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Abstract

In this article we study the noncommutative transport distance introduced by Carlen and
Maas and its entropic regularization defined by Becker and Li. We prove a duality formula
that can be understood as a quantum version of the dual Benamou—Brenier formulation of
the Wasserstein distance in terms of subsolutions of a Hamilton—-Jacobi—-Bellmann equation.
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1 Introduction

The theory of optimal transport [28, 29] has experienced rapid growth in recent years with
applications in diverse fields across pure and applied mathematics. Along with this growth
came a lot of interest in extending the methods of optimal transport beyond the scope of its
original formulation as an optimization problem for the transport cost between two probability
measures.

One such extension deals with “quantum spaces”, where the probability measures are
replaced by density matrices or density operators. Most of the work on quantum optimal
transport in this sense can be grouped into one of the following two categories. The first
approach (see e.g. [6-9, 11, 22, 27]) takes a quantum Markov semigroup (QMS) as input
datum and relies on a noncommutative analog of the Benamou-Brenier formulation [4] of
the Wasserstein distance for probability measures on Euclidean space

1
W2, v) = inf{/ [ P dpidn o= = v+ o) = 0} .
0 JRrr
In the simple case when the generator . of the QMS is of the form

LA = Z[V-, [V, Al]
jeJ
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with self-adjoint matrices V;, the associated noncommutative transport distance WV on the
set of density matrices is given by

1
W2(po, p1) = inf /Zr(Wf;m[p(z)]g‘(W,-))dr:p(w:Z[V,-,ij] :
0 jeg jed

where the infimum is taken over curves p that satisfy p(0) = pg, p(1) = p1, and where
1
[Xo(A) = / XUAX' da.
0

For the definition of the metric WV in the more general case of a QMS satisfying the detailed
balance condition (DBC), we refer to the next section.

This approach has proven fruitful in applications to noncommutative functional inequal-
ities, similar in spirit to the heuristics known as Otto calculus [8, 9, 12, 31].

The second approach (see e.g. [13, 14, 17, 23, 25, 26]) seeks to find a suitable noncom-
mutative analog of the Monge—Kantorovich formulation [20] of the Wasserstein distance via
couplings (or transport plans):

W5 (w, v) =inf{/

X x

. dP(x,y)dm(x,y) : (prp)sm = w, (pry)smw = V} .

This approach also allows to consider a quantum version of Monge—Kantorovich problem
for arbitrary cost functions. So far, possible connections between these two approaches in
the quantum world stay elusive.

The focus of this article lies on the noncommutative transport distance V introduced in
the first approach. More precisely, we prove a dual formula that is a noncommutative analog
of the expression of the classical L>-Wasserstein distance in terms of subsolutions of the
Hamilton—Jacobi equation [5, 24]

1 1
W22(/L,\)) = Einf{/ uld,u—/ uodv:ut+§|Vu,|2 50}.
n Rn

This result yields a noncommutative version of the dual formula obtained independently by
Erbar et al. [15] and Gangb et al. [16] for the Wasserstein-like transport distance on graphs.
In fact, we prove a dual formula that is not only valid for the metric WV, but also for the
entropic regularization recently introduced by Becker—Li [3]. When the generator . is again
of the simple form discussed above, the entropic regularization ¥V, is a metric obtained when
replacing the constraint
A6y =Y [V;, W;(0)]
jeJ
in the definition of W by

p) =Y Vi W1 +e2"p ().
jeg
With the notation introduced in the next section, the main result of this article reads as
follows.

Theorem Let 0 € M, (C) be an invertible density matrix and (P;) an ergodic QMS on
M, (C) that satisfies the o -DBC. The entropic regularization W, of noncommutative transport

@ Springer
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distance induced by (Py) satisfies the following dual formula:
1
S We(po, p1) = sup{z(A(D)p1 — A(0)po) | A € HIB;).

Here a QMS (P) is said to satisfy the o-DBC if
T((P;A)*Bo) = 1(A*(P,B)o)

forall A, B € M,(C) andt > 0. If o is the identity matrix, this is the case exactly when the
generator is of the form LA = j[Vj, [V}, A]] with self-adjoint matrices V.

Moreover, HJB! stands for the set of all Hamilton-Jacobi-Bellmann subsolutions, a suit-
able noncommutative variant of solutions of the differential inequality

a(t) + %qu(t)|2 —eAu(r) <0.

Other metrics similar to W also occur in the literature, most notably the one called the
“anticommutator case” in [3, 10, 11]. In [9, 30], a class of such metrics was studied in a
systematic way, and our main theorem applies in fact to this wider class of metrics. For the
anticommutator case, this duality formula was obtained before in [10].

There are still some very natural questions left open. For one, we do not discuss the
existence of optimizers. While for the primal problem this follows from a standard compact-
ness argument, this question is more delicate for the dual problem, even when dealing with
probability densities on discrete spaces instead of density matrices, and one has to relax the
problem to obtain maximizers (see [16, Sects. 6-7]).

Another interesting direction would be to extend the duality result from matrix algebras
to infinite-dimensional systems. While a definition of the metric W for QMSs on semi-finite
von Neumann algebras is available [19, 30], the problem of duality seems to be much harder
to address. Even for abstract diffusion semigroups, the best known result only shows that the
primal distance is the upper length distance associated with the dual distance and leaves the
question of equality open [2, Proposition 10.11].

2 Setting and Basic Definitions

In this section we introduce basic facts and definitions about QMSs that will be used later
on. In particular, we review the definition of the noncommutative transport distance from [8]
and its entropic regularization introduced in [3]. Our notation mostly follows [8, 9]. For a list
of symbols we refer the reader to the end of this article.

Let M, (C) denote the complex n x n matrices and let .4 be a unital x-subalgebra of
M, (C). Let Aj, denote the self-adjoint part of A, A, the cone of positive elements of A
and A, the subset of invertible positive elements. We write t for the normalized trace on
M, (C), that is,

1 n
A) = — Ak,
T(A) n/; kk

and $) 4 for the Hilbert space formed by equipping .A with the GNS inner product
()9 AXxA—>C, (A, B)— t(A*B).

The adjoint of a linear operator % : $ 4 — $.4 is denoted by .# .
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We write G (A) for the set of all density matrices on .A, that is, all positive elements p € A
with t(p) = 1. The subset of invertible density matrices is denoted by & (A).

A QMS on A is a family (P;);>0 of linear operators on A that satisfy the following
conditions:

— Py is unital and completely positive for every ¢ > 0,
— Po=ida, Py = PsP; foralls,t >0,
— t +— Py is continuous.

We consider a QMS (P;) on A which extends to a QMS on M,, (C) satisfying the o -detailed
balance condition (o-DBC) for some density matrix o € &4 (A), that is,

t((P;A)*Bo) = t(A*(P;B)o)

for A, B € Aandt > 0. For o = id 4, this reduces to the symmetry condition P: = P;.
Let . denote the generator of (P;), that is, the linear operator on A given by

PA—-A

Z(4) = lim —=
t

We further assume that (P;) is ergodic (or primitive), that is, the kernel of ¢ is one-
dimensional. This assumption is natural in this context as it ensures that the metric Wj ¢
defined below is the geodesic distance induced by a Riemannian metric on &4 (A) and in
particular that it is finite.

Generators of QMSs are often described by their Lindblad form, but here we will rely on
the additional structure coming from the o-DBC and use a presentation of . provided by
Alicki’s theorem [1,Theorem 3], [8,Theorem 3.1] instead: There exists a finite set 7, real
numbers w; for j € J and V; € M,,(C) for j € J with the following properties:

- ‘L’(V}ka) =4 forj, ke J,

- 1(Vj)=0forjeJ,

— forevery j € J there exists a unique j* € J with V;+ = V;‘,
- ana_l =e “VjforjeJ

such that
2 =Y (e PVIA, Vi1 = e A, V;1V))
jed
for A € A.

The numbers w; are called Bohr frequencies of . and are uniquely determined by (7).
The matrices V; are not uniquely determined by (P;) and o, but in the following we will fix
aset {V; | j € J} that satisfies the preceding conditions.

Next we will discuss how the data from Alicki’s theorem give rise to a differential structure
associated with .Z.

Let .

947 =P 9%,
jeg

where S’J&{) is a copy of $) 4 for j € J. This is the quantum analog of the space of tangent
vector fields in our setting.
We write d; for [V}, -] and

Vi9a— Hag, V(A =(0(A)jer,
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which provide analogs of the partial derivatives and the usual gradient operator, respectively.
The commutator 9; satisfies the product rule

3;(AB) = Ad;(B) + 9;(A)B. )

Note that in contrast too the usual partial derivatives, the order of the factors plays a role
here. This is one central reason for many of the differences and intricacies of the quantum
optimal transport distance compared to the classical Wasserstein distance.

Continuing with the analogy with calculus, we write div for the adjoint of —V, that is,

div=—> "9
jeJ
The crucial ingredient in the definition of W, which allows to deal with the noncommuta-

tivity of the product rule, is the operator [p],, whose definition we recall next. For X € A,
and « € R define

1
[X]o: 94— 94, [X]a(A) = / T XS AXTTS ds.
0

The motivation for this definition is a chain rule identity [8,Eq. (5.7)], which can best be
illustrated in the case o = 0:

[X1o(9; (log X)) = 9;(X).
Given o = (@) je 7, we define

(Xla: Hag = Hag, (Vj)jeg = ([Xla;V))jes-

For ¢ > 0 we write CE.(pg, p1) for the set of all pairs (p,V) such that p €
H'([0, 1]; 6.4 (A)) with p(0) = po, p(1) = p1, V € L2([0, 1]; $.4,7) and

p(1) +divV(t) = eZ p(1) 2

forae.t € [0, 1].

Here and in the following we write H Lo, 17; &1 (A)) for the space of all maps
p: 10,11 = &.4(A) such that (r — t(Ap(r))) € H([0,1]) for all A € A. The space
L2([0,1]; 9 A,7) and other vector-valued functions spaces occurring later are defined simi-
larly.

We define a metric W, on & (A) by

1

W= it v eoR Vo
(0, V)ECE: (p0.p1) Jo

where @ = (w;) je.7 with the Bohr frequencies w; of Z.

For ¢ = 0, this is the noncommutative transport distance ¥V introduced in [8] (as distance
function associated with a Riemannian metric on G(.A). ), and for ¢ > 0, this is the entropic
regularization of WV introduced in [3].

A standard mollification argument shows that the infimum in the definition of W, can
equivalently be taken over (p, V) € CE.(po, p1) with p € C*([0, 1]; G4+ (A)). More pre-
cisely, if (p, V) € CE;(po, p1) and (15)s=0 is amollifying kernel, then (p*n;s, V*ns) satisfies
(2). A suitable reparametrization of the time parameter gives a pair (0%, V¥ e CEs(po, p1)
such that p? is smooth and

1 1
lim / Vo), 0P (015 VP (1)) di = / VO, [p015'V©)) di
INO Jo 0
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By a substitution one can reformulate the minimization problem for W, in such a way
that the constraint becomes independent from ¢. For that purpose define the relative entropy
of p € 64 (A) with respect to o by

D(pllo) = t(p(log p — logo))
and the Fisher information of p € &,.(A) by

I(p) = ([ploVog p —logo), V(log p — logo))s 4 -

According to [3, Theorem 1], one has

1
W (po, p1) = inf / (W@, o], W®) + > Z(p(1)) dt
(p.W)eCEo(p0.01) Jo

+2e(D(p1llo) — D(pollo)).

The metric WV is intimately connected to the relative entropy and therefore well-suited to
study its decay properties along the QMS. For other applications, variants of the metric W
have also proven useful (e.g. [10, 11]), for which the operator [p],, is replaced. A systematic
framework of these metrics has been developed in [9, 30]. It can be conveniently phrased in
terms of so-called operator connections.

Let H be an infinite-dimensional Hilbert space. Amap A: B(H)4+ x B(H)+ — B(H)+
is called an operator connection [21] if

— A<Cand B < Dimply A(A, B) < A(C,D)for A,B,C,D € B(H)+,
— CA(A,B)C < A(CAC,CBC)forA,B,C € B(H),
— Ap \( A, B, \({ Bimply A(A,, By) \\ A(A, B) for A, A,, B, B, € B(H)+.

For example, for every @ € R the map
1
Ao: (A, B) — / @12 As B1=S gg
0
is an operator connection.
It can be shown that every operator connection A satisfies
U*A(A, B)\U = A(U*AU,U*BU)

for A, B € B(H)4+ and unitary U € B(H) [21, Sect. 2]. Embedding C" into H, one can view
A, B € M,(C) as bounded linear operators on H, and the unitary invariance of A ensures
that A(A, B) does not depend on the embedding of C" into H.
For X € A define
LX): 94— Ha, A XA
R(X): $H4 — H4, A AX.

Note that if X € A4, then
(A, L(X)A)g , = T(A*XA) = t((X'?A)*(X'24)) > 0,

so that L(X) is a positive operator, and the same holds for R(X).
Thus we can define
[X1a = A(L(X), R(X)).

If A, u > 0 and 1,, denotes the identity matrix, then A(A1l,, il,) is a scalar multiple of
the identity as a consequence the unitary invariance of A discussed above. By a slight abuse
of notation, this scalar will be denoted by A (A, ).
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Since L(X) and R(X) commute, we have

A(L(X), R(X))A = Z A(hi, M) ERAE] 3
k=1

for X € Ay and A € $ 4, where (A;) are the eigenvalues of X and Ej the corresponding
spectral projections.
More generally let A = (A ) je7 be a family of operator connections and define

[ola; = Aj(L(p), R(p)),

[p1a = Elola;-
jed

Clearly, [ple = [p]a, With the operator connection A, from above.
Then one can define a distance W, . by

1
W . 00)? = inf / NIV, Vit dt.
A& (00, PO) v oo Jo (oMW1 V@O, V) e 4 5

IfA; = Aw; as above, then we retain the original metric W, while for A (A, B) =
%(A + B) (and ¢ = 0) one obtains the distance studied in [10, 11].

Later we will make the additional assumption that A j= (A, B) = A (B, A), where j* € J
is the unique index in the Alicki representation of .2’ such that Vj» = V /?“. It follows from the
representation theorem of operator means [21] that the class of metrics W o with A subject
to this symmetry condition is exactly the class of metrics satisfying Assumptions 7.2 and 9.5
in [9].

For technical reasons in the proof of Theorem 2, it will be necessary to allow for curves of
density matrices that are not necessarily invertible. For this purpose, we make the following
convention: If IC: $ 4, 7 — $.4,7 is a positive operator and V € §) 4, 7, we define

(KW.W)g ., if Ve kerK)t, KW=V,

vV, K7V =
( 1947 {oo otherwise.

Since (ker K)* = ran K and K is injective on (ker K)T, the element W in this definition
exists and is unique. Moreover, this convention is clearly consistent with the usual definition
if K is invertible.

Alternatively, as a direct consequence of the spectral theorem, this expression can equiv-
alently be defined as

m

1
-1 2
(V,KWV)s, 5 :k§_1 IV Was P

where Aq, ..., A, are the eigenvalues of /C and Wy, ..., W, an orthonormal basis of corre-
sponding eigenvectors.

Lemmal If KC,: Ha7 — Ha,g, n € N, are positive invertible operators that converge
monotonically decreasing to K, then

VK Vg, S UV KT W) g,
forallVe$y .
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19 Page80of18 M. Wirth

Proof From the spectral expression it is easy to see that

(VK Vg, = sup(V. (K + ™' V)sas
>
and the same for K, replaced by K. Moreover, since K, \, K, we have (K, +8)~! ~
(K +8)~!L. Thus
(V.K™'V)g, , =sup(V,(K+8)'V)g , ,
§>0
= sup sup(V, (K, + 8)’1V)5AJ

§>0neN

= sup sup({V, (K, + 8)71V)5’)A,j
neN §>0

= sup(V, IC;IV);QAJ.
neN

Since ((V, K, ]V) HA. J) is monotonically increasing, this settles the claim.

Write CE,(po, p1) for the set of all pairs (p, V) such that p € H'([0, 11; &(A)) with
p(0) = po, p(1) = p1, V € L*([0, 1]: $.4.7) and

o) +divV(e) =L pr)

for a.e. t € [0, 1]. The only difference to the definition of CE.(pp, p1) is that p(¢) is not
assumed to be invertible.

Proposition 1 For po, p1 € G4 (A) we have

1
WA . (po, p1) = inf / (V). [p1' V(1)) ¢ 4 , dt.
Ase (0. V)ECE, (p0.01) Jo A AT

Proof 1t suffices to show that every curve (p, V) € CE.(po, p1) can be approximated by
curves in CE,(pg, p1) such that the action integrals converge.
For that purpose let

0% 10,1] —> S4(A),

(I—t)po+1tly if t € [0, §],
t> 30 =8)p((1 =281 —8)+81y ifte 5, 1-95),
tpr+ (1 —1)ly ifre[l—36,1].

Since (P;) is assumed to be ergodic, by [8, Theorem 5.4] there exists for every ¢ € [0, 1] a
unique X(¢) € Ay with t(X(¢))) = 0 such that

La— po+div(VX(1) = e(1 — .27 po.
and X (r) depends continuously on ¢. For ¢ € [0, §] let V() = VX(@).

Moreover, if A is the smallest eigenvalue of pg, which is strictly positive by assumption,
then p? (1) > (1 — A + 1)1 4 > Al 4.
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Thus

5 5
/0 V0. 10 OV (D)5 5 di = /0 (VA0 Laly V()54 5 dt
8
< ||[A1A];1||fo IVXOIIE, , dr

— 0

as § — 0. Similarly one can show

1

Jim f V@), [p° O]} VP (D)5 4 5 di = 0.

By the same argument as above, for a.e. r € (8, 1 — 8) there exists a unique gradient W (z)
such that

divwWi() = — 2‘3828 Lo =287 —8)

1 —

and
25¢e _
W Dlln 4y = 755 127 =28)71 = )llg 4 -

Since p € H'([0,1]; 6(A)) C C([0, 1]; &(A)), the norm on the right side is bounded
independent of §, so that ~
W @llg,, < Cs

with a constant C > 0 independent of §. As ,o‘s (t) > 614 fort € (8§, 1 — §), this implies

1m0 s 51— lywd ll_a 5 1w
WO PO W s, pdt <5 | (WO TAE W D), 5 dt
< Cllitaly' 18
-0
asé — 0.
With 1
Sy o=l s
Ve = V(A = 28) 7 = 8) + W)
we have
0% (1) + divVe(r) = eZp%(1).
Furthermore,

1-5 ) v (L2
/ <V ( m) POV (1—28>>M~7 !

1 - 28 1< s 1!
=—— V(s), [,o(s) + 7] V(s) ds,
1—68],

1-6
0 NAT

where we used the substitution s = (1 — 28)~!(r — §).
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By Lemma 1 and the monotone convergence theorem we obtain

. 1-48 t—346 1 8
gg% 1) <V <17> [,0 Wl V< 28>>5A.J «
1
_ /0 (V). 013 V()50 5 ds

Together with the convergence result for W8 from above, this implies

1-6 1
/8 Vo), [0° (D13 V2 () g 4, dt — /0 VO, [pM13' V(1)) 5 4, dt

Altogether we have shown

1 1
lim [0 (Vo). [0° (D13 Vo (0)) g 4 5 dt = /0 (V). [p1} V()5 4 5 dt.

3 Real subspaces

Since the proof of the main result relies on convex analysis methods for real Banach spaces,
we need to identify suitable real subspaces for our purposes. For A this is simply .4;,, but for
A, this is less obvious and will be done in the following.

For j € J denote by j* the unique index in J such that VJ?“ = V. Let f)(j ) be the linear
span of {X0;A | A, X € A}, and define a linear map J : fj%) — Sﬁfi ) by

By the product rule (1), (3; A) X also belongs to 53(/) and
J((@;)X) = X*3-(A").

Thus J interchanges left and right multiplication, that is, J(AVB) = B*J(V)A* for A, B €
AandV e YJ(/ )

Lemma 2 The map J is anti-unitary.
Proof For A, B, X,Y € A we have
(J(X0;A),J(Y0jB))p 4 = T(X(AV; — VjA)(V;‘B* — B*V;)Y*)
= t((B*Vj* — V;‘B*)Y*X(VjA — AV)))
= (Y0; B, X3;A).

Let

jeg

By the previous lemma, H%) 4 1s areal Hilbert space.

@ Springer



A Dual Formula for the Noncommutative Transport Distance Page 110f18 19

Lemma3 Let (Aj)jeg be afamily of operator connections such that
Aj(B,A)=Aj+(A, B)
forall j € J.If A € Ay and p € G(A), then VA, [p]aVA € Hj’)j.
Proof For V A the statement follows directly from the definitions. For [p]A V A first note that

JA(L(p), R(p)) = A(R(p), L(p))J

as a consequence of the spectral representation (3) and the fact that J interchanges left and
right multiplication.

Thus
J([pla;0;A) = JA;(L(p), R(p))d; A
=Aj(R(p), L(p))J9; A
= Aj+(L(p), R(p))dj+ A.
o
4 Duality

In this section we prove the duality theorem announced in the introduction. Our strategy
follows the same lines as the proof in the commutative case in [15]. It crucially relies on
the Rockafellar—Fenchel duality theorem quoted below. Throughout this section we fix an
ergodic QMS with generator . satisfying the o-DBC for some 0 € G4 (A) and a family
(A j) jeg of operator connections such that A j«(A, B) = Aj(B, A) forall j € J.

We need the following definition for the constraint of the dual problem. Here and in the
following we write

(V, W), = (V. [0]a W)

forV,We$Ha 7andp e A;.

Definition 1 A function A € H'((0, T); Ay) is said to be a Hamilton—Jacobi-Bellmann
subsolution if for a.e. t € (0, T) we have

. 1
T((A(t) + e ZLA@))p) + EIIVA([)H2 <0 forall p € G(A).
The set of all Hamilton—Jacobi—Bellmann subsolutions is denoted by HIBx .

Our proof will establish equality between the primal and dual problem, but before we
begin, let us show that one inequality is actually quite easy to obtain.

Proposition 2 For all pg, p1 € 64 (A) we have

sup{z(A(1)p1 — A()po) | A € HIBA, ¢}

1 1
< Einf {/0 V@), [P(I)]X]V(I)MA,J dt | (p,V) € CE:(po. Pl)}-
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19 Page120f18 M. Wirth

Proof For A € HIB4,¢ and (p, V) € CE.(po, p1) we have
T(A()p1 — AO)pp) = fo L AWp©) + A0 dr
<- /0 1 (er((ﬂ(x))pa» + 5 ||VA(t)||p(,)>
+ /0 1(<VA(r>,V<z)>ﬁM +et(AWL p(1) dt
/0 1<[p(r>]”2VA(t>, o1 PV(©) 5, 5 dt

1
-z f (Lo VAW®). [0} VAW))g , , di

2
1
<3 / (o1*VAW®), o> VAD)S, , , dr
1 ! _
+ - fo (o1 PVAQ), [} PVA@)E ,  dr

2 Hag

1
2 f (o1 VAW, o> VAWD) 5, 5 dt

1 1
=5 /0 (V). Lo V() 5, , dt

where we used A € HJBA . and (p, V) € CE.(po, p1) for the first inequality and Young’s
inequality 2|(&, n)| < (&, &) + (n, n) for the second inequality. ]

To prove actual equality, our crucial tool is the Rockafellar—Fenchel duality theorem (see
e.g. [28, Theorem 1.9], which we quote here for the convenience of the reader. Recall that if
E is a (real) normed space, the Legendre—Fenchel transform F* of a proper convex function
F: E — R U {oo} is defined by

F*: E* - RU{oo}, F*(x*) = sup({(x*, x) — F(x)).

xeE

Theorem 1 Let E be a real normed space and F, G : E — RU{oo} proper convex functions
with Legendre—Fenchel transforms F*, G*. If there exists zo € E such that G is continuous
at zg and F (zp), G(z9) < 00, then

sup(—F(z) = G(2)) = géilli_l*(F*(z*) + G*(=2").

zeE
Before we state the main result, we still need the following useful inequality.

Lemma 4 For any operator connection A the map

fa: Ary — B(Ha), A [Ala

is smooth and its Fréchet derivative satisfies

dfa(B)A = fa(A)
for A, B € A4 with equality if A = B.
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Proof Smoothness of f, is a consequence of the representation theorem of operator con-
nections [21, Theorem 3.4]. For the claim about the Fréchet derivative first note that f, is
concave [21, Theorem 3.5]. Therefore dzfA(X)[Y, Y] <Oforall X € Ay and Y € A by
[18, Proposition 2.2].
The fundamental theorem of calculus implies
1
(dfa(A) —dfa(B))(A—B) = / d*fa(tA+ (1 —1)B)[A — B, A — Bldt
0
<0.

Since f, is 1-homogeneous by [21,Eq. (2.1)], its derivative is 0-homogeneous. Thus, if we
replace B by ¢B and let ¢ Y\ 0, we obtain

dfa(A)A < dfa(B)A.
Moreover, the 1-homogeneity of f5 implies dfa (A)A = fa(A), which settles the claim.
Theorem 2 (Duality formula) For pg, p1 € &4 (A) we have
1

5 Wa.e (o, p1)* = sup{t(A(1)p1) — T(A(0)po) : A € HIBA,¢)

= sup{z(A()p1) — T(A(0)po) : A € HIBx,e N C([0, 1]; A)}.

Proof The second inequality follows easily by mollifying. We will show the duality formula
for Hamilton—Jacobi subsolutions in H'!. For this purpose we use the Rockafellar—Fenchel
duality formula from Theorem 1.

Let E be the real Banach space

H'(10. 11; HY) x L2([0, 11; H ).
By the theory of linear ordinary differential equations, the map
HY(0, 1, HY) — 1Y x L2(0, 1; HY), A (A0), A +e2A)

is a linear isomorphism.
Thus the dual space E* can be isomorphically identified with

HG x L210, 11, 1Y) x L2([0, 11 1Y )

via the dual pairing

1
((A, V), (B,C,W)) =1(A(0)B) +/ T((A@) + L AD))C (1)) dt
0

1
+f0 (V(6), WD), 5 di.

Define functionals F, G: E — R U {oo} by

—1(A( A0 ifV=VA
F(A’V)={ (A1) +T(AO)p) fV = VA,
[ee) otherwise,
0 if(A,V)eD
G(A,V)={ b e
oo otherwise.
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Here D denotes the set of all pairs (A, V) such that
. 1
T(A@) +eLAM)P) + S IVOI; <0
forallt € [0, 1], p € &(A).
It is easy to see that F' and G are convex. Moreover, for Ag(t) = —t1 4 and Vo = 0 we

have Vo = V Ay, hence F(Ag, Vop) =0, and

. 1
T((Ao(t) +eZLA0(1))p) + EIIVO(I)II% =-1

forall € [0, 1], p € &(A), hence G(Ap, Vo) = 0. Furthermore, G is clearly continuous

at (Ao, Vo).
Moreover,
sup (—F(A,V)—G(A,V)) = sup (T(A(D)p1) — T(A0)p0))-
(A,V)eE AeHJBA ¢ (p0,p1)

Let us calculate the Legendre transforms of F' and G, keeping in mind the identification
of E*. For F we obtain

F*(B,C,W) = sup {((A,V),(B,C,W))—F(A,V)}
(A,V)eE

1
= sup {‘L’(A(O)B) + / T((A(t) + L A()) C(r)) dt
A 0

1

+ /0 (VA®), W), 5 dt + T(A(D)p1) — T(A(O)po)}-

Since the last expression is homogeneous in A, we have F*(B, C, W) = oo unless
1
—Tt(A(Dp1) +T(A0) (o0 — B)) = /0 T((A@t) + eLA@)) C(1)) dt
1
+/0 (VA@W), W) 5 4 5 dt
forall A € H'([0, 1]; H}).
This implies C(0) = —(pp — B) and C(1) = —p; and
Ct)+divW() =2 C@).

Thus
0 if (—C,—W) € CE/(po — B, p1),

F*(B,C,W) = { .
oo otherwise.

Here CE/(po — B, p1) denotes the set of all pairs (X,U) € H'((0,1;HY) x
L2((0, 1); H'} ;) satistying X(0) = po — B, X(1) = p; and
X(1)+divU () =eZTX(1).

The difference to the definitions of CE (or CE’) and CE” is that we do not make any positivity
or normalization constraints. Note however that if (X, U) € CE”(py9 — B, p1), then
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%r(X(t)) =1L X(t) —divU(1)) =0

so that (X (¢)) = t(p1) = 1 (and t(B) = 0).
Now let us turn to the Legendre transform of G. We have

G*(B,C,W) = sup {((A, V), (B,C,W)) —G(A, V)}
(A,V)eE

1
= sup {‘C(A(O)B)+/ T((A(t) + eZLA)C (1)) dt
(AV)eD 0

1
+/0 (V(t),W(t))gAj)dt}.

Since (A, V) € D implies (A + Aid 4, V) € D for all A € R, we have G*(B, C,V) = oo
unless B = 0. Furthermore, it follows from the definition of D that G*(0, C, W) = oo unless
C(t) = Oforae.t € [0, 1].

For B = 0 we have

1
G*(0,C,W) = sup {/ T((A(t) + L A@))C (1)) dt
(A,V)eD LJO

1
+f0 (V@O), WD) 5 4~ dt}

1

1

< sup {— / IV, dr
(A, V)eD 0

1/2

1
+/0 ([COINVO), [CD]y

W) 54, dt}

1 1
<35 fo (COI W), WD), dr.

We will show next that the inequalities are in fact equalities. Let C® = C + 8 and V?(¢) =
[C (t)‘s]_IW(t). Moreover, let f; = fAJ. with the notation from Lemma 4. Since

HY =R, B Y (dfi(CO)BIVE®), ViD)e,
jeg

is a bounded linear map that depends continuously on ¢, there exists a unique continuous
map X%:10,1] > Hfi‘) such that
T(BXP (1) = Y _((dfi(C°)B)V(1), V3(1)) 54

jeT

for every B € H%) andt € [0, 1].
Let

t
A% 10,11 = A, A‘S(t):—%/ X%(s)ds.
0
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We claim that (A%, V%) € D. Indeed,

. 1
t(A0p) = =5 3 (@f(C)pIVi0). Vi (D)5,
jeg
1
< =5 2 p1a; Vi@, Vi) s,
jeg
1
=—5IV'0I3,

where the inequality follows from Lemma 4. Note that we have equality for p = C?(z).
In particular, for p = C(¢) we obtain

. 1
TAOCO) + (V). WD) 545 < SICOIT WO WD) 4 5
On the other hand,

. 1
T(AOC@) = =5 D (@f(CO)(C (1) = ))V;®), ViD)s,

jeJ
1 S § S 1 § §
> =S (IC OV, V(D) g 4 5 + 5BV, V(D)o 4 5
1
= =SV, WD) -

where we again used Lemma 4 for the first inequality.
Put together, we have

1 .
SACTOIRWO, WD))s 5 = TAOCO) + V(). WD) 5 7

1 _
< SUCOIIWO, WD)o 4 -
and
1
: i s
gl\rj(l)/o (T(A°(DC (1) + (V2 (@), W) 55 4 ;) dt
1 1
=3 /0 (COI; W), W), di
follows from the monotone convergence theorem.
Hence

1 1
G'0.coW) =1 /0 (COIW(@), W(D))s di

if C(t) > 0 for a.e. r € [0, 1]. Together with the formula for F*, we obtain

inf (F*(—B,—C,—W)-i-G*(B,C,W))
(B,C,W)eE*
1 1
i L f POV, VD) di
(0, V)eCEL(po.p1) 2 Jo A oag
_ 1
2

where the last equality follows from Proposition 1.
An application of the Rockafellar—Fenchel theorem yields the desired conclusion.

WA .e(p0. P1),
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