Henry Ford Health Henry Ford Health Scholarly Commons

Surgery Meeting Abstracts

Surgery

4-1-2022

Right Ventricular Failure Following Left Ventricular Assist Device Implant: An Intermacs Analysis

Themistokles Chamogeorgakis

I Toumpoulis

David E. Lanfear

Celeste Williams

A Koliopoulou

See next page for additional authors

Follow this and additional works at: https://scholarlycommons.henryford.com/surgery_mtgabstracts

Authors

Themistokles Chamogeorgakis, I Toumpoulis, David E. Lanfear, Celeste Williams, A Koliopoulou, S Adamopoulos, and Jennifer A. Cowger

(48)

Improved Clinical Outcomes Associated with the Impella 5.5 Compared to the Impella 5.0 in Contemporary Cardiogenic Shock and Heart **Failure Patients**

D. Ramzy,¹ E.G. Soltesz,² S.C. Silvestry,³ S.A. Hall,⁴ and D.A. D'Alessandro.⁵ ¹Cardiac Surgery, Cedars-Sinai Med Ctr, Los Angeles, CA; ²Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH; ³Advent Health Transplant Institute, Orlando, FL; ⁴Baylor Heart and Vascular Institute, Dallas, TX; and the ⁵Massachusetts General Hospital, Boston. MA.

Purpose: To compare outcomes in patients treated with the surgically implanted Impella 5.5 vs Impella 5.0 heart pumps for acute myocardial infarction complicated by cardiogenic shock (AMICS), post cardiotomy cardiogenic shock (PCCS), or acute decompensated heart failure (ADHF). Methods: A retrospective analysis included all Impella 5.5 and Impella 5.0 implanted for AMICS, PCCS and ADHF between October 2019 and December 2020. The IQ registry is an FDA-mandated quality assurance database that captures baseline characteristics and outcomes through device explant. Patients receiving extracorporeal membrane oxygenation before/during Impella use were excluded. Those with aborted placement or unknown outcome were not included for assessment of clinical outcome. We examined ability to wean off support, bridge to other therapy, and duration of support.

Results: There was no significant difference in gender distribution, baseline LVEF, or pulmonary artery catheterization use in 5.5 vs. 5.0 patients. AMICS 5.5 patients were significantly younger (median 62 vs 66 years, p<0.001). Patients treated with the 5.5 had significantly higher survival in all 3 subgroups (AMICS, 70.5% vs 56.8%, p=0.005; ADHF, 88.1% vs 76.9%, p=0.001; PCCS, 76.1% vs 55.7%, p=0.003) (Table 1). Duration of support was significantly longer in AMICS 5.5 patients vs 5.0 patients (median 9.2 vs 6.1 days, p=0.008) and ADHF 5.5 patients vs 5.0 patients (median 10.7 vs 8.1 days, p<0.001). Rates of hemolysis, cerebrovascular accident, vascular injury and bleeding were statistically similar, with the exception of significantly lower hemolysis rates in cardiomyopathy patients treated with the Impella 5.5.

Conclusion: Outcomes were significantly improved with the Impella 5.5 when compared to the Impella 5.0 across all analyzed indications in contemporary patients, though further analysis remains to determine whether this owes to the device redesign or higher flow capability.

	AMICS			Cardiomyopathy			PCCS		
	Impella 5.0 (N=278)	Impella 5.5 (N=156)	P value	Impella 5.0 (N=225)	Impella 5.5 (N=270)	P value	Impella 5.0 (N=88)	Impella 5.5 (N=117)	P value
Successfully weaned or bridged to therapy	158/278 (56.8)	110/156 (70.5)	0.005	173/225 (76.9)	238/270 (88.1)	0.001	49/88 (55.7)	89/117 (76.1)	0.003
Successfully weaned	118/278 (42.4)	78/156 (50.0)	0.133	79/225 (35.1)	91/270 (33.7)	0.776	46/88 (52.3)	82/117 (70.1)	0.013
Bridged to therapy	40/278 (14.4)	32/156 (20.5)	0.108	94/225 (41.8)	147/270 (54.4)	<0.0001	3/88 (3.4)	7/117 (6.0)	0.521
Expired on support or withdrawal of care	120/278 (43.2)	46/156 (29.5)	0.005	52/225 (23.1)	32/270 (11.9)	0.001	39/88 (44.3)	28/117 (23.9)	0.003
Hemolysis	10/278 (3.6)	5/156 (3.2)	>0.99	21/225 (9.3)	8/270 (3.0)	0.003	1/88 (1.1)	2/117 (1.7)	>0.99
CVA	3/278 (1.1)	5/156 (3.2)	0.143	2/225 (0.9)	6/270 (2.2)	0.301	1/88 (1.1)	2/117 (1.7)	>0.99
Bleeding	5/278 (1.8)	1/156 (0.6)	0.426	5/225 (2.2)	3/270 (1.1)	0.478	6/88 (6.8)	3/117 (2.6)	0.177
Vascular injury	0/278 (0.0)	1/156 (0.6)	0.359	1/225 (0.4)	0/270 (0.0)	0.455	0/\$\$ (0.0)	0/117 (0.0)	>0.99
Duration of support, days	8.7 ± 9.5 (278)	13.2 ± 20.2 (156)	0.008	11.4 ± 10.6 (225)	15.1 ± 13.4 (270)	<0.001	6.6 ± 8.3 (88)	10.2 ± 23.5 (117)	0.127

(49)

Right Ventricular Failure Following Left Ventricular Assist Device **Implant: An Intermacs Analysis**

T. Chamogeorgakis,¹ I. Toumpoulis,² D. Lanfear,³ C. Williams,³ A. Koliopoulou,⁴ S. Adamopoulos,⁴ and J. Cowger.³ ¹Henry Ford Health System/Transplant Institute, Detroit, MI; ²University of Athens, School of Medicine, Athens, Greece; ³Henry Ford Health System, Detroit, MI; and the ⁴Onassis Cardiac Surgery Center, Athens, Greece.

Purpose: Right heart failure (RHF) management following LVAD include inotropes, right ventricular mechanical support and heart transplant. We analyzed the outcomes of severe RHF following implant of a fully magnetically levitated or hybrid magnetic centrifugal durable LVAD.

Methods: In this INTERMACS analysis we identified patients who developed severe RHF following LVAD from 2013 until 2020 as bridge to recovery or transplant. Patients were categorized in three groups based on RHF treatment strategy: inotrope support (group 1), temporary mechanical support (group 2), and durable centrifugal RVAD (group 3). Kaplan Meier and Cox-regression survival analysis between groups was undertaken. Logistic regression analysis for new onset dialysis was conducted.

Results: 2509 patients developed severe RHF after LVAD. 2199 (87.6%) patients were managed with inotropes (group 1), 233 (9.3%) with temporary RVAD (group 2) and 77 (3.1%) with durable RVAD (group 3). Group 1 had fewer patients with INTERMACS profile 1 and 2 (21.6%, p<0.001). One year survival was 84.6%, 59.3%, and 63.8% in groups 1,2, and 3 (mortality HR=2.4 and 3.3 for groups 2 and 3 vs. group 1, p<0.05). One year survival to transplant was 27%, 36.5%, and 53.6% in groups 1, 2, and 3, respectively (p<0.05). Group 2 had higher incidence of new onset dialysis (42.6%, p=0.049).

Conclusion: Survival with RHF following LVAD implant varies based on treatment strategy; inotrope support is associated with increased survival. Patients with durable RVAD are more likely to survive to transplant. Patient selection studies for durable RVAD with contraindications for transplant are necessary.

Patients demographics: Preoperative labs, hemodynamics, and echocardiography data are shown according to right heart failure management

Variable	Inotropes	Temp RVAD	Durable RVAD	P value
	Group 1	Group 2	Group 3	
	(n=2199)	(n=233)	(n=77)	
Age, mean±SD	53.7±11.8	52.5±13.3	46.4±14.1	< 0.001
Female, n (%)	480 (21.8)	63 (27.0)	17 (22.1)	0.205
White, n (%)	1347 (61.3)	159 (68.2)	46 (59.7)	0.105
Weight (kg), mean±SD	88.6±22.9	83.9±20.2	91.1±27.8	0.006
BMI (kg/m ²), mean±SD	28.7±7.0	27.4±6.0	28.4±7.2	0.035
BSA (m ²), mean±SD	2.1±0.3	2.0±0.3	2.1±0.4	0.012
Profile				< 0.001
1 (n, %)	475 (21.6)	129 (55.4)	45 (58.4)	-
2 (n, %)	824 (37.5)	61 (26.2)	21 (27.3)	-
Previous cardiac operation: none	1596 (72.6)	151 (64.8)	46 (59.7)	0.003
Concomitant surgical procedure	1188 (54.0)	43 (18.5)	20 (26.0)	<0.001
RV function on preop. echo:				< 0.001
mod-severe hypokinesis	244 (11.1)	18 (7.7)	8 (10.4)	-
severe hypokinesis	6 (0.3)	0 (0)	0 (0)	-
Tricuspid insufficiency on preop echo				0.018
Moderate (n, %)	172 (7.8)	16 (6.9)	1 (1.3)	-
severe (n, %)	198 (9.0)	37 (15.9)	8 (10.4)	-
Clamp time, minutes median (IQR)	328 (14.9)	36 (15.5)	12 (15.6)	0.018
CPB time, minutes mean±SD	97±108	134±63	172±124	< 0.001
Pulmonary systolic pressure, mean±SD	51.3±14.8	46.4±14.8	43.7±13.7	< 0.001
Pulmonary diastolic pressure, mean±SD	26.3±9.0	25.1±9.1	24.1±8.4	0.045
RA pressure, mean±SD	14.1±8.3	15.7±8.3	16.8±7.3	0.011
Hemoglobin (g/dl), mean±SD	10.9±2.2	9.9±2.2	9.8±2.0	< 0.001
Platelets (count x 10 ³ /µl), mean±SD	192.2±78.3	168.4±89.6	165.7±91.3	< 0.001
Albumin (g/dl), mean±SD	3.4±0.6	3.1±0.6	3.2±0.7	< 0.001
Bilirubin (mg/dl), mean±SD	1.7±2.0	2.1±2.8	2.3±3.2	0.002
BUN (mg/dl), mean±SD	31.3±18.2	32.7±20.2	32.2±22.3	0.523
Creatinine (mg/dl), mean±SD	1.5±0.8	1.6±1.0	1.3±0.6	0.095
SGOT (AST) (units/l), mean±SD	63.2±268.3	138.9±500.3	84.3±173.0	0.001
SGPT (ALT) (units/l), mean±SD	70.3±227.6	141.9±409.8	78.7±163.6	< 0.001
INR, mean±SD	1.3±0.6	1.4±0.4	1.4±0.4	0.515

Downloaded for Anonymous User (n/a) at Henry Ford Hospital / Henry Ford Health System (CS North America) from ClinicalKey.com by Elsevier on May 19, 2022. For personal use only. No other uses without permission. Copyright ©2022. Elsevier Inc. All rights reserved.