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ABSTRACT

The family of feedback alignment (FA) algorithms aims to provide a more bio-
logically motivated alternative to backpropagation (BP), by substituting the com-
putations that are unrealistic to be implemented in physical brains. While FA
algorithms have been shown to work well in practice, there is a lack of rigorous
theory proofing their learning capabilities. Here we introduce the first feedback
alignment algorithm with provable learning guarantees. In contrast to existing
work, we do not require any assumption about the size or depth of the network
except that it has a single output neuron, i.e., such as for binary classification
tasks. We show that our FA algorithm can deliver its theoretical promises in prac-
tice, surpassing the learning performance of existing FA methods and matching
backpropagation in binary classification tasks. Finally, we demonstrate the lim-
its of our FA variant when the number of output neurons grows beyond a certain
quantity.

1 INTRODUCTION

A key factor enabling the successes of Deep Learning is the backpropagation of error (BP) algo-
rithm (Rumelhart et al., 1986). Since it has been introduced, BP has sparked several discussions on
whether physical brains are realizing BP-like learning or not (Grossberg, 1987; Crick, 1989). Today,
most researchers consent that two distinct characteristics of BP render the idea of a BP based learn-
ing in brains as implausible: 1) The usage of symmetric forward and backward connections and 2)
the strict separation of activity and error propagation (Bartunov et al., 2018). These two objections
have lead researchers to search for more biologically motivated alternatives to BP.

The three most influential families of BP alternatives distilled so far are Contrastive Hebbian Learing
(CHL) (Movellan, 1991), target-propagation (TP) (LeCun, 1986; Hinton, 2007; Bengio, 2014) and
feedback Alignment (FA) (Lillicrap et al., 2016).

The idea of CHL is to propagate the target activities, instead of the errors, backward through the
network. For this reason, a temporal dimension is added to the neuron activities. Each neuron then
adapts its parameters based on the temporal differences of its ”forward” and ”backward” activity.
The two significant critic points of CHL are the requirement for symmetric ”forward-backward”
connections and the use of alternating ”forward” and ”backward” phases (Baldi & Pineda, 1991;
Bartunov et al., 2018).

TP shares the idea with Contrastive Hebbian Learning of propagating target activities instead of er-
rors. However, rather than keeping symmetric forward and backward paths, the reciprocal propaga-
tion of the activities are realized through learned connections. Consequently, each layer has assigned
two objectives: Learning the inverse of the layer’s forward function and minimizing the difference to
the back-projected target activity. Variants of TP differ in how exactly the target activity is projected
backward (LeCun, 1986; Bengio, 2014; Bartunov et al., 2018). Theoretical guarantees of TP rely on
the assumption that each reciprocal connection implements the perfect inverse of the corresponding
forward function. This issue of an imperfect inverse was also found to be the ”bottleneck” of TP in
practice (Bartunov et al., 2018). When the output of a layer has a significant lower dimension than
its input, reconstructing the input from the output becomes challenging, resulting in poor learning
performance.
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Feedback alignment algorithms eliminate the weight sharing implausibility of BP by replacing the
symmetric weights in the error backpropagation path by random matrices. The second objection,
i.e., separate activity and error channels, is attenuated by Direct Feedback Alignment (Nøkland,
2016) which drastically reduces the number of channels carrying an error signal. While feedback
alignment algorithms work well on small and medium-sized benchmarks, a recent study identified
that they are unable to provide learning on more challenging datasets like ImageNet (Bartunov
et al., 2018). Another criticism of FA algorithms is the lack of rigorous mathematical justification
and convergence guarantees of the performed computations.

In this work, we investigate feed-forward networks where the weights of all, expect the first, layers
are constrained to positive values. We prove that this constraint does not invalidate the universal
approximation capabilities of neural networks. Next, we show that, in combination with monotonic
activation functions, all layers from the second layer on realize monotonically increasing functions.
The backpropagation of a scalar error signal through these layers only affects the magnitude of the
error signal but does not change its sign. Consequently, we prove that algorithms that bypass the
error backpropagation steps, such as Direct Feedback Alignment, can compute the sign of the true
gradient with respect to the weights of our constraint networks without the need for backpropaga-
tion. Finally, we show that our algorithm, which we call monotone Direct Feedback Alignment,
can deliver its theoretical promises in practice, by surpassing the learning performance of existing
feedback alignment algorithms in binary classification task, i.e., when the error signal is scalar, and
provide decent performance even when the error signal is not scalar.

We make the following key contributions:

• First FA algorithm that has provable learning capabilities for non-linear networks of arbi-
trary depth

• Experimental evaluation showing that our FA algorithm outperforms the learning perfor-
mance of existing FA algorithms and match backpropagation in binary classification tasks

• We make an efficient TensorFlow implementation of all tested algorithms publicly avail-
able1

2 BACKPROPAGATION AND FEEDBACK ALIGNMENT

We consider the feed-forward neural network

hl(hl−1) :=

{
f(Wlhl−1 + bl) if l < L

Wlhl−1 + bl if l = L

h0 := x

Wl ∈ Rnl×nl−1 ,

bl ∈ Rnl

(1)

where f is the non-linear activation function, x the input and hL the output of the network. For
classification tasks, hL is usually transformed into a probability distribution with discrete support
by a sigmoid or softmax function.

During training, the parametersWl, bl, l = 1, . . . L are adjusted to minimize a loss functionL(y, hL)
on samples of a giving training distribution p(y, x). This is usually done by performing gradient
descent

θl ← θl − α
dL
dθ
, α ∈ R+ (2)

with respect to the parameters θl ∈ {Wl, bl}, 1 ≤ l ≤ n of the network.

1https://github.com/mlech26l/iclr_paper_mdfa
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Figure 1: Graphical overview of various error transport methods, adapted from Nøkland (2016).
Black arrows represent the forward path, whereas green arrows represent the error feedback.
Weights that are learned are denoted as Wi and fixed weights are denoted by Bi. Weights that are
restricted to only positive values are annotated by a +. a) Backpropagation, b) Feedback alignment,
c) Direct Feedback Alignment, d) monotone Direct Feedback Alignment.

2.1 BACKPROPAGATION

Backpropagation (Rumelhart et al., 1986) is the primary method to compute the gradients needed
by the updates in equation (2) by iteratively applying the chain-rule

dL
dθl

=
(dhl
dθl

)T dL
dhl

(3)

dL
dhl

=
(dhl+1

dhl

)T dL
dhl+1

(4)

dhl+1

dhl
= Wl+1diag(f ′(Wl+1hl + bl+1)). (5)

A graphical representation of how information first flow forward and then backward in BP through
each layer is shown in Figure (1) a.

Two major concerns argue against the idea that biological neural networks are implementing BP-
based learning. I) The weight matrix Wl of the forward path is reused in the backward path in the
form of WT

l (weight sharing), and II) the strict separation of activity carrying forward and error
carrying backward connections (reciprocal error transport).

2.2 FEEDBACK ALIGNMENT ALGORITHMS

Feedback alignment addresses the implausibility of reusing WT
l in the backward path by replacing

WT
l by a fixed random matrix Bl. Lillicrap et al. (2016) showed that this somewhat counterintuitive

approach works remarkably well in practice. The term ”feedback alignment” originates from the
observations made by Lillicrap et al. (2016) that the angle between the FA update vector and the
true gradient starts to decrease, i.e., align, after a few epochs of the training algorithm. Theoretical
groundwork on this alignment principle of FA relies on strong assumptions such as a linearized
network with one hidden layer (Lillicrap et al., 2016).

FA avoids any weight sharing but does not address the reciprocal error transport implausibility, due
to its strict separation of forward and backward pathways, as shown in Figure (1) b. Direct Feedback
Alignment (DFA) (Nøkland, 2016) relaxes this issue by replacing all backward paths with a direct
feed from the output layer error-gradient dL

dhL
. Consequently, there is only a single error signal that is

distributed across the entire network, which is arguably more biologically plausible than reciprocal
error connections. The resulting parameter updates of DFA are of the form

δθl :=

{
dL
dhL

hL

θl
if l = L

dL
dhL

Bl
hl

θl
if l < L

(6)

3



Published as a conference paper at ICLR 2020

, where Bl ∈ RnL×nl is a random matrix. A graphical schematic of DFA is shown in Figure (1) c.
Similar to FA, DFA shows a decent learning performance in mid sized classification tasks (Nøkland,
2016), but fails on more complex datasets such as ImageNet (Bartunov et al., 2018). Theory on
adapting the alignment principle to DFA shows that under the strong assumptions of constant DFA
update directions and a layer-wise criterion minimization, the DFA update vector will align with the
true gradient (Nøkland, 2016; Gilmer et al., 2017).

Recently, Frenkel et al. (2019) proposed to combine ideas from feedback alignment and target-
propagation in their Direct Random Target Projection (DRTP) algorithm. While DRTP shows decent
empirical performance, theoretical guarantees about DRTP rely on linearized networks.

2.3 SIGN-SYMMETRY ALGORITHMS

Liao et al. (2016) introduced the sign-symmetry algorithm, a hybrid of BP and FA. Sign-symmetry
locks the signs of the feedback weight Bl to have the same signs as WT

l , but random absolute
value. The authors showed that this approach drastically improves learning performance compared
to standard FA. Furthermore, Moskovitz et al. (2018) and Xiao et al. (2019) demonstrated that the
sign-symmetry algorithm is even able to match backpropagation for training deep network architec-
tures and large datasets such as ImageNet.

While these empirical observations suggest that the polarity of the error feedback is more important
than its magnitude, the mathematical justification of sign-symmetry remains absent. Similar to
FA, sign-symmetry relaxes the strict weight sharing implausibility, but still relies on an unrealistic
reciprocal error transport.

3 MONOTONE DIRECT FEEDBACK ALIGNMENT

In this section, we first introduce a new class of feed-forward networks, where all, except the first,
layers are constrained to realize monotone functions. We call such networks mono-nets and show
that they are as expressive as unconstrained feed-forward networks. Next, we prove that for our
mono-nets with single output tasks, e.g., binary-classification, feedback alignment algorithms pro-
vide the sign of the gradient. The sign of the gradient is interesting for learning, as it tells us if the
value of a parameter should be increased or decreased in order to reduce the loss. At the end of
this section, we will highlight similarities to algorithms from literature, which can provide resilient
learning by only relying on the sign of the gradient.

Neural networks with monotonic constraints have been already studied in literature (You et al.,
2017), however not in the context of learning algorithms.
Definition 1 (mono-net). A mono-net is a feed-forward neural network with L layers h1, . . . hL,
each layer l composted of nl units and the semantics

hl(hl−1) :=

{
f(Wlhl−1 + bl) if l < L

Wlhl−1 + bl if l = L
(7)

h0 := x (8)

W1 ∈ Rn1×n0 , (9)

Wl ∈ Rnl×nl−1

+ , for l > 1 (10)
bl ∈ Rnl (11)

where R+ are the positive reals, i.e. R+ = {x ∈ R|x ≥ 0}, f is a non-linear monotonic increasing
activation function, x the input and hL the output of the network.

The major difference between mono-nets and general feed-forward neural networks is the restriction
to only positive weight values in layers from the second layer on. Combined with the monotonic
increasing activation function, this means that each layer hl(hl−1), l ≥ 2 realizes a monotone in-
creasing function. Because functional composition preserves monotonicity, the complete network
up to the first layer

hl ◦ hl−1 ◦ · · · ◦ h2(h1) (12)
implements a monotone increasing function.
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mono-nets are Universal Approximators At first glance, this restriction seems counterproductive,
as it might interfere with the expressiveness of the networks. However, we proof in Theorem 1 that
our mono-nets with tangent hyperbolic activation are universal approximators, meaning that we can
approximate any continuous function arbitrarily close. A potential drawback of the monotonicity
constraint is that we might need a larger number of units in the hidden layers to achieve the same
expressiveness as a general feed-forward network, as illustrated in our proof of Theorem 1.
Theorem 1 (mono-nets are Universal Approximators). Let In be the n-dimensional unit hypercube
[0, 1]n and C(In) denote the set of continuous functions f : In → R. We define ‖f‖∞ as the
supremum norm of f ∈ C(In) over its domain In. For any given f ∈ C(In) and ε > 0, there exist
a function m : In → R of the form

m(x) :=

M∑
i=1

v̄i tanh(w̄i
Tx+ ŵi

T (−x) + b̄i) + c (13)

with v̄ ∈ R+
M , w̄i ∈ R+

n, ŵi ∈ R+
n, b̄ ∈ RM , c ∈ R and M <∞ such that

‖m(x)− f(x)‖∞ < ε.

In essence, the set of functions m(x) of the form given in (19) is dense in C(In).

Proof. See supplementary materials 3.

mDFA provides the sign of the gradient Here, we prove that for 1-dimensional outputs DFA
applied on a mono-net, which we will call simply mDFA, provides the sign of the true gradient.
Note that we focus our methods on DFA instead of ”vanilla” FA, due to the superiority of DFA in
terms of biological plausibility and empirical performance (Nøkland, 2016; Bartunov et al., 2018).
Theorem 2 (For 1-dimensional outputs mDFA computes the sign of the gradient). Let L(y, hL) be
a loss function, m(x) := hL ◦ hL−1 ◦ · · · ◦ h2 ◦ h1 ◦ h0(x) be a mono-net according to Definition
1 with parameters Θ := {Wl, bl

∣∣l = 1, . . . L}. We denote δθ the update value computed by mDFA
and ∇θ as the gradient ∂L∂θ for any θ ∈ {Wl, bl} with 1 ≤ l ≤ L. If nL = 1, it follows that(

δθ
)
i,j
·
(
∇θ
)
i,j
≥ 0, (14)

for each coordinate (i, j) of θ.

Proof. See supplementary materials.

A graphical illustration of how activities and errors propagate in mDFA is shown in Figure (1) d.

Literature on learning by relying only on the sign of the gradient Two learning concepts related
to mDFA are RPROP (Riedmiller & Braun, 1993; Riedmiller, 1994) and signSGD (Bernstein et al.,
2018). RPROP aims to build a more resilient alternative to gradient descent by decoupling the
amplitude of the gradient from the step size of parameter updates. In essence, for each coordinate
RPROP adapts the step size based on the sign of the most recent gradients computed. Riedmiller &
Braun (1993) showed that their approach could stabilize the training of a neural network compared
to standard gradient descent.

Performing gradient descent with taking the sign of each gradient coordinate is on an algorithmic
level equivalent to the well-known steepest descent method with L∞ norm (Boyd & Vandenberghe,
2004; Bernstein et al., 2018). signSGD (Bernstein et al., 2018) studies convergence properties of the
stochastic approximation of this algorithm.

What about networks with more than one output neuron? Theorem 2 applies only to networks
with scalar output. As a natural consequence, one may ask whether such theoretical guarantees can
be extended to more dimensional output variables. The simple answer is, unfortunately not. In the
supplementary materials section A.3 we provide a counterexample showing that Theorem 2 naively
extended to two output neurons does not hold anymore.

We want to note that the requirement of a neural network to have only a single output neuron is
biologically unjustified. It is known that sub-circuits of biological neuronal networks can feed to
multiple motor neuron groups Cook et al. (2019).
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How does mDFA relate to the non-negative matrix factorization? A seemingly related concept to
mDFA is the non-negative matrix factorization (NMF) algorithm. NMF decomposes an observation
matrix V into a weight matrix W and a latent variable matrix H such that V ≈ WH . In contrast
to other decomposition-based unsupervised learning methods, all three matrices V,W and H are
restricted to non-negative entries. While NMF can model data that is inherently non-negative, such
has semantic features of images and text, effectively Yuan & Oja (2005); Shahnaz et al. (2006), the
method is unable to learn subtractive and non-linear structures that are present in the data Lee &
Seung (1999).

Semi-non-negative matrix factorization Ding et al. (2008) relaxes the original restriction to non-
negative observations of NMF, by only constraining the weight matrix W to be non-negative. Deep
semi-NMF Trigeorgis et al. (2014) further enhances the expressiveness of NMF by adding multiple
layers and non-linearities between them to the decomposition.

Concerning this work, the semantics of mono-nets from the second layer on is equivalent to that
of deep semi-NMF models. However, the unconstrained first layer of mono-nets provides universal
approximation capabilities, enabling mono-nets to learn subtractive and non-monotonic input de-
pendencies. Moreover, while deep NMF models are mostly trained via layer-wise learning in an
unsupervised context Trigeorgis et al. (2014); Yu et al. (2018), the sole purpose of mono-nets is to
investigate alternatives to backpropagation for training multi-layer classifiers.

4 EXPERIMENTS

So far, we have only proven the learning capabilities of mDFA. What remains unclear is whether
mDFA can deliver its theoretical promises in practice. In this section, we experimentally evaluate the
learning performance of mDFA on a set of empirical benchmarks. We aim to answer the following
two questions:

• How well does mDFA perform compared to DFA, FA, and backpropagation in ”natural
conditions,” i.e., in binary classification tasks, and

• how much does the performance of mDFA degrade in multi-class classification tasks?

Our performance measure is the achieved classification accuracy of a network trained by a particular
method. First, we report the highest achieved accuracy on the training set, which tells us how well
the algorithm could fit the model to the training data. Secondly, for each method, we tuned the
hyperparameters on a separate validation set and selected the best performing configuration to be
evaluated on the test data. The obtained test accuracy tells us how well the model generalizes to data
outside the training set.

We evaluate fully-connected networks (FC) and Convolutional networks (CNNs) in form of modified
all-convolutional-nets (Springenberg et al., 2015) with tangent hyperbolic, ReLU (Nair & Hinton,
2010), and the hard-tanh non-linearity. The hard-tanh function is defined as

hard-tanh(x) := min(max(x,−1), 1). (15)

Hyperparameters For all training methods, we fixed the batch size to 64, applied no regularization,
no normalization, and no data augmentation. Optimizer, i.e., {”Vanilla” Gradient Descent, Adam
(Kingma & Ba, 2014), Rmsprop (Tieleman & Hinton, 2012) }, learning rate, training epochs, and
weight initialization method were tuned on the validation set. We tested three different weight
initialization schemes; all zeros, a scaled uniform, and a normal distribution. Note that all zeros was
only tested on the forward weights. Our uniform initialization followed the methodology of Nøkland
(2016), i.e., scaling the bounds of the distribution inversely by the square-root of the number of
incoming connections of a neuron. In order to comply with the weight constraints of mono-nets, for
mDFA the lower bound of the uniform distribution was set to ε = 10−3. Moreover, for mDFA we
post-processed the initial weights of the normal distribution by taking their absolute values. Input
variables are scaled to [0,1]. Detailed network architectures and a brief discussion about the best
performing hyperparameter configurations are listed in the supplementary materials in section B.1
and section B.3.
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4.1 BINARY CLASSIFICATION

We created a series of binary classification benchmarks by randomly sampling two classes from the
well-studied CIFAR-100 and ImageNet datasets. We then train and test a 1-vs-1 classifier on the
samples of the two classes. For each dataset, we create five such ”binarized” sub-datasets and report
the mean and standard deviation over these experiments. CIFAR-100 (Krizhevsky et al., 2014) poses
a challenging classification dataset, consisting of 32-by-32 RGB images in 100 real-world object
categories. ImageNet (Russakovsky et al., 2015) is a large-scale object classification benchmark
and de-facto standard to asses new deep learning methods. Each sample is a high-resolution image
representing one out of 1000 possible object classes. We pre-processed all samples by cropping and
resizing each image to 224-by-224 pixels. Because ImageNet lacks a public test set, we will report
the validation accuracy, i.e., as it was reported by Bartunov et al. (2018).

The results on the binarized benchmarks are shown in Table 1 for CIFAR-100 and Table 2 for
ImageNet. mDFA could bring the training error to zero for fully-connected networks, and match the
test/validation accuracy of backpropagation for convolutional networks.

Poor learning performance for ReLU networks One surprising characteristic in our results is that
mDFA fails to provide the same level of learning performance as backpropagation for ReLU net-
works. Recall that Theorem 1 proves the universal approximation capabilities only for mono-net
with tanh activation function. A mono-net with ReLU non-linearity restricts both, the activation
and the weight values, to positive values. These constraints arguably limit the approximation ca-
pabilities of mono-net in combination with ReLU and thus explain the poor performance of mDFA
for ReLU networks. We could validate our hypothesis by testing a rectifier non-linearity that also
contains negative values in its image. Coincidentally, the hard-tanh function matches exactly this
criterion. Therefore, the decent learning performance of mDFA for hard-tanh networks confirms our
hypothesis. Note that also FA and DFA expressed an improvement in performance when switching
from ReLU to hard-tanh activation. This observation suggests that feedback alignment algorithms
in general benefit from symmetric activation functions.

Discrepancy between fully-connected and convolutional networks Though mDFA achieved the
same training accuracy as backpropagation for fully-connected networks, the generalization ability,
i.e., test and validation accuracy, slightly lacks behind BP in our binarized-CIFAR-100 benchmark.
This observation aligns with the studies by Nøkland (2016); Bartunov et al. (2018). For convolu-
tional neural networks, this effect is reversed, i.e., a decent test/validation accuracy but a higher
training error than BP. We speculate that the two tested initialization schemes for the feedback
weights caused this discrepancy. Both backpropagation and feedback alignment have been shown to
be sensitive to the employed initialization method (Zhang et al., 2019; Bartunov et al., 2018). The
restriction to positive values of the weights used in mDFA, requires a re-thinking of the initialization
methods examined in the literature. However, we will leave this study open for future work.

Activation Model Training accuracy Test accuracy Training accuracy Test accuracy
(FC) (FC) (CNN) (CNN)

hard-tanh

BP 100.0 ± 0.0% 81.3 ± 11.4% 100.0 ± 0.0% 80.9 ± 10.4%
DFA 84.1 ± 8.2% 76.8 ± 11.5% 84.4 ± 7.9% 80.0 ± 10.3%
FA 85.3 ± 8.0% 76.9 ± 12.0% 82.5 ± 10.2% 77.5 ± 12.2%

mDFA 100.0 ± 0.0% 77.3 ± 12.2% 87.4 ± 7.0% 80.9 ± 9.2%

ReLU

BP 100.0 ± 0.0% 80.0 ± 10.8% 100.0 ± 0.0% 82.2 ± 9.5%
DFA 76.2 ± 9.6% 72.9 ± 9.2% 73.0 ± 15.5% 72.0 ± 16.2%
FA 77.9 ± 10.2% 71.0 ± 12.0% 68.6 ± 15.9% 69.8 ± 15.7%

mDFA 78.2 ± 9.9% 62.1 ± 12.7% 78.0 ± 11.7% 75.5 ± 11.7%

tanh

BP 100.0 ± 0.0% 81.4 ± 10.5% 100.0 ± 0.0% 81.1 ± 11.9%
DFA 84.2 ± 8.2% 77.5 ± 11.2% 81.6 ± 9.3% 79.7 ± 10.5%
FA 84.9 ± 8.0% 77.6 ± 12.2% 94.2 ± 3.5% 83.4 ± 8.7%

mDFA 100.0 ± 0.0% 77.2 ± 12.2% 89.0 ± 6.0% 81.1 ± 9.8%

Table 1: Accuracies on binarized-CIFAR-100. Mean and standard deviation
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Activation Model Training acc. Validation acc. Training acc. Validation acc.
(FC) (FC) (CNN) (CNN)

hard-tanh

BP 98.4 ± 3.6% 77.3 ± 6.8% 99.8 ± 0.5% 81.7 ± 11.6%
DFA 93.8 ± 13.0% 74.0 ± 8.5% 100.0 ± 0.0% 83.0 ± 8.6%
FA 97.5 ± 0.8% 74.7 ± 7.7% 51.9 ± 0.5% 54.7 ± 4.6%

mDFA 95.3 ± 10.4% 79.5 ± 9.8% 79.5 ± 9.8% 83.8 ± 7.2%

ReLU

BP 100.0 ± 0.0% 78.3 ± 7.7% 90.0 ± 18.1% 72.5 ± 13.7%
DFA 75.1 ± 8.1% 73.2 ± 8.0% 50.4 ± 0.9% 52.7 ± 2.4%
FA 68.3 ± 7.9% 71.0 ± 6.7% 52.3 ± 0.9% 54.8 ± 2.1%

mDFA 56.9 ± 0.9% 59.7 ± 2.4% 52.6 ± 1.6% 58.4 ± 4.5%

tanh

BP 99.9 ± 0.2% 75.8 ± 7.7% 99.9 ± 0.1% 76.2 ± 9.8%
DFA 97.9 ± 2.2% 76.8 ± 7.2% 99.3 ± 1.5% 83.2 ± 8.8%
FA 98.1 ± 2.3% 76.5 ± 7.2% 62.4 ± 17.3% 60.8 ± 13.8%

mDFA 99.9 ± 0.1% 78.0 ± 6.8% 78.2 ± 9.4% 83.0 ± 6.8%

Table 2: Accuracies on binarized-ImageNet. Mean and standard deviation

Set Classes BP DFA FA mDFA

Training

3 100.0 ± 0.0% 50.5 ± 9.5% 79.0 ± 6.1% 53.3 ± 8.9%
5 100.0 ± 0.0% 33.8 ± 9.7% 68.4 ± 6.0% 34.1 ± 9.8%

10 100.0 ± 0.0% 24.7 ± 1.8% 52.4 ± 4.0% 25.9 ± 1.2%
25 99.9 ± 0.1% 13.4 ± 1.7% 31.3 ± 1.6% 13.1 ± 1.4%
50 99.7 ± 0.1% 8.5 ± 0.1% 20.0 ± 1.1% 7.9 ± 0.2%

Test

3 77.4 ± 8.7% 49.1 ± 7.2% 74.2 ± 8.1% 50.9 ± 7.2%
5 68.5 ± 8.1% 31.2 ± 11.6% 60.7 ± 8.4% 33.9 ± 9.8%

10 57.3 ± 4.9% 25.0 ± 3.2% 46.9 ± 3.8% 26.3 ± 2.3%
25 41.2 ± 2.6% 13.4 ± 1.9% 28.2 ± 1.4% 13.1 ± 1.3%
50 31.8 ± 1.8% 8.8 ± 0.4% 18.1 ± 0.9% 8.0 ± 0.4%

Table 3: Mulit-class classification accuracies of fully-connected network with tanh activation on
n-class CIFAR-100. Mean and standard deviation.

4.2 MULTI-CLASS CLASSIFICATION

Here we modify the classification benchmark creation procedure used above, by randomly sampling
n classes from the datasets instead of just two. Due to their compelling results in our binary classi-
fication benchmark, we restrict our evaluation to networks with tanh activation. Table 3 and Table 4
show the results on our n-class CIFAR-100 benchmark for fully-connected and CNNs respectively.
The results on n-class ImageNet can be found in the supplementary materials in Table 5 and 6.

mDFA can provide learning for networks with more than one output neuron Though we do
not have a complete theory on mDFA for multi-dimensional outputs, our experiments indicate that
mDFA can provide learning for networks with more than one output neuron. In particular, the
achieved accuracies of mDFA outperforms other feedback alignment methods for convolutional
networks with ten or fewer output neurons. However, mDFA falls behind standard DFA for networks
with more than ten output neurons. This observation suggests that our restriction to positive weights
can be beneficial even for multi-class tasks but eventually hurts learning performance when the
number of classes grows larger.

Feedback alignment algorithms, in general, tend to struggle with increasing output dimension
Our results express the trend that with an increase in the number of classes, feedback alignment
algorithms struggle to fit the training data. While BP can reduce the training error to almost zero
independently of the output dimension, the training errors achieved by FA algorithms are signifi-
cantly higher and correlate with the number of output neurons. Our observations suggest that the
dimension of the error signal affects the training convergence for FA algorithms, in contrast to BP,
which appears to be less affected by the dimension of the error signal. This relation potentially
provides a step towards understanding why FA algorithms fail on challenging datasets as described
by Bartunov et al. (2018).
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Set Classes BP DFA FA mDFA

Training

3 100.0 ± 0.0% 86.3 ± 5.0% 84.1 ± 10.2% 100.0 ± 0.0%
5 100.0 ± 0.0% 84.6 ± 4.6% 74.3 ± 8.6% 100.0 ± 0.0%

10 100.0 ± 0.0% 83.0 ± 3.5% 57.9 ± 3.4% 94.4 ± 1.7%
25 99.9 ± 0.0% 81.0 ± 1.5% 36.3 ± 1.8% 64.8 ± 1.4%
50 98.9 ± 0.0% 80.5 ± 1.0% 22.7 ± 1.4% 44.5 ± 0.9%

Test

3 76.2 ± 10.1% 79.8 ± 6.2% 79.6 ± 9.7% 82.0 ± 7.6%
5 65.4 ± 9.8% 71.8 ± 7.6% 70.1 ± 9.0% 73.3 ± 8.8%

10 57.5 ± 5.2% 65.0 ± 4.8% 55.1 ± 4.1% 63.9 ± 4.2%
25 41.8 ± 2.2% 48.3 ± 2.2% 35.0 ± 1.4% 44.0 ± 2.5%
50 33.3 ± 1.5% 37.1 ± 1.5% 22.3 ± 1.1% 34.5 ± 1.5%

Table 4: Mulit-class classification accuracies of Convolutional Neural Network with tanh activation
on n-class CIFAR-100. Mean and standard deviation.

5 CONCLUSION

Feedback alignment algorithms are promising biologically motivated alternatives to backpropaga-
tion. While existing literature provides empirical evidence that FA algorithms can work well in
practice, there is still a lack of rigorous theory formalizing their learning capabilities. Here we con-
tributed to the field of biologically motivated learning algorithms, by introducing the first feedback
alignment algorithm that provable provides learning for non-linear networks of arbitrary depth and
single output neuron. We showed that our FA algorithm outperforms existing FA algorithms in
binary classification tasks, and even provide decent learning on multi-class problems.

Limitations We demonstrated on empirical benchmarks as well as theoretical examples that our
method is limited to networks with scalar output. Indeed, uncovering the mathematical principles
behind the decent learning performance of FA and DFA on multi-class tasks remains an open chal-
lenge.

Is this really useful? In terms of scientific significance, this work provided theoretical contributions
toward understanding the capabilities and limits of feedback alignment algorithms. From a practical
point of view, our mDFA algorithm has an advantage over backpropagation concerning training
latency, as all weight updates can be computed in parallel, i.e., see Figure 1. Furthermore, we have
shown that mDFA is superior to other feedback alignment algorithms in binary classification tasks.
Consequently, mDFA provides an effective solution for binary classification problems with training
latency constraints. Dynamic branch prediction in microprocessor pipelines poses such problem
instance, where program specific binary branch outcomes, i.e., branch taken/not taken, need to be
learned in real-time. Because of this real-time constraint, existing branch predictors often employ
only shallow perceptron modules (Jiménez & Lin, 2002; Egan et al., 2003). mDFA could enable
deeper branch predictor networks to be learned in real-time.
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A APPENDIX

A.1 MONO-NETS ARE UNIVERSAL APPROXIMATORS

We denote
σ(x) :=

1

1 + exp(−x)

the sigmoid function,

tanh(x) :=
ex − e−x

ex + e−x

the hyperbolic tangent and

1[expr] :=

{
1 if expr is true
0 if expr is false

the indicator function.

From the definitions above we can derive the equalities

σ(x) =
1

2

(
1 + tanh(

x

2
)
)

(16)

tanh(x) = − tanh(−x) (17)
, which we will need for our proof.
Lemma 1 (Universal Approximation Theorem). For any given f ∈ C(In) and ε > 0, there exist a
function g : In → R of the form

g(x) :=

N∑
i=1

viσ(wTi x+ bi) (18)

with v ∈ RN , wi ∈ Rn, b ∈ RN and N <∞ such that

‖g(x)− f(x)‖∞ < ε.

In essence, the set of functions g(x) of the form given in (18) is dense in C(In).

Proof. See Hornik et al. (1989)

Theorem 3 (mono-nets are Universal Approximators). For any given f ∈ C(In) and ε > 0, there
exist a function m : In → R of the form

m(x) :=

M∑
i=1

vi tanh(wTi x+ bi) + c (19)

with v ∈ R+
M , wi ∈ Rn, b̄ ∈ RM , c ∈ R and M <∞ such that

‖m(x)− f(x)‖∞ < ε.

In essence, the set of functions m(x) of the form given in (19) is dense in C(In).

Proof. By Lemma 1 we know that there exist a g(x) with ‖g(x)− f(x)‖∞ < ε that has the form

g(x) =

N∑
i=1

viσ(wTi x+ bi)

We will show that we can reformulate g(x) to the form in equation (19). Our basic idea is to
propagate all negative weight entries into to the first layer where negative weight values are allowed.
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g(x) =

N∑
i=1

viσ(wTi x+ bi)

=

N∑
i=1

vi
1

2

(
1 + tanh(wTi x+ bi)

)
=

N∑
i=1

vi
1

2
tanh

( n∑
j=1

wi,jxj + bi

)
+

1

2

N∑
i=1

vi

=

N∑
i=1

1[vi ≥ 0]vi
1

2
tanh

( n∑
j=1

wi,jxj + bi

)

+

N∑
i=1

1[vi < 0]vi
1

2
tanh

( n∑
j=1

wi,jxj + bi

)

+
1

2

N∑
i=1

vi

=

N∑
i=1

1[vi ≥ 0]vi
1

2
tanh

( n∑
j=1

wi,jxj + bi

)

+

N∑
i=1

−1[vi < 0]vi
1

2
tanh

(
−

n∑
j=1

wi,jxj − bi
)

+
1

2

N∑
i=1

vi

=

N∑
i=1

v̄i tanh
(
wi
Tx+ bi

)
+

N∑
i=1

v̄′i tanh
(
w̄i
Tx+ b̄i

)
+ c

with

v̄i = 1[vi ≥ 0]vi
1

2
≥ 0

v̄′i = −1[vi < 0]vi
1

2
≥ 0

w̄i = −wiT

b̄i = −bi

c =
1

2

N∑
i=1

vi

Therefore, we showed that there exist a m(x) with a form as in equation (19) that satisfy

‖m(x)− f(x)‖∞ < ε.

This proof showed us how to translate any neural network with sigmoid activation function and one
hidden layer of size N into a mono-net with 2N hidden units.
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A.2 FOR 1-DIMENSIONAL OUTPUTS MDFA COMPUTES THE SIGN OF THE GRADIENT

Lemma 2 (The gradient of a monotone layer is non-negative). Let m : Rn0 → R with m(x) :=
hL ◦ hL−1 ◦ · · · ◦ h2 ◦ h1 ◦ h0(x) be a mono-net according to Definition 1. Then( dhl

dhl−1

)
i,j
≥ 0, (20)

for any l, i, j with 2 ≤ l ≤ L and 1 ≤ i ≤ nl and 1 ≤ j ≤ nl−1

Proof. We have to distinguish two cases:
Case 1: l = L, i.e. there is no activation function.
We have ( dhl

dhl−1

)
i,j

=
(
Wl

)
i,j
≥ 0, (21)

according to the definition in Equation (10).
Case 2: l < L, i.e. there is an activation function.
We have ( dhl

dhl−1

)
i,j

=
(
Wldiag(f ′(Wlhl−1 + bl))

)
i,j

(22)

=

nl∑
k=1

(
Wl

)
i,k

(
diag(f ′(Wlhl−1 + bl))

)
k,j
, (23)

where f ′ is the derivative of the activation function. Because f is a monotonic function, its derivative
is non-negative everywhere. As a result we have a sum of a product of non-negative values. Ergo( dhl

dhl−1

)
i,j
≥ 0 (24)

Lemma 3 (The gradient of a composition of monotone layers is non-negative). Let m : Rn0 → R
with m(x) := hL ◦ hL−1 ◦ · · · ◦ h2 ◦ h1 ◦ h0(x) be a mono-net according to Definition 1. Then( dhl

dhk

)
i,j
≥ 0, (25)

for any l, k, i, j with 2 ≤ l ≤ L and 1 ≤ k < l and 1 ≤ i ≤ nl and 1 ≤ j ≤ nk

Proof. By applying the chain rule we get( dhl
dhk

)
i,j

=
( l∏
m=k+1

dhm
dhm−1

)
i,j

(26)

According to Lemma 2 we have a product of non-negative values. Because a product of non-negative
values is non-negative itself, we have ( dhl

dhk

)
i,j
≥ 0 (27)

Theorem 4 (For 1-dimensional outputs mDFA computes the sign of the gradient). Let L(y, hL) be
a loss function, m(x) := hL ◦ hL−1 ◦ · · · ◦ h2 ◦ h1 ◦ h0(x) be a mono-net according to Definition
1 with parameters Θ := {Wl, bl

∣∣l = 1, . . . L}. We denote δθ the update value computed by mDFA
and ∇θ as the gradient ∂L∂θ for any θ ∈ {Wl, bl} with 1 ≤ l ≤ L. If nL = 1, it follows that(

δθ
)
i,j
·
(
∇θ
)
i,j
≥ 0, (28)

for each coordinate (i, j) of θ.
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Proof. We distinguish two cases:
Case 1: l = L, i.e. θ is a parameter of the last layer. From the definition of mDFA we have

δθ :=
dL
dhL

dhL
dθ

. (29)

For the gradient by applying the chain rule we get

∇θ =
dL
dθ

=
dL

dhL

dhL
dθ

(30)

Thus, in the last layer the mDFA update equals the gradient.
Case 2: l < L, i.e θ is a parameter of a hidden layer. From the definition of mDFA we have(

δθ
)
i,j

:=
( dL
dhL

B
dhl
dθ

)
i,j

(31)

with B ∈ R+
nL×nl . Next, we expand the multiplication,(

δθ
)
i,j

=

nL∑
k=1

(
dL
dhL

)kBk,i
d(hl)i
dθi,j

(32)

=
d(hl)i
dθi,j

nL∑
k=1

(
dL
dhL

)kBk,i. (33)

We assumed that the output dimension is 1, i.e. nL = 1. Therefore,(
δθ
)
i,j

=
d(hl)i
dθi,j

(
dL
dhL

)1B1,i. (34)

For the gradient by applying the chain rule we get

∇θ =
dL
dθ

=
dL

dhL

dhL
dθ

(35)

=
dL
dhL

dhL
dhl

dhl
dθ

(36)

Like above, we expand the multiplication,(
∇θ
)
i,j

=

nL∑
k=1

(
dL
dhL

)k(
dhL
dhl

)k,i
d(hl)i
dθi,j

(37)

=
d(hl)i
dθi,j

nL∑
k=1

(
dL
dhL

)k(
dhL
dhl

)k,i. (38)

We assumed that the output dimension is 1, i.e. nL = 1. Therefore,(
∇θ
)
i,j

=
d(hl)i
dθi,j

(
dL
dhL

)1(
dhL
dhl

)1,i. (39)

For Equation (28) we get by applying Lemma 3,(
δθ
)
i,j
·
(
∇θ
)
i,j

=
(d(hl)i
dθi,j

(
dL
dhL

)1B1,i

)
·
(d(hl)i
dθi,j

(
dL
dhL

)1(
dhL
dhl

)1,i

)
(40)

=
(d(hl)i
dθi,j

(
dL
dhL

)1

)2
︸ ︷︷ ︸

≥0

B1,i︸︷︷︸
≥0

(
dhL
dhl

)1,i︸ ︷︷ ︸
≥0

(41)

≥ 0. (42)
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A.3 FOR k ≥ 2-DIMENSIONAL OUTPUTS MDFA UPDATES MAY NOT ALIGN WITH THE
GRADIENT

Theorem 5 (For k ≥ 2-dimensional outputs mDFA updates may not align with the gradient). Let
L(y, hL) be a loss function, m(x) := hL ◦ hL−1 ◦ · · · ◦ h2 ◦ h1 ◦ h0(x) be a mono-net according to
Definition 1 with parameters Θ := {Wl, bl

∣∣l = 1, . . . L}. We denote δθ the update value computed
by mDFA and ∇θ as the gradient ∂L∂θ for any θ ∈ {Wl, bl} with 1 ≤ l < L. If nL ≥ 2, there exists
the possibility that (

δθ
)
i,j
·
(
∇θ
)
i,j
< 0, (43)

for at least one coordinate (i, j) of θ.

Proof. We construct a minimal counterexample consisting of a network with two outputs and one
hidden layer of two neurons.

Let

W2 =

(
0 1
1 0

)
(44)

B2 =

(
1 0
0 1

)
(45)

∂L
∂hL

=

(
1 0
0 −1

)
(46)

∂h1
∂θ

=

(
1 0
0 1

)
(47)

(48)
Then we have

∇θ =
dL
dhL

WT
2

dhl
dθ

(49)

=

(
1 0
0 −1

)(
0 1
1 0

)(
0 1
1 0

)
(50)

=

(
−1 0
0 1

)
(51)

and

δθ =
dL
dhL

B2
dhl
dθ

(52)

=

(
1 0
0 −1

)(
1 0
0 1

)(
0 1
1 0

)
(53)

=

(
1 0
0 −1

)
(54)

(55)
, which are orthogonal.

B EXPERIMENT SETUP

B.1 NETWORK ARCHITECTURES

Dataset Fully-connected Convolutional
CIFAR-100 1024,1024 (96,5,2),(96,3,2),(96,3,1)
ImageNet 1024,1024,1024,1024 (96,3,2),(96,5,1),(128,3,2),

(192,3,1),(192,3,2),(384,3,1)

Network architectures, layers are separated by commas. Fully-connected column specifies the
number of neurons of each layer. Convolutional column specifies the number of filters, kernel size,

and stride for each layer.

16



Published as a conference paper at ICLR 2020

B.2 n-CLASS IMAGENET

Set Classes BP DFA FA mDFA

Training
3 100.0 ± 0.0% 59.6 ± 7.2% 50.4 ± 5.9% 51.4 ± 4.4%
5 100.0 ± 0.0% 48.9 ± 5.0% 41.4 ± 5.5% 41.0 ± 7.1%
10 99.7 ± 0.5% 33.4 ± 4.5% 24.7 ± 3.3% 38.7 ± 10.1%

Validation
3 74.5 ± 8.8% 62.8 ± 11.9% 64.2 ± 10.9% 62.0 ± 9.6%
5 63.0 ± 7.4% 43.8 ± 6.2% 42.3 ± 7.1% 37.3 ± 5.2%
10 41.2 ± 5.0% 30.8 ± 4.9% 26.0 ± 4.5% 33.3 ± 8.0%

Table 5: Mulit-class classification accuracy of fully-connected network with tanh activation on n-
class ImageNet. Mean and standard deviation.

Set Classes BP DFA FA mDFA

Training
3 100.0 ± 0.0% 100.0 ± 0.0% 35.8 ± 0.7% 68.1 ± 8.2%
5 100.0 ± 0.0% 100.0 ± 0.0% 21.4 ± 0.4% 60.4 ± 6.2%

10 100.0 ± 0.0% 90.4 ± 10.0% 11.3 ± 0.7% 42.9 ± 3.9%

Validation
3 68.5 ± 13.0% 76.5 ± 9.9% 53.3 ± 1.7% 74.8 ± 8.8%
5 61.6 ± 7.3% 68.7 ± 6.3% 29.0 ± 2.0% 61.9 ± 5.3%

10 52.8 ± 4.6% 53.6 ± 5.3% 10.6 ± 0.8% 44.1 ± 4.4%

Table 6: Mulit-class classification accuracy of Convolutional Neural Network with tanh activation
on n-class ImageNet. Mean and standard deviation.

B.3 DISCUSSION ON HYPERPARAMETERS

We observed that all FA algorithms yield a more stable convergence with ”vanilla” stochastic gra-
dient descent, i.e., no post-processing of the FA updates, than with Adam (Kingma & Ba, 2014) or
Rmsprop (Tieleman & Hinton, 2012). This may be non-surprising as these acceleration methods
have been developed for gradient-based optimization, whereas FA updates roughly align with the
gradients at best.

Furthermore, we observed that FA algorithms achieve a descent validation accuracy after the first
few training epochs. However, in contrast to BP, these methods may require over a hundred training
epochs to converge fully. This ”fast-start-slow-convergence” aligns with the observations made by
Lillicrap et al. (2016).

We found that FA, DFA, and mDFA perform best when all forward weights are initialized to zero.
Notable exceptions are networks with ReLU activation function which express poor performance
with the all-zeros initialization scheme. This poor performance with all-zeros initialization partially
explains the poor observed performance of FA and DFA for ReLU networks.

In contrast to Nøkland (2016), we observed that backward weights initialized by a normal distribu-
tion perform slightly better than the scaled uniform proposed by Nøkland (2016).

We confirmed the observation made by Bartunov et al. (2018), that feedback alignment algorithms
are in general relatively sensitive to hyperparameter choice.
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