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Abstract

We design BioScape, a concurrent language for the stochastic simulation of biological and bio-
materials processes in a reactive environment in 3D space. BioScape is based on the Stochastic Pi-
Calculus, and it is motivated by the need for individual-based, continuous motion, and continuous
space simulation in modeling complex bacteria-materials interactions. Our driving example is a
bio-triggered drug delivery system for infection-resistant medical implants. Our models in BioScape
will help in identifying biological targets and materials strategies to treat biomaterials associated
bacterial infections.
The novel aspects of BioScape include syntactic primitives to declare the scope in space where
species can move, diffusion rate, shape, and reaction distance, and an operational semantics that
deals with the specifics of 3D locations, verifying reaction distance, and featuring random move-
ment. We define a translation from BioScape to 3π and prove its soundness with respect to the
operational semantics.

1 Introduction

In contrast to the now deep and multidimensional understanding of how tissue
cells interact with the surface of biomaterials, comparatively little is known
about the influence of surface properties on interactions with bacteria. These
interactions are clearly very important, however. Biomaterials-associated in-
fection (BAI) is a major clinical problem [1,13,35]. Current strategies to miti-
gate BAI concentrate on engineering antimicrobial [16,18,20,22] or antifouling
[9,14,19,33] coatings for specific biomedical devices.
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Fig. 1: Grit-blasted Ti6Al4V used in orthopedic
implants promotes osteoblast adhesion/spreading
(fluorescence image) but also enhances staphylo-
coccal colonization (SEM inset). After Wu, Lib-
era et al. [37]

While valuable clinically in the
short-term, this approach ignores the
fact that many devices, particularly
those involving regenerative strate-
gies, require surfaces that must con-
trollably interact with both tissue
cells and bacteria. Often, surfaces
optimized to promote tissue-cell in-
teractions also support undesirable
bacterial colonization (Fig. 1).

Concurrent Modeling of Bio-
material Interactions

As an alternative to models built
around sets of ordinary differential
equations (ODEs), process algebras
are formal languages where multiple objects with different behavioral at-
tributes can interact with each other and dynamically influence overall sys-
tem development. Process algebras are being used to model biological sys-
tems [30,6,2], where they are particularly attractive, because of their ability
to accommodate new objects and new behavioral attributes as the complex
biological system becomes better understood.

 

Planktonic bacterium 
!  adsorb (A p) 
!  diffuse 
!  flow 
!  killed by AmA (Kp >> Ka) 
!  reproduce (Rp ! Ra) 
!  metabolize (Mp ! Ma) 

Released AmA 
!  bind  
!  diffuse 
!  flow 
!  kill 
!  hydrolyze 

Adsorbed  bacterium 
!  desorb 
!  killed by  AmA (Ka << Kp) 
!  reproduce (Ra ! Rp) 

!  metabolize (Ma ! Mp) 
!  produce ECM 

Bound AmA 
!  stay bound 
!  pH -release 
!  contact-release 

!"#$%&''
'''''()*+'

Fig. 2: Concurrency models flexibly account for
multiple object types and copies. Each type has
characteristic attributes. Expression of one at-
tribute dynamically influences other objects and
what attribute each might next express.

Currently, however, modeling
languages based on concurrent syn-
chronization either lack spatial at-
tributes (SPiM [27], Kappa [12],
Petri Nets [26]) or stochasticity
(SpacePi [15], Shape Calculus [3]),
or they offer only a limited notion
of space (BioAmbients [23], BioPepa
[10]). As findings from biological ex-
periments reveal, inter and intracel-
lular dynamics and signaling path-
ways depend on the location and
movement of particles [17]. Recently,
new spatial modeling languages al-
lowing explicit description of tempo-
ral spatial dynamics of biochemical processes have been proposed (SpacePi
[15], DCA [36], LΠ [34], Stochsim [24]). Other agent-based platforms [21]
include C-Immsim [32,8] and PathSim visualizer [28]. However, few of them
support individual based, continuous motion, and continuous space stochas-
tic simulation [4], which are important features for modeling temporal spatial
dynamics of biochemical processes accurately. To address this problem we de-
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sign BioScape, a new language incorporating both stochasticity and 3D spatial
attributes.

pH and optical density of S.Epidermidis as a function of time.
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Time, hours Optical density pH in the medium

0 0.070 7.20

3 0.110 7.03

6 0.448 6.80

9 0.717 6.20

12 1.222 5.23

15 1.282 4.83

18 1.302 4.63

21 1.295 4.63

24 1.313 4.63

Fig. 3: pH variation during S. epidermidis
growth

Fig. 2 illustrates the elements
of a simple instance of the model.
It includes four objects: planktonic
bacteria; adsorbed bacteria; gel-
bound antibacterial agent (AmA);
and released AmA. Each has at-
tributes, many of which are inter-
related. Both bacteria, for example,
can metabolize, albeit at different
rates. Metabolism is particularly sig-
nificant for bound AmA, since acidic
products will lower the local pH, re-
duce the strength of electrostatic AmA-gel binding, and enable the pH-release
of bound AmAs. Released AmA can then diffuse and/or flow, and potentially
kill bound or planktonic bacteria, again with different efficiencies, because of
the enhanced microbial resistance of biofilm bacteria. The complexity of such
a model can rapidly explode as more attributes are assigned to each object.
Note that spatial coordinates and stochasticity are critical to understanding
the interactions between different objects and with the substrate, because they
all rely on proximity. So far, existing process-algebra modeling languages do
not support this. Furthermore, while there are now a number of models being
developed to explain the biofilm formation [31,38], none takes into account the
controllable properties of the substrate and how this can influence bacterial
adhesion, proliferation, and phenotypic change.

Goal: develop pH-responsive antibacterial coatings
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Fig. 4: Bio-triggered release of antibacterial
agents from pH-responsive layer-by-layer hydro-
gel thin film.

A number of experimentally mea-
surable quantities can be used to cal-
ibrate elements of the model. Among
these are the bacterial proliferation
rates, the biofilm morphology, the
AmA minimum inhibitory (MIC)
and bactericidal (MBC) concentra-
tions, gel capacities for AmA binding
and pH-dependent properties, and
component diffusivities, among others. For example, measurements by
Sukhishvili’s group of the pH-dependent release of L5 antimicrobial pep-
tide and its effect on S. epidermidis [25] have been used by Compagnoni
and her group to develop a prototype implementation in BioScape (Fig. 3).
This data corresponds to the schema described in Fig. 4. This model includes
computational processes for planktonic bacterial motion, adhesion, and prolif-
eration on an L5-loaded hydrogel surface as well as for the local metabolic pH
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decrease, triggered AmA release, and killing of bacteria (Figs. 5 C/D). Exper-
imental images (Figs. 5 A/B) are in good agreement with our computational
results.

 
C!

10 µm A!

as-synthesized 

10 µm B!

peptide-loaded 

D!

Fig. 5: Optical micrographs of NJ 9709 S. epidermidis cul-
tured on (A) as-synthesized and (B) L5-loaded (PMAA)10
gels. BioScape simulations with 40 bacteria and (C) an as-
synthesized gel film and (D) an L5-loaded gel film. Live
bacteria are green, dead bacteria are red, and L5 molecules
are small blue dots.

Language Design

The 3D aspect of BioScape
is inspired by 3π [7] and
SpacePi [15]. In BioScape
every process has an im-
plicit affine map and a shape
(Fig. 7). The shape is de-
fined by a set of point co-
ordinates that is local to
a process’ system of coor-
dinates. While the syn-
tax of BioScape describes
processes within its implicit
local frame, its semantics
places processes in a global
3D space (Fig. 8), by assign-
ing an affine map to each
process – a located process.
The application of an affine map to the shape returns the shape located in
the global frame. The affine map is what characterizes the position of the
process. Movement is then modeled by updating a process’ affine map. On
the contrary, 3π is a low level language that gives absolute control of spatial
attributes to the programmer. For example, the programmer can guard an in-
teraction by checking whether two processes are close enough, and it can also
assign affine maps to processes. For example, collision checks in 3π would have
to be implemented by the programmer checking corresponding distances with
every other entity in the system, and taking into account the shape of every
process. In contrast, in BioScape, the programmer specifies species declaring
a reaction radius, as in SpacePi, and the operational semantics enforces the
proximity requirement. Therefore, affine maps are not available to the pro-
grammer in BioScape, unlike 3π. While 3π is a general calculus for processes
in space, BioScape has been designed to program biological and biomaterial
processes and their interactions.

New Features of BioScape

• We introduce three new parameters for each process: movement space,
movement step, and shape to be specified by the programmer when defining
a process. We take the definition of bacteria as an example. The movement
space restricts the space within which bacteria can move. In Fig. 5, bacteria
can never penetrate the gel film. Thus we define the volume above the film as
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the movement space for bacteria. We assume that the scheduler will randomly
place the initial concentration of bacteria in that space. The movement step
indicates the distance that bacteria can move in a time interval. The shape
of bacteria represents the volume that each bacterium occupies in space. The
shape is instrumental in avoiding collisions and overlaps.

• Besides standard reaction operations send, receive and delay, BioScape
has a geometric operation move, that can be generalized to any affine trans-
formation. The difference is that while reaction operations have stochastic
reaction rates, the operation move is always enabled. In order to avoid an
unfair competition between reactions and geometric operations, we split the
semantics into two reduction relations, and we consider a heterogeneous choice
operator with probabilistic and non-deterministic branches. Intuitively, it is
like having two choice operators.

• The design decisions of having the scheduler assign initial affine maps
to each process and of having the operational semantics enforcing proximity
requirements significantly simplifies the models’ code.

BioScape is a collaboration tool that has helped us develop a long term
multidisciplinary research program to study how surface properties affect in-
teractions with bacteria.

2 Syntax

BioScape is based on the stochastic π-calculus [29] with primitives for pro-
cesses in 3D space. We assume a set of names N ranged over by x, y, . . .,
and a global three-dimensional Euclidean space. The syntax of BioScape

P,Q ::= (νx@r,rad).P | P | Q | X(x)

M ::= 0 | π.P +M

π ::= delay@r | !x(x) | ?x(y) | mov

D ::= ∅ | D,X(x)@ξ, ω, σ = M

E ::= ∅ | E, x@r, rad

Fig. 6: BioScape Syntax

is defined in Fig. 6. (νx@r,rad).P de-
fines channel name x with two parame-
ters r and rad∈ R≥0 in process P ; r is
the stochastic rate for communications
through channel x and rad is the com-
munication radius. The radius is the
maximum distance between processes in order to communicate through chan-
nel x, and the reaction rate determines whether two processes that are close
enough to react actually do. P | Q is parallel composition of processes. M
is the heterogeneous choice, where + is associative and commutative. M may
have reaction branches and movement branches. The reaction branches are
probabilistic, while the movement branches are non-deterministic, since reac-
tions are subject to reaction rates, while movement is always enabled. 0 is
the empty process. The prefix π denotes the action that the process π.P can
perform. delay@r is a spontaneous and unilateral reaction of a single process,
and r is the stochastic rate. !x is the output prefix and ?x is the input prefix.
We add a new geometry prefix mov to translate a process. We use standard
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syntactic abbreviations such as π.P for π.P + 0 and π for π.0. X(x) is a
definition call.
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Fig. 7: Shapes (σ) in their local coordinate sys-
tem (i,j,k) with origin o.
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Fig. 8: Shapes in the global coordinate system
(x,y,z) – (µ(σ)).

D is a global list of definitions.
X(x)@ξ, ω, σ = M defines process
X with argument x, movement space
ξ, step ω and shape σ. The move-
ment space ξ is a set of point coordi-
nates in the global coordinate system
defining a volume. Intuitively, X can
move within ξ. The step ω ∈ R≥0, is
the distance X can move in a single
step, and it corresponds to the dif-
fusion rate of X; the shape of X is
σ, an arbitrary volume in space de-
fined as a set of coordinates in the lo-
cal coordinate system (Fig. 7). The
movement space for the empty process 0 is everywhere, the global space, and
its movement step is 0 by default. X can be defined by at most one equation
in D.

E is an environment of channel name declarations. x@r, rad declares chan-
nel name x with reaction rate r and reaction radius rad. A channel name x
appears at most once in E.

Consider the following simple example of a bacterium Bac, that can either
move or divide into two daughter cells. A more complex example can be
found in Section 5. Bac is defined with movement space movB, movement step
stepB, and shape shapeB. Intuitively, bacteria can move within movB, with
random steps of length stepB, and the shape shapeB is at all times contained
within movB. The prefix mov represents a random movement of length stepB.
delay@1.0.(Bac() | Bac()) represents mitosis, the division of a bacterium
into two daughter cells: Bac() | Bac(), and the delay@1.0 prefix is used to
model the fact that division is not an instantaneous reaction.
Bac()@movB, stepB, shapeB = mov.Bac() + delay@1.0.(Bac() | Bac())

3 Operational Semantics

The operational semantics of BioScape is based on two reduction relations: a
non-deterministic relation, E `D A → B, for geometric transformations, in
our case move, and a stochastic relation, E `D A→r B, for reactions such as
synchronization and delay. We often omit D to simplify the notation.

We use µ to represent an affine map; µ(s) = M × s + V , where M is a
matrix and V is a vector [7] (see Fig. 7). µ(σ) computes the location and
orientation of a process in the global coordinate system. When a process is
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NR.Move
µ′ = translate(ω, µ, r) µ′(σ) ⊆ ξ X(x)@ξ, ω, σ = mov.P +M ∈ D

E ` {X(y)}µ → {P [y/x]}µ′

NR.Par
E ` A→ B trans(B) ∩ trans(C) = ∅

E ` A | C → B | C

SR.Delay
X(x)@ξ, ω, σ = delay@r.P +M ∈ D

E ` {X(y)}µ →r {P [y/x]}µ
SR.Com
X(x)@ξ, ω, σ =!z(u).P +M ∈ D Y (y)@ξ, ω, σ =?z(v).Q+N ∈ D dis(µ, µ′) ≤ rad

E, z@r, rad ` {X(x′)}µ | {Y (y′)}µ′ →r {P [x′/x]}µ | {Q[y′/y][u/v]}µ′

Fig. 9. Stochastic (SR) and Non-Stochastic (NR) Reduction Relations (Sample rules)

initialized, it is assigned a random µ within its movement space ξ in the global
frame (µ(σ) ⊆ ξ).

We define configurations A,B, . . . as parallel compositions of located pro-
cesses. A located process {P}µ,σ is a process P annotated with affine map µ
and shape σ. A,B, . . . ::= {P}µ,σ | A | B | (νx@r,rad).A. For clarity,
we often omit the shape σ.

Evaluation contexts are given as follows. We write C[A] for the con-
text C in which the hole · has been substituted with A: C ::= · |
(νx@r,rad).C | A | C | C | A

We define trans, a function on configurations that returns the shapes of its
processes located in the global frame (Fig. 8), such that trans({P}µ,σ) = µ(σ),
trans((νx@r,rad).A) = trans(A) and trans(A | B) = trans(A)∪trans(B).
We write dis(µ, µ′) for the distance between the origin of µ and the origin
of µ′ in the global frame (Fig. 8). We denote translate(ω,µ,r) the function
that generates a new local affine map µ′, using the movement step ω, the old
map µ, and a random number r.

(S.Loc) P ≡ Q implies {P}µ ≡ {Q}µ
(S.Loc.Nu) (νx@r,rad).{P}µ ≡ {(νx@r,rad).P}µ

(S.Loc.Par)
µ1(shape(P )) d µ2(shape(Q)) = µ(shape(P | Q))

{P | Q}µ ≡ {P}µ1 | {Q}µ2

Fig. 10: Structural Equivalence (Sample Rules)

As usual, fn is
a function that re-
turns the set of free
names of a process
or a configuration, bn
is a function that re-
turns the set of bound names of a process or a configuration, and =α equates
two processes or configurations that differ only in their bound names.

We define the shape of processes inductively as follows:
shape(0) = ∅ shape(X(a)) = σ if X(x)@ξ, ω, σ = M ∈ D
shape((νx@r,rad).P ) = shape(P ) shape(P | Q) = shape(P ) d shape(Q)

where d gives a shape obtained by composing two shapes through juxta-
position. For different applications we can choose suitable functions to re-
alise d, we only require d to be a commutative and associative operator, i.e.
σ1 d σ2 = σ2 d σ1 and (σ1 d σ2) d σ3 = σ1 d (σ2 d σ3). µ(shape(P )) computes
the space occupied by a process P in the global coordinate system.
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The structural equivalence, ≡, is the smallest equivalence relation that
contains the rules in Fig. 10, and such that parallel composition is commuta-
tive, associative, and has neutral element {0}µ for any µ. Rule S.Loc uses the
standard structural equivalence on processes, Rule S.Loc.Nu allows a channel
definition to move through located processes, and Rule S.Loc.Par permits to
move from configurations to a single located process (and viceversa) through
the creation of a new affine map derived from the old ones and the shape of
the processes.

Sample rules for both the non-stochastic (E ` A → B) and stochastic
(E ` A →r B) reduction relation of BioScape are given in Fig. 9. The
condition µ′(σ) ⊆ ξ of NR.Move ensures the new located process {P [y/x]}µ′ is
within its movement space ξ. NR.Move can be easily generalized to any affine
map application. The NR.Par condition trans(B) ∩ trans(C) = ∅ means
that reduction does not cause collisions or overlaps. Regarding the stochastic
reduction relation, r in E ` A→r B is the rate for synchronization or delay.
The condition dis(µ, µ′) ≤ rad in SR.Com ensures that located processes
{X(x′)}µ and {Y (y′)}µ′ are close enough to communicate through channel x.
The remaining rules are standard.

4 Simulation

The simulation algorithm has two phases: reaction and movement. The re-
action phase is based on Gillespie’s algorithm as implemented in SPiM, and
instead of keeping only concentrations for each agent species, it also keeps
3D information – (x,y,z) – for each instance. Gillespie’s algorithm produces
two outputs in each iteration: a reaction to be executed next, and a time
interval to update the simulation time. If the selected reaction is an interac-
tion between two agents (send/receive) then the algorithm uses 3D location
information to identify two individual agents close enough to interact, and
proceeds as described in the operational semantics (SR-Com). If there are no
two such agents it proceeds to the movement phase. If the selected reaction
is a first order reaction (delay), the algorithm propagates 3D information as
described in the operational semantics (SR-Delay). The movement phase uses
the time interval generated by Gillespie’s algorithm and moves each agent in
a random direction a distance proportional to the diffusion rate (ω) in that
period of time. The movement phase takes into account collision detection as
described in the operational semantics (NR-Par).

Overcrowding is beyond the scope of this paper. However there could be
several approaches to address it. Cells have external regulators that allow
them to react to molecules on the outside of neighboring cells, and those ex-
ternal regulators emit a signal to inhibit mitosis in overcrowded conditions.
Therefore, if it were relevant to the system being modeled, the most natural
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way to address overcrowding would be to program it into the model. Alter-
natively, the modeling language could address overcrowding in different ways.
For instance, if enough movement steps fail within a given movement area
in one iteration, reactions exacerbating overcrowding could be disabled. This
choice would have the effect of modeling dormancy in cells such as bacteria in
Maturation I or Maturation II stage of biofilm formation.

5 Example

In this section, we present the BioScape model for the bio-triggered drug
delivery system from Figs. 4 and 5. We first define the communication channels
release, kill and bind with reaction rate and reaction radius.

Channel release is for the communication between hydronium ions and
embedded drug molecules, channel kill is for the communication between
released drug molecules and bacteria, and channel bind is for the commu-
nication between bacteria in solution and binding sites on the hydrogel film
substrate. BacF() represents a free bacterium in solution. Free bacteria can
move, bind to the hydrogel film, grow, acidify the environment by producing
hydronium ions, and get killed by drug molecules. BacB() represents a bac-
terium bound to the hydrogel film. Bound bacteria cannot move, but they can
grow, acidify the environment by producing hydronium ions, and get killed
by drug molecules. BindSite() represents a binding site on the hydrogel
film. DeadBac() represents a dead bacterium. Dead bacteria can move and
degrade. MolB() represents a drug molecule embedded in the hydrogel film.
Drug molecules can be released as hydrogel ions are produced. MolF() rep-
resents released drug molecules. They can move and kill bacteria. HIon()

represents a hydronium ion, which determines the pH value of the environ-
ment. Hydrogen ions can move and release embedded drug molecules. resX,
stepX and shapeX represent ξ, ω and σ for species X. The following is the
BioScape code.
release@0.004, 2.0
kill@0.001, 0.5 HIon()@resIon, stepIon, shapeIon
bind@3.0, 0.2 = mov.HIon() + !release.HIon()

BacF()@resBF, stepBF, shapeBF = BindSite()@resBS, stepBS, shapeBS
mov.BacF() + = ?bind.BindSite()
!bind.BacB() +
delay@0.2.(BacF() | BacF()) + DeadBac()@stepDB, stepDB, shapeDB
delay@0.005.(BacF() | HIon()) + = delay@0.1
?kill.DeadBac()

MolB()@resMB, stepMB, shapeMB
BacB()@resBB, stepBB, shapeBB = = ?release.MolF()

delay@0.1.(BacB() | BacF()) +
delay@0.005.(BacB() | HIon()) + MolF()@resMF, stepMF, shapeMF
?kill.DeadBac() = mov.MolF() + !kill

To simulate this model, the programmer decides on an initial concentration
of free bacteria (BacF()) and bound molecules of AmA (MolB()). The simu-
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lation results of Fig. 5 C, show the controlled experiment of assuming only an
initial concentration of free bacteria and no antibacterial agent. The results
in Fig. 5 D, in contrast, show the effect of AmA molecules on the size and
number of bacteria clusters. Figs. 5 A and B show the experimental images
consistent with our results.

We now consider an example illustrating the interleaving of stochastic and
non-stochastic rules starting from one free bacterium, one hydronium ion and
one bound molecule of AmA: {BacF()}µ1 | {HIon()}µ2 | {MolB()}µ3 , to show-
case the interleaving of movement steps with reaction steps (communication
or delay). To make our example easier to follow, we unfold all three definitions
as follows:

{mov.BacF() + !bind.BacB() + delay@1.5.(BacF() | BacF())

+delay@0.5.(BacF() | HIon()) + ?kill.DeadBac()}µ1

| {mov.HIon() + !release.HIon()}µ2

| {?release.MolF()}µ3

The process has movement steps and reactions available. We first reduce all
move steps. We start with mov.BacF(). Assume an affine map µ′1 such that: 1)
µ′1 = translate(stepBF, µ1, r), for some random number r; 2) the translated
shape of the free bacterium shapeBF is within the movement space for free
bacteria resBF: µ′1(shapeBF) ⊆ resBF, and 3) the new shape of the free bac-
terium does not overlap with the other shapes in space: trans({BacF()}µ′1)∩
trans({HIon()}µ2 | {MolB()}µ3) = ∅. If there is no such µ′1, the configuration
remains unchanged, and the next movement step can be reduced.

Using the non-stochastic reduction rules, NR.Move and NR.Par, we have:

{mov.BacF() + !bind.BacB() + delay@1.5.(BacF()|BacF()) + delay@0.5.(BacF()|HIon())

+ ?kill.DeadBac()}µ1 | {mov.HIon() + !release.HIon()}µ2 | {?release.MolF()}µ3

→ {BacF()}µ′
1
| {mov.HIon() + !release.HIon()}µ2 | {?release.MolF()}µ3

We next reduce mov.HIon() using NR.Move and NR.Par:

{BacF()}µ′
1
| {mov.HIon() + !release.HIon()}µ2 | {?release.MolF()}µ3

→ {BacF()}µ′
1
| {HIon()}µ′

2
| {?release.MolF()}µ3

Unfolding {BacF()}µ′1 and {HIon()}µ′2 for the sake of clarity:

{mov.BacF() + !bind.BacB() + delay@1.5.(BacF()|BacF()) + delay@0.5.(BacF()|HIon())

+?kill.DeadBac()}µ′
1
| {mov.HIon() + !release.HIon()}µ′

2
| {?release.MolF()}µ3

There are three available reactions, one communication on channel release
and two delays. The next reaction will be determined using the corresponding
reaction rates. Assume that the next reaction is the communication between
HIon() and MolB() through channel release. Using the stochastic rules
SR.Com and SR.Par, if the distance between the processes is within release’s
reaction radius (dis(µ′2, µ3) ≤ 2.0) then the last process reduces to:
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{mov.BacF() + !bind.BacB() + delay@1.5.(BacF()|BacF()) + delay@0.5.(BacF()|HIon())

+?kill.DeadBac()}µ′
1
| {HIon()}µ′

2
| {MolF()}µ3

Otherwise, the configuration remains unchanged. The next reduction is a
movement step, where we reduce all available mov prefixes. This includes
reducing mov.BacF(), mov.HIon(), and mov.MolF(), and subsequently inter-
leaving stochastic (reaction) and non-stochastic (movement) reductions.

6 Translation from BioScape to 3π

We define a translation from BioScape into a variant of Cardelli-Gardner’s
3π with definitions instead of replication, and prove that it is sound with
respect to the operational semantics (Thm. 6.1). Since 3π does not include
stochasticity, we translate only the spatial aspect of BioScape into 3π.

∆ ::= xc | . . . | µ[∆]

π ::= ?σx(x′) | !σx(∆) | ∆ =σ ∆

P ::= 0 | π.P | P + P ′ | P |P ′ | (νx)P | µ[P ]

D ::= ∅ | D,X(x) = P

(Red Comm) ∆A 7→ ε implies !σx(∆).P + P ′ |
?σx(y).Q+Q′

A → P |Q{y/ε}
(Red Cmp) ∆A ≺∆′ implies ∆ =σ ∆′.PA → P

(Red Par) PA → Q implies P | RA → Q | R
(Red Res) PA → Q implies (νx)PA → (νx)Q

(Red ≡) P ′ ≡ P, PA → Q, Q ≡ Q′

imply P ′
A → Q′

Table 1: 3π syntax and reduction

In an attempt to make this paper
self contained, we include in this sec-
tion material from Processes in Space
[7]. “3π is a proper extension of π-
calculus with by-value communica-
tion of geometric data ∆, data com-
parisons ∆ =σ ∆.P , and frame shift-
ing µ[P ]. The syntax of 3π is shown
in Table 1. Each data term and value
has a sort σ ∈ {c, a,p,v,m}, denot-
ing channels, scalars, points, vectors,
and maps respectively. A geometric
data can be a value or a variable, or
a function on values and variables, or
a frame shift. An action term π can
be an input ?σx(x′), an output !σx(∆), or a data comparison ∆ =σ ∆. The
input and output actions are analogous to π-calculus actions, while the data
comparison evaluates to P if ∆ and ∆′ evaluate to the same value. Actions
are restricted by sorting constraints: channels must have sort c; x′ in input
must have sort σ; ∆ in output must have sort σ; ∆ and ∆′ in data comparison
must have sort σ.

Process terms are the standard π-calculus terms, plus the frame shift pro-
cess µ[P ]: it means running the process P in the global frame A shifted by
the affine map obtained by evaluating the map µ.
The reduction relation A 7→, which relates two processes relative to the global
frame A, appears in Table 1.

Reduction rules are the rule of a by-value π-calculus with data terms ∆,
but Red Comm and Red Cmp rules depend on an evaluation relation A 7→, that
evaluates a data ∆ to value ε in a global frame A. Data comparison requires
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the data evaluation ∆A ≺∆′, meaning there is a data value ε such that ∆A 7→ ε
and ∆′A 7→ ε.”

We define three functions ‖−‖SPA, ‖−‖PRO and ‖−‖DEF to translate spatial
configurations, processes and definitions, respectively. In ‖A‖SPAX;E;D;r, A is a
spatial configuration, X is a triple containing the movement space, shape and
step of the current definition, E is a set of channel declarations, D is a set of
definitions, and r is a real number. We will abuse the notation and consider
E and D sets or lists. Similarly for ‖P‖PROX;E;D;r and ‖D‖DEFX;E;D′;r.
[Process Translation]

‖(νx@r,rad).P‖PROX;E;D;r =‖P‖PROX;<x@r,rad>,E;D;r P.Res

‖P | Q‖PROX;E;D;r =‖P‖PROX;E;D;r | ‖Q‖PROX;E;D;r P.Par

‖X(y)‖PROX;E;<X(x)@ξ,σ,ω=M>,D;r =X(y) P.Def

‖0‖PROX;E;D;r =0 P.Nil

‖π.P +M‖PROX;E;D;r ={‖π.P‖PROX;E;D;r} ∪ ‖M‖PROX;E;D;r P.Cho

‖delay@r.P‖PROX;E;D;r =(νm)(!cm() |?cm().‖P‖PROX;E;D;r) m 6∈ fn(P ) P.Del

‖!x(y).P‖PROX;<x@r,rad>,E;D;r =?ccx(ok).?cok(pos).?ppos(p).

abs(p−z) ≤ rad =a 1.!cok(y).‖P‖PROX;<x@r,rad>,E;D;r

cx, ok, pos, p /∈ fn(P ) P.Out

‖?x(z).Q‖PROX;<x@r,rad>,E;D;r =(νok, pos)(!ccx(ok).!cok(pos).

!ppos(z).?cok(z).‖Q‖PROX;<x@r,rad>,E;D;r) cx /∈ fn(Q) P.In

‖mov.P‖PRO<ξ,σ,ω>;E;D;r =into(T(↑ (r, ω))[z], σ, ξ) =a 1.

T(↑ (r, ω))[‖P‖PRO<ξ,σ,ω>;E;D;r] P.Mov

[Spatial Configuration Translation]

‖{P}µ‖SPAX;E;D;r = µ[‖P‖PROX;E;D;r] S.Loc

‖A | B‖SPAX;E;D;r = ‖A‖SPAX;E;D;r | ‖B‖SPAX;E;D;r S.Par

‖(νx@r,rad).A‖SPAX;E;D;r = ‖A‖SPAX;<x@r,rad>,E;D;r S.Res

[Definition Translation]

‖∅‖DEFX;E;D;r = ∅ D.Nil

‖X(x)@ξ, σ, ω = M,D′‖DEFX;E;<X(x)@ξ,σ,ω=M>,D;r =

(X(x) = ‖M‖PRO<ξ,σ,ω>;E;<X(x)@ξ,σ,ω=M>,D;r), ‖D′‖DEFX;E;D;r D.Def

The translation of a BioScape choice process is the set of translations of
its branches, because 3π does not allow reduction under its choice operator.
Otherwise the reductions obtained from translating the branches would be
blocked. Consequently, we extend naturally 3π’s reduction and congruence
to sets (see Table 2), and we also define homomorphic extensions of parallel
composition, frame shift, prefix and restriction over sets. The trickiest rules
are the ones for translating communication, P.In for input and P.Out for
output. First, the input sends to the output two private channels, ok and pos,
and subsequently its position (z) via channel pos. The output calculates the
distance between itself and the position sent by the input with the function
abs(p −z), i.e. the absolute value of the difference between the positions of

12



Compagnoni, Sharma, Bao, Bidinger, Bioglio, Bonelli, Libera, Sukhishvili

the processes. If this distance is less than the reaction radius (rad), then the
output sends a communication on the channel of success and performs the
process P : when the input receives a communication on the ok channel, it
performs process Q.

For the translation of movement in Rule P.Mov, we assume a function
into(p, sh, sp) that checks whether a shape s, centered at point p, is contained
within space sp. T(v) is a translation map with vector v, and ↑ (r, ω) is a
vector of length ω and direction r. The translation checks whether into(T(↑
(r, ω))[z], σ, ξ) corresponding to condition µ′(σ) ⊆ ξ in NR.Move. Finally,
since delay is not a prefix in 3π, it is translated as a communication over a
channel.

Theorem 6.1 (Soundness) If E `D A → B or E `D A →r B then there

exists S such that ‖A‖SPA∅;E;D;rA
∗→ S and S ≡ ‖B‖SPA∅;E;D;r for some number r.

Let S and T be sets

(i) S | T = {(P | Q) | P ∈ S, Q ∈ T}
(ii) µ[{∅}] = ∅ and

µ[{P} ∪ S] = {µ[P ]} ∪ µ[S]

(iii) π.S = {π.P |P ∈ S}
(iv) (νm).S = {(νm).P |P ∈ S}

(Set.Par) SA → S’ implies S | TA → S’ | T
(Set.Red) PA → P ′ imp. {P} ∪QA → {P ′} ∪Q
(S.Set.Par) S ≡ S’ imp. S | T ≡ S’ | T
(S.Set.Red) P ≡ P ′ imp. {P} ∪Q ≡ {P ′} ∪Q

Table 2: Operations, Reduction and Congru-
ence on Sets

In our translation, the global
frame A is the identity. Although
sound, this translation is not com-
plete in the sense that not all re-
ductions in the translated code arise
from corresponding reductions in the
source code. Achieving completeness
is more complex and would require
collision detection and a more refined
mechanism for checking proximity.

7 Conclusions

We define BioScape for the modeling and simulation of complex bacteria-
materials interactions. BioScape builds on 3π [7] and SpacePi [15] merging
an affine space geometry, reaction radius 1 and reaction boundary. This com-
bination of features is strictly motivated by the nature of the models we are
capturing, as described in the introduction: stochasticity, movement, individ-
ual process location (in contrast with homogeneously mixed reactants in a
volume), interaction in proximity, and movement confinement. We formulate
a reduction semantics for BioScape and demonstrate it in an example of pH-
triggered drug release in the presence of bacterial infection. Furthermore, we
validate BioScape with a translation into Cardelli-Gardner’s 3π, and prove
its soundness with respect to the operational semantics. Complete technical
details can be found in the companion technical report [11].

1 Although this concept may be derived in 3π, it is convenient in practice to have as
primitive.
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The process calculus that most closely resembles BioScape is the Shape
Calculus [3], a CCS-like timed calculus, with simulating tool BioShape [5].
These are some of the differences. BioScape is stochastic, but the Shape
Calculus is not. The Shape Calculus does not allow dynamic creation of
channels, but BioScape does. Agents in BioScape can be modified by affine
transformations useful in modeling phenomena such as cell growth, but the
Shape Calculus only allows movement specified with a velocity vector. The
Shape Calculus has a time primitive for describing a delay, while BioScape
has a stochastic delay. The specification of an agent in BioScape describes an
area where it is allowed to be, but the Shape Calculus does not. This area
is instrumental in describing biomaterials such as antibacterial surfaces and
preventing bacteria from penetrating the surface while allowing antibacterial
molecules to do so. On the other hand, such behavior would have to be
programmed in the description of the agent in the Shape Calculus.

We develop an implementation of BioScape based on SPiM, and show
preliminary simulation results in agreement with wet-lab experiments. We are
currently working on a parallel simulation algorithm implemented in CUDA,
and our prototype implementation can handle one million agents in 3D space.

Our long-term modeling objective is to identify combinations of substrate
variables that most significantly inhibit bacterial colonization and promote
tissue integration.
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