 penalty implies that the network does not
fit the data and therefore the location of the knots changes.

8. Comparison with Related Work

The line of works (Savarese et al., 2019; Ergen and Pilanci, 2021; Ongie et al., 2020; Parhi
and Nowak, 2020a) studies the properties of the minimizers of certain optimization objec-
tives, and therefore these results are not directly connected to the dynamics of gradient
descent algorithms. On the contrary, the goal of this paper is to understand the implicit
bias due to gradient descent, namely, to characterize the structure of the neural network
predictor once the algorithm has converged. Another important difference lies in the fact
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Figure 8: Functions learnt by a two-layer ReLU network with N = 500 neurons, for different values
of the temperature parameter β−1 and the regularization coefficient λ.

that our `2 regularization involves all the parameters, including the bias b, while existing
work does not regularize the biases of the network. This fact may lead to the qualitatively
different behavior unveiled by our study. Going into detail, Ergen and Pilanci (2021) show
that the network that minimizes a regularized objective implements a linear spline. In
contrast, our analysis suggests that the knots (i.e., abrupt changes in the tangent of the
predictor) can occur at points different from the training samples. Let us also mention
that Savarese et al. (2019) and Ongie et al. (2020) give an explicit form of the functional
regularizer of the neural network solution, but it is not clear how to characterize the func-
tion class to which the solution belongs, e.g., whether the function implemented by the
neural network is a cubic or linear spline. Furthermore, the upper bound on the number of
knot points appearing in (Parhi and Nowak, 2020a) depends on the null space of a certain
operator, and computing the dimension of this null space explicitly appears to be difficult.

The work by Williams et al. (2019) considers a noiseless setting with no regularization,
and it studies the properties of gradient flow on the space of reduced parameters. In partic-
ular, the initial ReLU neurons depending on three parameters (a, b and w, in our notation)
are mapped to a two-dimensional space, where each neuron is defined by its magnitude and
angle. Then, it is proven that the Wasserstein gradient flow on this reduced space drives the
activation points of the ReLU neurons to the training data. As a consequence, the solution
found by SGD is piecewise linear and the knot points are located at a subset of the training
samples. Blanc et al. (2020) consider SGD with label noise and no regularization, and show
that, once the squared loss is close to zero, the algorithm minimizes an auxiliary quantity,
i.e., the sum of the squared norms of the gradients evaluated at each training point. By
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instantiating this result in the case of a two-layer ReLU network with a skip connection,
the authors show that the solution found by SGD is piecewise linear with the minimum
amount of knots required to fit the data.

While our result shares some similarities with (Williams et al., 2019) and (Blanc et al.,
2020), let us highlight some crucial differences. First, we note that Blanc et al. (2020) con-
sider a two-layer network with a skip connection which fits the training data perfectly. In
contrast, our two-layer model is standard (no skip connections) and the analysis does not
require a perfect fit of the data, as we allow for non-vanishing `2 regularization. Further-
more, even when the regularization term is vanishing, our characterization does not lead
to the minimum number of knots required to fit the data (as in Blanc et al., 2020), and
the knots are not necessarily located at the training points (as in Williams et al., 2019). In
fact, our theoretical results suggest the presence of additional knot points, a feature that is
confirmed in numerical simulations. The novel behavior that we unveil appears to be due to
the differences in the setting and to the addition of (a possibly vanishing) `2 regularization
term in the optimization. Concerning the proof techniques, the work by Blanc et al. (2020)
exploits an Ornstein-Uhlenbeck like analysis, while this work tackles the increasingly pop-
ular mean-field regime. Our key technical contribution is to analyze the Gibbs minimizer
of a certain free energy, while Williams et al. (2019) consider the gradient flow on reduced
parameters and connect it to the flow on the full parameters via a specific type of initial-
ization. Our analysis directly establishes a result for the full parameters, and it requires
mild technical assumptions on the initialization. Finally, let us point out that it is an open
problem to extend the approach of Williams et al. (2019) to a regularized objective, because
of the non-injectivity of the mapping to the canonical parameters.

9. Concluding Remarks

We develop a new technique to characterize the implicit bias of gradient descent methods
used to train overparameterized neural networks. In particular, we consider training a
wide two-layer ReLU network via SGD for a univariate regression task and, by taking a
mean field view, we show that the predictor obtained at convergence has a simple piecewise
linear form. Our results hold in the regime of vanishingly small noise added to the SGD
gradients, and handle both constant and vanishing `2 regularization. The analysis leads to
an exact characterization of the number and location of the tangent changes (or knots) in
the predictor: on each interval between consecutive training inputs, the number of knots
is at most three. To obtain the desired result, we relate the distribution of the weights of
the network once SGD has converged to the minimizer of a certain free energy. Then, we
prove that the curvature of the predictor resulting from this minimizer vanishes everywhere
except in a cluster set, which concentrates on at most three points per prediction interval.
This novel strategy opens the way to several interesting directions. We discuss them below.

We focus on ReLU networks. However, only the following two properties of the activation
appear to be crucial for the analysis: (i) its second derivative behaves like a Dirac delta,
and (ii) its growth is at most linear. In fact, the first property reduces the computation
of the curvature to an integral over a lower-dimensional subspace; and the second property
leads to a uniform bound on the second moment of the network parameters. Hence, our
approach may be extendable to a more general class of piecewise linear activations, although
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this would come at the cost of a more intricate structure for the cluster set containing the
location of the tangent changes.

We focus on univariate regression. The natural ordering on one-dimensional features
allows for a convenient characterization of the activation regions that correspond to each
input conditioned on the sign of w. For larger input dimension, such a characterization
appears to be cumbersome, as the structure of these regions is induced by the intersection of
hyperplanes. Furthermore, in the setting considered in this work, the cluster set is the union
of intervals where certain second-degree polynomials are non-positive. For multivariate
regression, we expect the cluster set to be connected to the non-positive set of quadratic
forms. Hence, the structure of the cluster set may be highly non-linear, and its concentration
can occur on subspaces which are hard to define explicitly.

We provide an upper bound on the number of tangent changes of the predictor. The
numerical simulations of Section 6 suggest that one and two knots between consecutive
training inputs can occur. Showing whether our theoretical bound of three knots is tight
by providing an explicit example, or by proving a tighter bound of two, is an open question
for possible future work. We also remark that, given the errors Ri of the neural network
estimator at the data points, one can deduce the location of the knot points. Such implicit
characterization is similar in spirit to the attractive/repulsive condition on the training
points of Williams et al. (2019).

In conclusion, in this work we demonstrate how to exploit the Gibbs form of the mini-
mizer in order to accurately characterize a functional property of the predictor learnt by the
neural network using limiting arguments of the training process. The general spirit of this
technique could potentially be informative in additional ways. For instance, utilizing the
properties of the Gibbs distribution reached at convergence may be of additional interest for
future study. We conjecture that this could yield insight into the stability of the predictor
with respect to perturbations in the training data at finite temperature β.
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Appendix A. Technical Results

In this appendix, we prove a few technical results which are used in the arguments of Section
5.2. More specifically, in Section A.1 we show that, as τ → ∞, the minimizer ρ∗τ,m(θ) of
the free energy Fτ,m converges pointwise in θ to the minimizer ρ∗m(θ) of the free energy
Fm. This pointwise convergence is needed to establish the result of Lemma 5.1. In Section
A.2, we derive upper bounds on the risk of the minimizer (used in Lemma 5.3) and on its
second moment (which implies that the sequence of predictors is equi-Lipschitz), and we
also prove the lower bound on the partition function in Lemma 5.6. Finally, in Section A.3
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we give the proof of Lemma 5.4, which lower bounds the growth of the polynomials f j and
fj .

A.1 Convergence of Minimizers

Lemma A.1 (Convergence of densities). Let {ρn}n be a sequence of densities in K with
uniformly bounded truncated entropy, that is∫

max {ρn(θ) log ρn(θ), 0} dθ ≤ C, ∀n,

for some C > 0 that is independent of n, and uniformly bounded second moment, i.e.,
M(ρn) ≤ C for all n. Then, there exists a subsequence {ρn′}n′ of {ρn}n and ρ ∈ K such
that ρn′ ⇀ ρ and

C ≥ lim inf
n′→∞

M(ρn′) ≥M(ρ) ≥ 0.

Proof of Lemma A.1. Since z 7→ max{z log z, 0}, z ∈ [0,+∞), has super-linear growth,
this result in conjunction with the de la Vallée Poussin criterion (see for instance Hu and
Rosalsky (2011)) guarantees that the sequence of densities {ρn}n is uniformly integrable.
By Dunford-Pettis Theorem (for σ-finite measure spaces, see for instance Laurençot (2015)),
relative weak compactness in L1 is equivalent to uniform integrability. Hence, there exists
a density ρ and a subsequence {ρn′}n′ of {ρn}n such that ρn′ ⇀ ρ.

As M(·) is lower-semicontinuous with respect to the topology of weak convergence in
L1 and bounded from below, we have that lim infn′→∞M(ρn′) ≥ M(ρ). Furthermore, as
M(ρn) ≤ C, we get that M(ρ) ≤ C and, thus, ρ ∈ K.

Lemma A.2 (Uniformly bounded M(ρ∗τ,m) and limit of ρ∗τ,m). Assume that condition A1
holds. Consider the sequence of minimizing Gibbs distributions {ρ∗τ,m}τ . The following
results hold:

1. M(ρ∗τ,m) is uniformly bounded in (τ,m). Moreover, if βλ > 1,

M(ρ∗m), M(ρ∗τ,m) ≤ C3

λ
, ∀τ ∈ (0,+∞),

where C3 > 0 is independent of (τ,m, β, λ).

2. Given any m consistent with A1, there exists ρm ∈ K and a subsequence {ρ∗τ ′,m}τ ′
(which with an abuse of notation we identify with {ρ∗τ,m}τ ) such that ρ∗τ,m ⇀ ρm as
τ →∞.

3. Given any m consistent with A1, limτ→∞R
τ,m
i (ρ∗τ,m) = Rmi (ρm) for all i ∈ [M ], and

lim infτ→∞Fτ,m(ρ∗τ,m) ≥ Fm(ρm).

Proof of Lemma A.2. We provide the proof of the first result for ρ∗τ,m. The arguments for
ρ∗m are the same after changing the notation from ρ∗τ,m to ρ∗m. Let ρ = N (0, I3×3). Then,
we have that

Rτ,m(ρ) =
1

M

M∑
i=1

y2
i , M(ρ) = 3, H(ρ) =

3

2
ln(2πe). (A.1)
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Note that for this ρ, Rτ,m(ρ), in fact, does not depend on (τ,m, β, λ).
From Lemma 10.2 in Mei et al. (2018), since ρ∗τ,m is the unique minimizer of the free

energy Fτ,m, we have that the following inequalities hold

Fτ,m(ρ) ≥ Fτ,m(ρ∗τ,m) ≥ Rτ,m(ρ∗τ,m) + λ/4 ·M(ρ∗τ,m)− 1/β · [1 + 3 · log(8π/(βλ))]. (A.2)

Furthermore, by using (A.1) and the fact that β > C1 and λ < C2, we obtain

Fτ,m(ρ) ≤ K1 +K1λ− β−1K1 ≤ K2, (A.3)

for some K1,K2 > 0 that are independent of (τ,m, β, λ). By combining (A.3) and (A.2)
and using that Rτ,m(ρ∗m) ≥ 0, we conclude that

λ ·M(ρ∗τ,m) ≤ K3 + 1/β · [1 + 3 · log(8π/(βλ))],

where K3 > 0 is independent of (τ,m, β, λ). As βλ > 1, the first claim immediately follows.
Since the activation and the labels are uniformly bounded in τ and {i}i∈[M ] is finite,

|Rτ,mi (ρ∗τ,m)| is uniformly bounded in (τ, i). Hence, the following lower bound on the parti-
tion function Zτ,m(β, λ) holds

Zτ,m(β, λ) =

∫
exp

{
−β

[
M∑
i=1

Rτ,mi (ρ∗τ,m) · aτ,m(wτ,mxi + b)mτ +
λ

2
‖θ‖22

]}
dθ

≥
∫

exp

{
−β

[
M∑
i=1

|Rτ,mi (ρ∗τ,m)| · 2m3 +
λ

2
‖θ‖22

]}
dθ

≥ K4

∫
exp

{
−βλ

2
‖θ‖22

}
dθ =

K5√
β3λ3

≥ K6, (A.4)

for some K4,K5,K6 > 0 independent of τ (but dependent on (m,β, λ)). In the same way,
one can upper bound ρ∗τ,m · Zτ,m(β, λ) as

exp

{
−β

[
M∑
i=1

Rτ,mi (ρ∗τ,m) · aτ,m(wτ,mxi + b)mτ +
λ

2
‖θ‖22

]}
≤ K7 exp

{
−βλ

2
‖θ‖22

}
, (A.5)

where K7 > 0 is independent of τ (but dependent on (m,β, λ)). Notice that we can
increase K7 to be arbitrarily large and still satisfy (A.5), and in particular, increase it to
satisfy K7/K6 > 1. Thus, by combining (A.4) and (A.5), we get∫

max{ρ∗τ,m(θ) ln ρ∗τ,m(θ), 0}dθ

≤
∫

max

{
K7

K6
exp

{
−βλ

2
‖θ‖22

}
·
(

ln
K7

K6
− βλ

2
‖θ‖22

)
, 0

}
dθ

=

∫
Ω

K7

K6
exp

{
−βλ

2
‖θ‖22

}
·
(

ln
K7

K6
− βλ

2
‖θ‖22

)
dθ ≤

∫
Ω

K7

K6
ln
K7

K6
dθ,

where

Ω =

{
θ ∈ R3 : ‖θ‖22 ≤ ln

(
K7

K6

)
2

βλ

}
.
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Since vol(Ω) < K8 for some K8 ≥ 0 independent of τ , we get that∫
max{ρ∗τ,m(θ) ln ρ∗τ,m(θ), 0}dθ ≤ K8 ·

K7

K6
· ln K7

K6
,

where the RHS is independent of τ . As M(ρ∗τ,m) is uniformly bounded in τ , we can invoke
Lemma A.1 to finish the proof of the second statement.

We now prove the third statement. By the triangle inequality, we have that, for all
i ∈ [M ],

lim
τ→∞

∣∣∣∣∫ aτ,m(wτ,mxi + b)mτ ρ
∗
τ,m(θ)dθ −

∫
am(wmxi + b)m+ρm(dθ)

∣∣∣∣
≤ lim
τ→∞

∣∣∣∣∫ aτ,m(wτ,mxi + b)mτ ρ
∗
τ,m(θ)dθ −

∫
am(wmxi + b)m+ρ

∗
τ,m(θ)dθ

∣∣∣∣
+ lim
τ→∞

∣∣∣∣∫ am(wmxi + b)m+ρ
∗
τ,m(θ)dθ −

∫
am(wmxi + b)m+ρm(dθ)

∣∣∣∣ := A1 +A2.

By upper bounding ρ∗τ,m as in (A.4)-(A.5), we have

A1 ≤ K9 lim
τ→∞

∫
|aτ,m(wτ,mxi + b)mτ − am(wmxi + b)m+ | exp

{
−βλ

2
‖θ‖22

}
dθ,

where K9 > 0 is independent of τ . Thus, an application of the Dominated Convergence
theorem gives that the term A1 vanishes. Furthermore, the term A2 vanishes by weak
convergence of ρ∗τ,m to ρm. This proves that, as τ → ∞, yσ

∗
ρ∗τ,m

(xi) → yσ
∗
ρm(xi) and so

Rτ,mi (ρ∗τ,m)→ Rmi (ρm).
Note that −H(·) and M(·) are lower-semicontinuous in K. Furthermore, M(·) is lower

bounded and −H(·) is lower bounded by Lemma 10.1 in Mei et al. (2018) on the subsequence
{ρ∗τ,m}τ , as M(ρ∗τ,m) is uniformly bounded in τ . Hence, as ρ∗τ,m converges weakly to ρm ∈ K,
we conclude that

lim inf
τ→∞

−H(ρ∗τ,m) ≥ −H(ρm), lim inf
τ→∞

M(ρ∗τ,m) ≥M(ρm),

which, combined with Rτ,mi (ρ∗τ,m)→ Rmi (ρm), implies the desired result.

Lemma A.3 (Pointwise convergence of free-energies). Fix some distribution ρ ∈ K, then
we have the following pointwise convergence:

lim
τ→∞

Fτ,m(ρ) = Fm(ρ).

Proof of Lemma A.3. By construction, we have that (x)mτ converges to (x)m+ , for all x ∈ R.
It is clear that

|aτ,m|(wτ,mx+ b)mτ ρ(θ) ≤ 2m3ρ(θ),

and the RHS is integrable. Thus, an application of the Dominated Convergence theorem
gives that

lim
τ→∞

Rτ,m(ρ) = Rm(ρ).

This concludes the proof since M(ρ) and H(ρ) are independent of τ .
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Lemma A.4 (Pointwise convergence of minimizers). Assume that condition A1 holds and
consider any satisfactory m. Then, as τ →∞, the minimizer ρ∗τ,m of the free energy Fτ,m
converges pointwise in θ to the minimizer ρ∗m of the free energy Fm, i.e.,

lim
τ→∞

ρ∗τ,m(θ) = ρ∗m(θ), ∀θ ∈ R3.

Proof of Lemma A.4. From Lemma A.2, we have that there exists a subsequence {ρ∗τ,m ∈ K}
and ρm ∈ K such that the following holds

lim inf
τ→∞

Fτ,m(ρ∗τ,m) ≥ Fm(ρm). (A.6)

Since ρ∗τ,m ∈ K minimizes Fτ,m, we have

Fτ,m(ρ∗τ,m) ≤ Fτ,m(ρ∗m).

By taking the liminf on both sides, using Lemma A.3 and (A.6), we have

Fm(ρm) ≤ lim inf
τ→∞

Fτ,m(ρ∗τ,m) ≤ lim inf
τ→∞

Fτ,m(ρ∗m) = Fm(ρ∗m).

Since ρ∗m is the unique minimizer of Fm (see Lemma 10.2 of Mei et al. (2018)), ρ∗m and ρm
coincide almost everywhere, which implies that

Rmi (ρm) = Rmi (ρ∗m).

Hence, by Lemma A.2, we have that

lim
τ→∞

Rτ,mi (ρ∗τ,m) = Rmi (ρ∗m).

Recall that, by construction, for any parameter v ∈ R, the τ -smooth m-truncation vτ,m

converges to vm as τ → ∞. Furthermore, as τ → ∞, the smooth m-truncation (·)mτ of
the softplus activation converges pointwise to the smooth m-truncation (·)m+ of the ReLU
activation. Thus,

lim
τ→∞

Ψτ (θ) = lim
τ→∞

M∑
i=1

Rτ,mi (ρ∗τ,m)·aτ,m(wτ,mxi+b)
m
τ =

M∑
i=1

Rmi (ρ∗m)·am(wmxi+b)
m
+ = Ψ(θ),

where the convergence is intended to be pointwise in θ. Note that Ψτ (θ) is uniformly
bounded in τ , hence

lim
τ→∞

exp

{
−βΨτ (θ)− βλ

2
‖θ‖22

}
= exp

{
−βΨ(θ)− βλ

2
‖θ‖22

}
,

which implies that Zτ,mρ
∗
τ,m(θ) converges pointwise to Zmρ

∗
m(θ). Furthermore, as τ →∞,

Zτ,m converges to Zm by Dominated Convergence, which concludes the proof.
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A.2 Bounds on Risk of Minimizer, Second Moment and Partition Function

Lemma A.5 (Bound on risk of the minimizer). Assume that condition A1 holds. Then,

Rm(ρ∗m) ≤ Cλ,

where C > 0 is a constant independent of (m,β, λ). In addition, for any ε > 0, there exists
τ̄(ε,m, β, λ) such that for any τ > τ̄(ε,m, β, λ) we have

Rτ,m(ρ∗τ,m) ≤ Cλ+ ε.

Proof of Lemma A.5. Consider a “saw-tooth” function centered at xi with height yi and
width ε > 0, namely,

STxi,yi(x) :=


0, x < xi − ε or x > xi + ε,
yi
ε (x− xi + ε), xi − ε ≤ x ≤ xi,
yi
ε (xi − x+ ε), xi < x ≤ xi + ε,

Notice that this function can be implemented by the following ρ̂i:

ρ̂i =
1

3

(
δ( 3yi

ε
,1,ε−xi

) + δ(− 6yi
ε
,1,−xi

) + δ( 3yi
ε
,1,−ε−xi

)) ,
in the sense that

STxi,yi(x) =

∫
a(wx+ b)+ρ̂i(dθ),

where δθ stands for a delta distribution centered at the point θ = (a,w, b) ∈ R3. Let us
pick ε such that ε < mini∈[M−1] {|xi − xi+1|/2}. This condition on ε guarantees that{

x ∈ R :

∫
a(wx+ b)+ρ̂i(dθ) 6= 0

}
∩
{
x ∈ R :

∫
a(wx+ b)+ρ̂j(dθ) 6= 0

}
= ∅, ∀i 6= j,

which ensures that the “saw-tooth” functions are not intersecting. Define

ρ̂ =
1

3M

M∑
i=1

[
δ( 3Myi

ε
,1,ε−xi

) + δ(− 6Myi
ε

,1,−xi
) + δ( 3Myi

ε
,1,−ε−xi

)] .
Then, one immediately has that, for all i ∈ [M ],∫

a(wxi + b)+ρ̂(dθ) = yi.

Furthermore, by taking a sufficiently large m, in particular, taking m > maxi{6M |yi|/ε}+
3|xM |+ 3|x1|+ 2 suffices, we get that, for all x ∈ [x1, xM ],∫

am(wmx+ b)m+ ρ̂(dθ) =

∫
a(wx+ b)+ρ̂(dθ),

which implies that Rm(ρ̂) = 0.
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Let N (µ, σ2) denote a Gaussian distribution with mean µ ∈ R and variance σ2 ∈ R,
and let U(µ, σ2) denote the uniform distribution with mean µ and variance σ2/12. Given
(µ1, µ2, µ3) ∈ R3 and σ2 ∈ R, let ρ((µ1,µ2,µ3),σ2) denote the following product distribution

ρ((µ1,µ2,µ3),σ2) := U(µ1, σ
2)×N (µ2, σ

2)×N (µ3, σ
2),

and define

ρ̃ =
1

3M

M∑
i=1

[
ρ(( 3Myi

ε
,1,ε−xi

)
,σ2
) + ρ((− 6Myi

ε
,1,−xi

)
,σ2
) + ρ(( 3Myi

ε
,1,−ε−xi

)
,σ2
)] . (A.7)

Note that, for σ2 < 1 and m chosen sufficiently large as mentioned previously,∫
am(wmx+ b)m+ ρ̃(dθ) =

∫
a(wmx+ b)m+ ρ̃(dθ).

Thus, by computing the integral w.r.t. a, we have that∫
am(wmx+ b)m+ ρ̂(dθ)−

∫
am(wmx+ b)m+ ρ̃(dθ)

=
M∑
i=1

[
yi
ε

(∫
(wmx+ b)m+δ(1,ε−xi)(dw db)−

∫
(wmx+ b)m+ρ((1,ε−xi),σ2)(dw db)

)]

−
M∑
i=1

[
2yi
ε

(∫
(wmx+ b)m+δ(1,−xi)(dw db)−

∫
(wmx+ b)m+ρ((1,−xi),σ2)(dw db)

)]

+

M∑
i=1

[
yi
ε

(∫
(wmx+ b)m+δ(1,−ε−xi)(dw db)−

∫
(wmx+ b)m+ρ((1,−ε−xi),σ2)(dw db)

)]
,

(A.8)

where, with an abuse of notation, we denote by ρ((µ2,µ3),σ2) the marginal of ρ((µ1,µ2,µ3),σ2)

with respect to the last two components. By applying to Kantorovich-Rubinstein theorem
(see, for instance, Villani (2009)), we have that

K ·W1(p, q) = sup
‖f‖Lip≤K

|Ex∼pf(x)− Ey∼qf(y)|, (A.9)

for two densities p and q, where W1 is the 1-Wasserstein distance and ‖f‖Lip denotes the
Lipschitz constant of f . Notice that (wmx+b)m+ is Lipschitz in (w, b) with Lipschitz constant
upper bounded by max(|x|, 1). Hence, combining (A.8) and (A.9), we have that(∫

am(wmx+ b)m+ ρ̂(dθ)−
∫
am(wmx+ b)m+ ρ̃(dθ)

)2

≤ K1

( M∑
i=1

W1(δ(1,ε−xi), ρ((1,ε−xi),σ2)) +W1(δ(1,−xi), ρ((1,−xi),σ2))

+W1(δ(1,−ε−xi), ρ((1,−ε−xi),σ2))

)2

,

(A.10)
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where K1 > 0 is a constant independent of m. Recalling the form of the 2-Wasserstein
distance between a delta and a Gaussian distribution, we have that

W 2
2 (δ(w,b), ρ((w,b),σ2)) ≤ K2σ

2, (A.11)

for some constant K2 > 0. As the W1 distance is upper bounded by the W2 distance (via
Hölder’s inequality), by combining (A.10) and (A.11), we conclude that(∫

am(wmx+ b)m+ ρ̂(dθ)−
∫
am(wmx+ b)m+ ρ̃(dθ)

)2

≤ K3σ
2,

where K3 > 0 is a constant independent of m. Hence, by taking σ2 = min(λ, 1/2), we have

Rm(ρ̃) ≤ K4λ,

where K4 > 0 is a constant independent of m.

Now recall that the differential entropy is a concave function of the distribution. Hence,
by using the fact that ρ((µ1,µ2,µ3),σ2) is a product distribution and by explicitly computing
the entropy of a Gaussian and a uniform random variable, we conclude that

H(ρ̃) ≥ K5(−1 + log λ),

where K5 > 0 is a constant independent of m. As M(ρ̃) is upper bounded by a constant
independent of m, we conclude that

Fm(ρ̃) ≤ K6λ+
K5

β
(1− log λ), (A.12)

with K6 > 0 independent of m. Hence, since ρ∗m is the minimizer of the free energy, by
using the bound from Lemma 10.2 in Mei et al. (2018), we get that

1

2
Rm(ρ∗m) ≤ K6λ+

K5

β
(1− log λ) +

1

β

[
1 + 3 log

8π

βλ

]
. (A.13)

Since β > − 1
λ log λ and βλ > 1, (A.13) implies that

Rm(ρ∗m) ≤ K7λ, (A.14)

for K7 > 0 independent of (m,β, λ). This finishes the proof of the first part of the statement.
The second part of the statement follows by combining (A.14) with Lemma A.4.

Lemma A.6 (Second moment is uniformly bounded). Assume that condition A1 holds. It
holds that there exists τ(m,β, λ) such that for any τ > τ(m,β, λ) the following upper bound
holds:

M(ρ∗τ,m) ≤ C,

for some C > 0 that is independent of (τ,m, β, λ).
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Proof of Lemma A.6. Let ρ̃ be defined as in (A.7). Then, by combining (A.12) with Lemma
A.3, we have that, for τ > τ(m,β, λ),

Fτ,m(ρ̃) ≤ K1λ+
K2

β
(1− log λ),

where K1,K2 > 0 are independent of m. Hence, by using (A.2) with ρ̃ in place of ρ and by
recalling that Rτ,m(ρ∗τ,m) ≥ 0 and the existence of constants C1 and C2 such that β > C1

and λ < C2, the result readily follows.

We conclude this part of the appendix by providing the proof of Lemma 5.6.

Proof of Lemma 5.6. Consider the following lower bound

Zm(λ, β) ≥
∫

exp

{
−β

[
M∑
i=1

|Rmi (ρ∗m)| · |am|(wmxi + b)m+ +
λ

2
‖θ‖22

]}
dθ

≥
∫

exp

{
−β

[
M∑
i=1

|Rmi (ρ∗m)| · |a|(wmxi + b)+ +
λ

2
‖θ‖22

]}
dθ

≥
∫

exp

{
−β

[
M∑
i=1

|xiRmi (ρ∗m)| · |aw|+
M∑
i=1

|Rmi (ρ∗m)| · |ab|+ λ

2
‖θ‖22

]}
dθ.

(A.15)

Define A =
∑M

i=1 |xiRmi (ρ∗m)| and B =
∑M

i=1 |Rmi (ρ∗m)|. By Lemma A.5, |Rmi (ρ∗m)| ≤ K1

√
λ,

where K1 > 0 is independent of (m,β, λ, i). Therefore, |A|, |B| ≤ K2

√
λ for some K2 > 0

independent of (m,β, λ). Using the inequalities 2|aw| ≤ a2 + w2 and 2|ab| ≤ a2 + b2, the
RHS of (A.15) can be lower bounded by∫

R3

exp

{
−β

2

[
(2K2

√
λ+ λ) · a2 + (K2

√
λ+ λ) · w2 + (K2

√
λ+ λ) · b2

]}
dθ.

By explicitly computing the integral above, the desired result immediately follows.

A.3 Lower Bound on Polynomials

Proof of Lemma 5.4. We start by rewriting P2 as

P2(x) = (1− a2) · (x− xc)2 +
[
2(1− a2)xc + 2ab

]
· (x− xc)

+ (1− a2)x2
c + 2abxc + 1− b2

=
1

2
P ′′2 (xc) · (x− xc)2 + P ′2(xc) · (x− xc) + P2(xc). (A.16)

By definition of xc, one can immediately verify that P2(xc) ≥ 0. Notice that, if P ′′2 (xc) is
close to 0, then a2 is close to 1, which implies that (since xc ∈ I and, thus, bounded in
absolute value) |P ′2(xc)| is close to 2|b| and P2(xc) is close to sign(a)·2bxc+1−b2. Therefore,
at least one of the coefficients P2(xc), |P ′2(xc)|, |P ′′2 (xc)| is lower bounded by a constant that
is independent of (a, b).
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Next, we distinguish two cases depending on the sign of P ′′2 (xc). First, assume that
P ′′2 (xc) ≥ 0. We now show that P ′2(xc) · (x− xc) ≥ 0.

In case of a degenerate polynomial, i.e., P ′′2 (xc) = 0, we distinguish two sub-cases:
either P ′2(xc) > 0 or P ′2(xc) < 0 holds. (The case corresponding to P ′2(xc) = 0 is trivial.) If
P ′2(xc) > 0, then by definition of xc and the fact that x ∈ Ω+ by assumption, we have that
(x − xc) > 0. In fact, recalling the definition of xr in Definition 4.1, as Ω+ has non-zero
Lebesgue measure, xc is either the left extreme of I (i.e., xc = inf

x̃∈I
x̃) or xc = xr ∈ I (i.e.,

in the interior) and, hence, Ω+ = (xr, Ir] with xr < Ir. This gives that P ′2(xc)(x− xc) ≥ 0.
The case P ′2(xc) < 0 follows from similar arguments.

Now assume that P ′′2 (xc) > 0 and let xmin be the minimizer of P2 on the interval I. If
x ≥ xmin then, by definition of a critical point, xc ≥ xmin which means that xc is located
on the right branch of the parabola and, hence, P ′2(xc) ≥ 0. Furthermore, x belongs to the
interval [xc, Ir] by definition of xc. These facts imply that P ′2(xc) · (x − xc) ≥ 0. The case
x < xmin is treated in a similar fashion.

As it was shown, at least one of the coefficients P2(xc), |P ′2(xc)|, P ′′2 (xc) is lower bounded
by a constant that is independent of (a, b), and P ′2(xc)(x− xc) ≥ 0, hence, choosing

α2 = P ′′2 (xc), α1 = |P ′2(xc)|, α0 = P2(xc),

concludes the proof for the case of non-negative curvature.

Assume now that P ′′2 (xc) < 0. As |Ω+| is lower bounded by a strictly positive constant,
we can pick x̃ ∈ Ω+ such that |x̃− xc| = C, for some C > 0 which is independent of (a, b).
As x̃ ∈ Ω+, we have that P2(x̃) ≥ 0. Furthermore, by rewriting P2(x̃) as in (A.16), we
obtain that

1

2
P ′′2 (xc) · (x̃− xc)2 + P ′2(xc) · (x̃− xc) + P2(xc) ≥ 0,

which implies that

|P ′2(xc)||x̃− xc|+ P2(xc) ≥ −
1

2
P ′′2 (xc)(x̃− xc)2. (A.17)

As |x̃− xc| = C, (A.17) is equivalent to

|P ′2(xc)| · C + P2(xc) ≥ −
1

2
P ′′2 (xc) · C2. (A.18)

Now, if both |P ′2(xc)| and P2(xc) are close to 0, then (A.18) immediately implies that P ′′2 (xc)
is also close to 0. However, following the argument above, it is not possible that −P ′′2 (xc),
|P ′2(xc)| and P2(xc) are simultaneously close to 0. This proves that max(|P ′2(xc)|, P2(xc)) is
lower bounded by a constant that is independent of (a, b).

Let xmax be the maximizer of P2 and, without loss of generality, assume that xc < xmax

(the case xc ≥ xmax is handled in a similar way). Note that, by definition of xc, the point
x lies in the interval [xc, xmax]. To show this, let us assume the contrary, i.e., x > xmax

(the case x < xc < xmax is ruled out by the assumption that x ∈ Ω+). Then, the root
of P2 which is the closest in Euclidean distance to x is located to the right of xmax, hence
xc < xmax cannot be a critical point for x, which leads to a contradiction. This proves that
x lies in the interval [xc, xmax] and in particular, x ≤ xmax. Furthermore, by concavity, the
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parabola P2(x̃) is lower bounded by the line that connects (xc, P2(xc)) and (xmax, P2(xmax))
for x̃ ∈ [xc, xmax]. By the focal property of the parabola, this line has angular coefficient
|P ′2(xc)|/2. Therefore,

P2(x̃) ≥ (x̃− xc) · |P ′2(xc)|/2 + P2(xc), x̃ ∈ [xc, xmax].

Picking x̃ = x and
α2 = 0, α1 = |P ′2(xc)|/2, α0 = P2(xc),

gives the desired result in the case P ′′2 (xc) < 0 and concludes the proof.
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