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Abstract
Tin selenide (SnSe) is considered a robust candidate for thermoelectric applications due to its very high thermoelectric
figure of merit, ZT, with values of 2.6 in p-type and 2.8 in n-type single crystals. Sn has been replaced with various
lower group dopants to achieve successful p-type doping in SnSe with high ZT values. A known, facile, and powerful
alternative way to introduce a hole carrier is to use a natural single Sn vacancy, VSn. Through transport and scanning
tunneling microscopy studies, we discovered that VSn are dominant in high-quality (slow cooling rate) SnSe single
crystals, while multiple vacancies, Vmulti, are dominant in low-quality (high cooling rate) single crystals. Surprisingly,
both VSn and Vmulti help to increase the power factors of SnSe, whereas samples with dominant VSn have superior
thermoelectric properties in SnSe single crystals. Additionally, the observation that Vmulti are good p-type sources
observed in relatively low-quality single crystals is useful in thermoelectric applications because polycrystalline SnSe
can be used due to its mechanical strength; this substance is usually fabricated at very high cooling speeds.

Introduction
The efficiency of thermoelectric devices is evaluated by

the dimensionless figure of merit of the material, ZT=
S2σT/κ, where S is the Seebeck coefficient, σ is the elec-
trical conductivity, κ is the total thermal conductivity, and
T is the absolute temperature. σ, S, and κ are inter-
dependent quantities. To date, effort has been made to
enhance ZT by increasing the power factor (PF= S2σ) by
band engineering1–3 and by reducing κ by increasing the
phonon scattering centers in superlattices, alloys, nano-
wires, nanotubes, other nanostructures2 and mixed phase
structures4–6 such as nanostructured Bi2Te3

7, Na-doped
PbTe8 (PbSe9), and Bi2Te3/Sb2Te3 superlattices10. How-
ever, these state-of-the-art thermoelectric materials con-
tain elements that are rare and toxic. Therefore, over the
past few decades, researchers have focused on finding

alternative thermoelectric materials that are economically
and environmentally friendly. In addition, controlling the
intrinsic point defects in a semiconductor is an important
strategy for tuning its electronic and thermoelectric
properties. Since the defect chemistry in a semiconductor
is dependent on both its intrinsic properties and its
external conditions, controlling point defects to enhance
thermoelectric performance is challenging11. It has been
reported that Ag dopants help to suppress Te vacancies
due to the increase in electron chemical potential, while
Na dopants help to enhance the hole concentration in
p-type PbTe, leading to an enhancement in PF and a
simultaneous reduction in thermal conductivity12. The
number of intrinsic vacancies can be controlled by tuning
their formation energy. The Ge vacancy concentration
and distribution have been successfully controlled by
introducing Cr dopants into the GeTe matrix, which helps
to reduce the Ge vacancy formation energy, while the
carrier concentration remains optimized13. Similarly, the
generation of many Sn vacancies in p-type SnTe has been
successfully suppressed by Pb alloying to enhance the
defect formation energy14. The vacancy concentration in
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half-Heuslers has also been controlled using doping/
alloying experiments, whereas different dopants lead to
different vacancy concentrations15.
Since the report of ZT= 2.6 in p-type SnSe16, SnSe has

attracted significant attention. The high thermoelectric
performance of undoped SnSe is attributed to its ultralow
κ (< 0.4Wm−1K−1 at 923 K) caused by the strong
anharmonicity of its chemical bonds17,18. The most fre-
quently used method of optimizing the carrier con-
centration of SnSe has been to replace Sn with various
dopants (substitution). For p-type SnSe, alkali metals (e.g.,
Na19–21 and K22), I–B group metals (e.g., Ag4,20,23), and
III-A group metals (e.g., In24) were used as acceptors.
Recently, carbon fiber has been used to decouple the
electrical and thermal transport in p-type polycrystalline
SnSe, resulting in a ZT value of 1.3 at 823 K25. For n-type
SnSe, V–A group metals (e.g., Bi26,27) and halogens (e.g.,
Cl, Br, and I5,28,29) were used as donors. However, it is
fairly difficult to dope SnSe due to its anharmonic bonds4.
The difficulty in doping SnSe limits the potential to
explore its higher thermoelectric performance30. Thus far,
it is still difficult to use SnSe in practical applications since
the high cost production, weak mechanical and cleavable
properties of SnSe single crystals, and the low perfor-
mance of polycrystalline SnSe are attributed to the pre-
sence of a SnO2 layer at the grain boundary31.
It is well known that SnSe intrinsically shows a p-type

character. Our previous studies confirmed that the p-type
nature of SnSe is attributed to a single Sn vacancy (VSn),
implying that VSn works as a hole provider32–35. We
speculated that the growth speed can control the quality
of the samples, i.e., the number of material defects, and
thus control the natural amount of VSn during the growth
process. A systematic study on intrinsic defects in SnSe is
necessary for optimum thermoelectric performance,
which should be done in single crystal form. SnSe single
crystals have been fabricated at various growth speeds by
changing the cooling rate near the melting point of SnSe
(861 °C) from 0.5 to 5 °C/h during growth using a tem-
perature gradient technique27. We found that as the
cooling rate increased, the dominant defect changed from
a VSn at cooling rates of 0.5 and 1 °C/h to multiple
vacancies, Vmulti, containing more than one Sn (Se) atom
missing, at cooling rates of 2–5 °C/h. Surprisingly, not
only VSn-dominant samples but also Vmulti-dominant
samples showed p-type conduction with PFs comparable
to those in previous reports16,27. Based on our results, the
slow cooling rate is beneficial for the thermoelectric
performance of SnSe single crystals.
The polycrystalline SnSe has high mechanical strength

and can be used in thermoelectric applications. The
observation that the Vmulti are good p-type sources in high
cooling rate SnSe crystals is really important information
for the thermoelectric application because polycrystalline

SnSe which is usually fabricated at very high cooling rates
can be used due to its high mechanical strength.

Materials and methods
Sample preparation
The SnSe samples were synthesized by a temperature

gradient technique by heating the raw materials to 500 °C
over 32 h and then to 950 °C over 45 h, soaking at this
temperature for 15 h, cooling to 900 °C over 10 h, then
cooling to 800 °C across the melting point of SnSe
(861 °C) at various cooling rates (0.5, 1, 2, 3, 4, and 5 °C/h),
and finally cooling to room temperature over 100 h. We
used a slow heating rate to prevent explosion due to the
high vapor pressure of Se.

Sample characterizations
We determined the carrier concentrations of the sam-

ples using a four-probe method. The values of σ and S
were measured from 300 to 923 K using a ULVAC-RIKO
ZEM3 system. The thermal diffusivities, D, were mea-
sured with a Netzsch LFA-457 (Germany) MicroFlash
apparatus. The heat capacities, Cp, were obtained from
ref. 11. The values of κ were calculated using the formula
κ=DCpρ, where ρ is the mass density (measured by the
Archimedes method). STM was conducted at 79 K with
an in situ cleaving technique. X-ray diffraction (XRD),
field emission scanning electron spectroscopy (FE-SEM),
and electron probe microanalyzer experiments were used
to investigate the structure, composition, and morphology
of the samples.

Results and discussion
Structural characterization
Figure 1a shows a photo of SnSe, which can be easily

cleaved along the (bc) plane due to weak interlayer
bonding. Our samples exhibit a lamellar microstructure,
as shown in FE-SEM images (see Fig. S1a). Room tem-
perature X-ray diffraction (XRD) patterns of cleaved
planes of SnSe single crystals are shown in Fig. 1b, where
all diffraction peaks can be indexed corresponding to the
orthorhombic SnSe phase (space group Pnma). Only
sharp (h00) peaks are observed, indicating the high crys-
tallinity of our samples with the cleaved plane perpendi-
cular to the a-axis. The lattice parameters of the samples
were determined using powder XRD and are listed in
Table 1.

Thermoelectric transport studies
Figure 2a–c shows the temperature dependence of σ, S,

and PF of various SnSe single crystals prepared at 6 dif-
ferent cooling rates. All the samples had similar σ values
in the mid-temperature range, while their σ values dif-
fered in the low- and high-temperature ranges. At tem-
peratures ranging from 300 to 570 K, the σ of samples
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prepared at 5 °C/h increased with temperature, while
those of other samples decreased. Above 570 K, σ of all
the samples increased up to ~800 K, reached a maximum
value at 876 K, and then decreased with temperature. The
maximum σ values were 93.5, 85.8, 94.2, 91.4, 75.3, and
70.4 S cm−1 for samples prepared with cooling rates of

0.5, 1, 2, 3, 4, and 5 °C/h, respectively, comparable to the
reported value (~ 85 S cm−1)17. The ln(σ) vs. 103/T curves
of all samples showed two different slopes. The sample
prepared with a cooling rate of 5 °C/h had two different
negative slopes, while the other samples had positive
slopes below 570 K and negative slopes above 570 K,
indicating the complex activation energies of the carriers.
These variations in σ vs. temperature up to 800 K were
attributed to complex thermally activated carriers and/or
activation energies or carrier mobilities. The behavior of σ
above 800 K was attributed to the phase transition from
Pnma (Eg= 0.829 eV) to Cmcm (Eg= 0.464 eV).
All samples had positive S values over the whole tem-

perature range, indicating dominant hole conduction. The
value of S increased with increasing temperature up to
520 K, then decreased as the temperature was increased to
876 K, and finally increased again at temperatures above
876 K (Fig. 2b). This behavior of S is consistent with that
of σ. The S values of all samples also deviated in the low
temperature range (530–612 µV/K at 300 K) but were
more consistent at higher temperatures. The positive hole
conduction behavior was confirmed by Hall measure-
ments, with a carrier concentration level of 1017 cm−3 at
room temperature for all samples (inset of Fig. 2b, Fig.
S7a, and Table 1).
The calculated PF showed a similar temperature

dependence on σ (Fig. 2c). Deviating PF values were
obtained at low and high temperature ranges, while closer
PF values were obtained in the middle temperature range.
The obtained maximum PF values were 11.2, 8.1, 10.2, 9.0,
8.2, and 7.4 µWcm−1K−2 at 876 K for samples prepared
with cooling rates of 0.5, 1, 2, 3, 4, and 5 °C/h, respectively,
comparable to the reported value (10.1 µWcm−1K−2)17.
The samples prepared at 0.5 and 2 °C/h had similar values.
To clarify the influence of the cooling rate on transport

properties, we plotted the cooling-rate-dependent trans-
port parameters at selected temperatures, as shown in Fig.
2d–f. The cooling rate had less effect on σ at 567, 617, and
669 K. At low and high temperatures (< 567 K and >
669 K), σ varied differently with cooling rate for samples
with cooling rates ≤ 1 °C/h (region I) vs. > 2 °C/h (region
II). In Fig. 2d–f, these two regions are separated by a black
dashed line. The value of S had a strong cooling rate
dependence at low temperatures and a lower cooling rate
dependence at moderate and high temperatures. S also
varied differently with cooling rate in regions I and II. As a
result, the calculated PFs exhibited two distinct trends
with cooling rate. The cooling rate had a strong effect on
the PFs at low and high temperatures, while it had less of
an effect at intermediate temperatures. These observa-
tions indicate a discontinuity in the transport parameters
vs. cooling rate. To verify these results, we grew five dif-
ferent single crystals at a cooling rate of 1 °C/h and stu-
died their transport properties (Fig. S2). These samples

Fig. 1 Sample photos and structural characterization. a A picture
of a SnSe single crystal ingot after cleavage; b XRD patterns of cleaved
SnSe single crystals.

Table 1 Room temperature lattice constants and carrier
concentration of samples grown at various cooling rates.

Sample

(cooling rate,

°C/h)

a (Å) b (Å) c (Å) Volume (Å)3 Carrier density

at 300 K

(×1017)

0.5 11.474 4.729 4.177 226.646 5.53

1 11.478 4.730 4.180 226.923 3.95

2 11.477 4.730 4.178 226.821 2.20

3 11.477 4.728 4.178 226.711 1.84

4 11.472 4.728 4.177 226.577 2.16

5 11.475 4.730 4.177 226.698 1.61
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confirmed the presence of the discontinuity in transport
vs. cooling rate in SnSe single crystals, as clearly denoted
by the solid lines in the figures.

STM microscopic studies
To understand the discontinuity behavior in transport

data, we conducted scanning tunneling microscopy
(STM) measurements to investigate the defect char-
acteristics of these samples. All samples were exfoliated
inside an ultrahigh vacuum chamber to obtain clean
surfaces for STM analysis. All STM analyses were con-
ducted at 79 K. Figure 3a–d shows STM images taken

from the same samples with cooling rates of 0.5, 1, 2, and
5 °C/h. Many defects were observed in all samples, as
shown in Fig. 3a–d. Intriguingly, the nature of the defects
differed strikingly between the samples in region I (cool-
ing rate of 0.5–1 °C/h) and region II (cooling rate of
2–5 °C/h). VSn is usually known to be dominant among
various types of defects, and VSn is also responsible for the
p-type characteristic of SnSe32. Indeed, VSn is pre-
dominantly observed in the samples prepared with a
cooling rate of 0.5–1 °C/h. Figure 3e(i, ii) shows atomistic
images of representative VSn instances taken from the
marked areas of (i, ii) in Fig. 3a,b. In the STM topography,

Fig. 2 Thermoelectric transport properties. Temperature dependence (a–c) and cooling rate dependence at selected temperatures (d–f) of
electrical conductivity (σ), Seebeck coefficient (S), and thermoelectric power factors (PF) of SnSe single crystals along the b-axis. The inset of a shows
ln(σ) vs. 103/T curves for all samples. The inset of b shows the Hall data of all samples at 300 K.
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Sn atoms were visible as bright spots, while Se atoms were
located in dark regions and were not visible32.
Interestingly, the samples prepared at 2–5 °C/h (region

II) revealed a very different defect nature in which the
dominant defects were complex vacancies consisting of
more than one Sn atom vacancy. These instances of Vmulti

were present in various sizes and shapes, as shown in Fig.
3e (iii, iv), taken from area (iii, iv) in Fig. 3c, d. More
examples of those defects in the region I and II samples
are also provided in Fig. S5. With the increase in solidi-
fication speed (cooling rate) above 2 °C/h, multi-vacancies
are dominant, and the size of the multi-vacancies

Fig. 3 STM topographic images. a–d STM images of SnSe single crystals prepared with cooling rates of 0.5, 1, 2, and 5 °C/h; e atomistic images of a
representative defect in each sample taken from the marked areas of (i–iv) of (a–d). Imaging conditions: a Vb (sample bias) = −1.5 V, and It (tunneling
current) = 30 pA; b Vb=−2 V, and It= 30 pA; c Vb=−1.5 V, and It= 30 pA; d Vb=−1.4 V, and It= 30 pA.
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increases. We conclude that the electrical properties of
the region II samples were mainly caused by Vmulti, while
VSn played the major role in the region I samples.
Therefore, the discontinuity observed in the transport in
Fig. 2 was attributed to the change in defect character-
istics from VSn in high-quality single crystals (region I) to
Vmulti in relatively low-quality single crystals (region II).
As shown in Fig. 2, the region II samples had p-type PF
values (10.2 µWcm−1K−2) that were comparable to those
of the region I samples (11.2 µWcm−1K−2), indicating
that the Vmulti, dominant in the region II samples, also
worked as a good acceptors for producing the hole car-
riers required for thermoelectric performance.

Conclusions
We introduced an alternative, facile, and much more

powerful method via the engineering of vacancies to
introduce hole carriers in SnSe. With the help of transport
and STM studies, we discovered that VSn are dominant in
high-quality SnSe single crystals, while Vmulti are domi-
nant in low-quality single crystals. Surprisingly, both VSn

and Vmulti are good p-type sources in SnSe with com-
parable PF values. The Vmulti become the dominant and
p-type source when the cooling rate increases, which is
expected in polycrystalline SnSe. This information pro-
vides a deeper understanding of the nature of the defects
in SnSe.
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