RDA Manuscript Proof

MODULATION OF GLYCOLYSIS AND THE PENTOSE PHOSPHATE PATHWAY INFLUENCES PORCINE OOCYTE IN VITRO MATURATION

Journal:	Reproduction in Domestic Animals
Manuscript ID:	RDA-OA-May-2012-0217.R1
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Alvarez, Gabriel; University of Buenos Aires, Area of Biochemistry; Ferretti, Eugenia; University of Buenos Aires, Area of Biochemistry Gutnisky, Cynthia; University of Buenos Aires, Area of Biochemistry Dalvit, Gabriel; University of Buenos Aires, Area of Biochemistry Cetica, Pablo; University of Buenos Aires, Area of Biochemistry
Subject Area:	Biotechnology < General reproduction, pigs < Species:, General reproduction
	<u>1 · · · · · · · · · · · · · · · · · · ·</u>

RDA Manuscript Proof

1	MODULATION OF GLYCOLYSIS AND THE PENTOSE PHOSPHATE
2	PATHWAY INFLUENCES PORCINE OOCYTE IN VITRO MATURATION
3	
4	Gabriel Martín Alvarez, Eugenia Lorena Ferretti, Cynthia Gutnisky, Gabriel Carlos
5	Dalvit, Pablo Daniel Cetica
6	
7	INITRA (Institute of Research and Technology in Animal Reproduction), Area of
8	Biochemistry, School of Veterinary Sciences, University of Buenos Aires, Buenos
9	Aires, Argentina.
10	
11	Running title: Glycolysis and PPP in porcine IVM
12	
13	Corresponding author: Gabriel Martín Alvarez, galvarez@fvet.uba.ar
14	Chorroarín 280, C1427CWO, Buenos Aires, Argentina. Tel/Fax: + 54 11 4524 8452.
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

26 Abstract

28	Glycolytic and pentose phosphate pathway (PPP) activities were modulated in porcine
29	cumulus-oocyte complexes (COCs) during in vitro maturation (IVM) by the addition of
30	inhibitors or stimulators of key enzymes of the pathways in order to elucidate their
31	relative participation in oocyte maturation. The activities of glycolysis and PPP were
32	evaluated by lactate production per COC and by the Brilliant Cresyl Blue (BCB) test,
33	respectively. Glucose uptake per COC and the oocyte maturation rate were also
34	evaluated. Lactate production, glucose uptake and the percentage of oocytes reaching
35	metaphase II decreased in a dose-dependent manner in the presence of the
36	pharmacological (NaF) or the physiological (ATP) inhibitors of glycolysis (P<0.05).
37	The addition of the physiological stimulator of glycolysis (AMP) caused no effect on
38	lactate production, glucose uptake or the meiotic maturation rate. The pharmacological
39	(6-AN) and the physiological (NADPH) inhibitors of PPP induced a dose-dependent
40	decrease in the percentage of oocytes with high PPP activity and in the nuclear
41	maturation rate (P<0.05). The physiological stimulator of PPP (NADP) caused no effect
42	on the percentage of oocytes with high PPP activity. The glycolytic and PPP activities
43	of porcine COCs and maturational competence of oocytes seem to be closely related
44	events. This study shows for the first time the regulatory effect of ATP and NADPH as
45	physiological inhibitors of glycolysis and PPP in porcine COCs, respectively. Besides,
46	these pathways seem to reach their maximum activities in porcine COCs during IVM
47	because no further increases were achieved by the presence of AMP or NADP.
48	
49	Key words: Glycolysis, pentose phosphate pathway, COCs, oocyte, porcine
50	

RDA Manuscript Proof

RDA Manuscript Proof

51 Introduction

The oocyte and the surrounding cumulus cells are structurally and physiologically coupled. Cumulus-oocyte complexes (COCs) can consume different substrates from the ovarian follicular fluid during in vivo maturation and from culture media during in vitro maturation (IVM), to be fated towards diverse metabolic pathways involved in the maturation process (Sutton et al. 2003b; Thompson 2006).

A close relationship between the presence of glucose in the maturation medium and the progression of meiosis has been observed in mouse oocytes (Downs 1995). Similarly, an adequate glucose concentration in the maturation medium improves the bovine oocyte IVM and the subsequent embryo development (Lim et al. 1999; Khurana and Niemann 2000). In the porcine species, the addition of glucose to the maturation medium accelerates the meiotic progression of oocytes (Sato et al. 2007) and increases the percentage of oocytes reaching the metaphase II nuclear stage (Wongsrikeao et al. 2006a; Funahashi et al. 2008). Additionally, glucose metabolism is important in oocyte cytoplasmic maturation, which in turn is necessary for embryo development (Krisher et al. 2007).

The glycolytic pathway has been proposed as the main fate for the glucose consumed by murine, bovine and porcine COCs (Downs and Utecht 1999; Cetica et al. 2002; Preis et al. 2005; Krisher et al. 2007; Alvarez et al. 2012). Evidence suggests that cumulus cells metabolize glucose, producing glycolytic metabolites, mainly lactate, used by the oocyte during maturation (Cetica et al. 1999; Sutton et al. 2003a; Alvarez et al. 2012). In somatic cells, the modulation of the glycolytic pathway is thought to take place in the enzyme phosphofructokinase 1, being AMP and ATP the allosteric stimulator and inhibitor, respectively (Schirmer and Evans 1990; Nelson and Cox 76 2005). Additionally, this pathway is inhibited by several pharmacological compounds,
77 such as sodium fluoride (NaF), which is widely used to inhibit glycolytic activity
78 (Mayes and Bender 2004).

Glucose can be alternatively oxidized through the pentose phosphate pathway (PPP), which appears to be linked to the regulation of oocyte maturation (Downs and Utecht 1999; Funahashi et al. 2008). The PPP has several working alternatives according to specific cell requirements: the metabolites obtained can be either used in other pathways (e.g. synthesis of nucleotides, glycolysis) or recycled in the PPP. The PPP activity is dependent on the intracellular concentrations of NADP and NADPH, which modulate the pathway positively and negatively, respectively, acting mainly on the enzyme glucose 6-phosphate dehydrogenase (Nelson and Cox 2005). Additionally, this enzyme can be inhibited pharmacologically by 6-aminonicotinamide (6-AN) (Hothersall et al. 1981).

The glucose consumed by porcine COCs seems to be oxidized mainly through the glycolytic pathway and the PPP. The modulation of these pathways through the regulation of the activity of key enzymes by different compounds may thus allow us to establish their relative participation in the porcine oocyte in vitro maturation process. The effects of the addition of enzymatic inhibitors (NaF, ATP) and a stimulator (AMP) of phosphofructokinase 1 glycolysis as well as of enzymatic inhibitors (6-AN, NADPH) and a stimulator (NADP) of glucose 6 phosphate dehydrogenase PPP in IVM medium on the activities of glycolysis glycolytic activity (evaluated by lactate production) and PPP activity (evaluated by BCB test) in porcine COCs, glucose uptake per COC and oocyte maturation were analyzed.

100 Materials and Methods

101	
102	Materials
103	
104	Unless otherwise specified, all chemicals used were from Sigma Chemical
105	Company (St. Louis, MO, USA).
106	
107	Recovery and classification of cumulus-oocyte complexes
108	
109	Ovaries from slaughtered gilts were transported in a warm environment (28-
110	33°C) for the 2-3 h journey to the laboratory. Ovaries were washed in 0.9% (w/v) NaCl
111	containing 100 000 IU/L penicillin and 100 mg/L streptomycin. COCs were aspirated
112	from 3-8 mm antral follicles by using a 10 mL syringe and an 18-gauge needle, and
113	oocytes surrounded by a dense cumulus were selected for in vitro culture.
114	
115	Oocyte in vitro maturation
116	
117	COCs were individually cultured in medium 199 (Earle's salts, L-glutamine, 2.2
118	mg/L sodium bicarbonate; GIBCO, Grand Island, NY, USA) supplemented with 10%
119	(v/v) foetal bovine serum (GIBCO), 0.57 mM cysteine, 50 mg/L gentamicin sulphate,
120	and 0.5 mg/L porcine follicle-stimulating hormone (FSH) (Folltropin-V, Bioniche,
121	Belleville, Ontario, Canada) plus 0.5 mg/L porcine luteinizing hormone (LH) (Lutropin-
122	V, Bioniche) (control medium) under mineral oil at 39°C for 48 h in a 5% CO_2
123	atmosphere (Abeydeera et al. 2001).
124	Different regulators of glycolysis and PPP were added to the control medium:
125	2.5 mM, 5 mM, 7.5 mM and 10 mM NaF (glycolytic pharmacological inhibitor); 1 mM,

RDA Manuscript Proof

1	
2	
2	
3	
4	
5	
6	
7	
0	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
2 3 4 5 6 7 8 9 10 11 2 13 14 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 21 22 3 24 25 26 27 28 9 20 20 20 20 20 20 20 20 20 20 20 20 20	
22	
23	
24	
25	
20	
26	
27	
28	
29	
30	
21	
31 32 33 34 35 36 37 38	
32	
33	
34	
35	
36	
27	
31	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

126	10 mM, 20 mM and 40 mM ATP (glycolytic physiological inhibitor); 1 mM, 10 mM,
127	20 mM and 40 mM AMP (glycolytic physiological stimulator); 0.01 mM, 0.025 mM,
128	0.05 mM and 0.1 mM 6-AN (PPP pharmacological inhibitor); 0.0125 mM, 0.125 mM,
129	1.25 mM and 12.5 mM NADPH (PPP physiological inhibitor); 0.0125 mM, 0.125 mM,
130	1.25 mM and 12.5 mM NADP (PPP physiological stimulator).
131	
132	Evaluation of oocyte maturation
133	
134	In vitro matured oocytes were denuded by gentle pipetting after incubation in 1
135	g/l hyaluronidase in phosphate-buffered saline (PBS) for 5 min at 37°C, placed in a
136	hypotonic medium of 10 g/L sodium citrate at 37°C for 15 min, fixed on a slide with
137	Carnoy fixing solution (3:1 ethanol:acetic acid), and stained with 5% (v/v) Giemsa
138	(Merck, Darmstadt, Germany) for 15 min. They were then observed under the light
139	microscope at x100 and x400 magnification. Only oocytes with condensed and well-
140	defined metaphase II chromosome configurations were considered meiotically mature
141	(Alvarez et al. 2009).
142	
143	Evaluation of the viability of cumulus-oocyte complexes
144	To evaluate viability of cumulus cells and oocytes, an aliquot of COCs from
145	each treatment group was incubated for 10 min at 37°C in PBS added with 2.5 $\mu g/l$
146	fluorescein diacetate fluorochrome. Then, COCs were washed in PBS before being
147	observed in an epifluorescence microscope (Zeiss, Germany) using a 510 nm filter at
148	x100 magnification. Live cells were distinguished from dead ones based on their green
149	fluorescence (Alvarez et al. 2009).
150	

RDA Manuscript Proof

151	Evaluation of glycolytic activity
152	
153	To evaluate glycolytic activity in COCs during IVM, lactate production per
154	COC was determined. COCs were individually matured in 20-µl droplets of culture
155	medium, then removed from the droplets and the lactate content of the spent maturation
156	medium was assessed. Lactate concentration was measured using a spectrophotometric
157	assay based on the oxidation of this compound by lactate oxidase and the subsequent
158	determination of the hydrogen peroxide formed (Barham and Trinder 1972).
159	Additionally, glucose uptake per COC was measured in a similar manner by
160	determining the glucose content of the spent maturation medium but using glucose
161	oxidase (Barham and Trinder 1972; Gutnisky et al. 2007).
162	Twenty-microlitre droplets of maturation medium without cells were included in
163	each experiment to provide glucose and lactate reference concentrations.
164	COCs removed from the droplets were processed as previously described to
165	evaluate oocyte meiotic maturation.
166	
167	Evaluation of pentose phosphate pathway activity
168	
169	To evaluate PPP activity during IVM in COCs, the Brilliant Cresyl Blue (BCB)
170	test for immature oocytes was performed (Wongsrikeao et al. 2006b) with some
171	modifications to be adapted to the porcine oocyte IVM. COCs were individually
172	matured in 20- μ l droplets of culture medium for 45 hours and then transferred for the
173	last 3 hours of IVM to the same culture medium which had been added with 4.8 μM of
174	BCB. Oocytes were denuded as previously described and finally separated into two
175	different groups according to their cytoplasmic colouration: BCB-positive oocytes (with

RDA Manuscript Proof

176	blue cytoplasmic colouration) indicate a low activity of PPP, whereas BCB-negative
177	oocytes (with no blue cytoplasmic colouration) indicate a high activity of PPP.
178	Additionally, lactate production and glucose uptake per COC were determined
179	by assessing lactate and glucose contents of the spent maturation medium, as described
180	above.
181	COCs removed from the droplets were processed as previously described to
182	evaluate oocyte meiotic maturation.
183	
184	Statistical analysis and experimental design
185	
186	Non-parametric values were recorded as percentages and analysed using a Chi-
187	squared test. Parametric values were reported as means \pm SEM and comparisons were
188	made by ANOVA. The Pearson test was used to determine the correlation between
189	glucose uptake and lactate production per COC. Significance was set at P<0.05.
190	
191	Results
192	
193	Effect of NaF on glycolytic activity
194	
195	Lactate, an end product of glycolysis, was measured in IVM medium to assess
196	the activity of glycolysis in porcine COCs in the presence of different concentrations of
197	the pharmacological inhibitor of the pathway. Lactate production per COC disclosed a
198	dose-dependent decrease in the presence of NaF (P<0.05, Figure 1a). Glucose uptake
199	per COC showed a similar behaviour in the presence of this compound in IVM medium
200	(P<0.05, Figure 1b). A very high positive correlation between glucose uptake and

Page 9 of 38

RDA Manuscript Proof

2	201	lactate production was observed (r=0.86; P=0.0000). The oocyte meiotic maturation rate
2	202	decreased from 5 mM NaF onward (P<0.05, Figure 1c). However, cumulus cells and
2	203	oocyte viability were not affected at any of the concentrations of NaF evaluated (Table
2	204	1).
2	205	
2	206	Effect of ATP on glycolytic activity
2	207	
2	208	As observed with NaF, both lactate production and glucose uptake per COC
2	209	decreased in a dose-dependent manner in the presence of the physiological inhibitor of
2	210	the glycolytic pathway (P<0.05, Figure 2a and 2b). Again, a very high positive
2	211	correlation between glucose uptake and lactate production was observed (r=0.86;
2	212	P=0.0000). The oocyte meiotic maturation rate also showed a dose-dependent decrease
2	213	in the presence of ATP (Figure 2c). However, neither cumulus cells nor oocyte viability
2	214	were affected at any of the concentrations of ATP used (Table 1).
2	215	
2	216	Effect of AMP on glycolytic activity
2	217	Effect of AMP on glycolytic activity
2	218	There was no difference in lactate production or glucose uptake per COC in the
2	219	presence of increasing concentrations of the physiological stimulator of glycolysis
2	20	(Figure 3a and 3b). A very strong positive correlation between glucose uptake and
2	21	lactate production was observed (r=0.87; P=0.0000). The oocyte meiotic maturation rate
2	22	did not show variation in the presence of AMP (Figure 3c). Neither cumulus cells nor
2	23	oocyte viability were affected at any of the concentrations of AMP assessed (Table 1).
2	224	
2	225	Effect of 6-AN on pentose phosphate pathway activity

226	
227	The BCB test was used to evaluate the activity of PPP in porcine COCs in the
228	presence of different concentrations of the pharmacological inhibitor of the metabolic
229	pathway. The results showed a dose-dependent decrease in the percentage of oocytes
230	with high PPP activity of with the addition of 6-AN in IVM medium (P<0.05, Figure
231	4a). Both lactate production and glucose uptake per COC decreased to a plateau from
232	0.025 to 0.1 mM 6-AN, not showing a dose-dependent effect (P<0.05; Figure 4b and
233	4c). A good positive correlation between glucose uptake and lactate production was
234	observed (r=0.63; P=0.0000). The oocyte meiotic maturation rate decreased in a dose-
235	dependent manner in the presence of the pharmacological inhibitor of PPP (Figure 4d).
236	However, neither cumulus cells nor oocyte viability were affected at any of the
237	concentrations of 6-AN studied (Table 1).
238	
239	Effect of NADPH on pentose phosphate pathway activity
239 240	Effect of NADPH on pentose phosphate pathway activity
	<i>Effect of NADPH on pentose phosphate pathway activity</i> As observed with 6-AN, there was a dose-dependent decrease in both the
240	
240 241	As observed with 6-AN, there was a dose-dependent decrease in both the
240 241 242	As observed with 6-AN, there was a dose-dependent decrease in both the percentage of oocytes with high PPP activity of and the meiotic maturation rate in the
240241242243	As observed with 6-AN, there was a dose-dependent decrease in both the percentage of oocytes with high PPP activity of and the meiotic maturation rate in the presence of the physiological inhibitor of the pathway (P<0.05, Figure 5a and 5d).
 240 241 242 243 244 	As observed with 6-AN, there was a dose-dependent decrease in both the percentage of oocytes with high PPP activity of and the meiotic maturation rate in the presence of the physiological inhibitor of the pathway (P<0.05, Figure 5a and 5d). However, lactate production and glucose uptake per COC remained constant in the
 240 241 242 243 244 245 	As observed with 6-AN, there was a dose-dependent decrease in both the percentage of oocytes with high PPP activity of and the meiotic maturation rate in the presence of the physiological inhibitor of the pathway (P<0.05, Figure 5a and 5d). However, lactate production and glucose uptake per COC remained constant in the presence of the different concentrations of NADPH (Figure 5b and 5c). A high positive
 240 241 242 243 244 245 246 	As observed with 6-AN, there was a dose-dependent decrease in both the percentage of oocytes with high PPP activity of and the meiotic maturation rate in the presence of the physiological inhibitor of the pathway (P<0.05, Figure 5a and 5d). However, lactate production and glucose uptake per COC remained constant in the presence of the different concentrations of NADPH (Figure 5b and 5c). A high positive correlation between glucose uptake and lactate production was recorded (r=0.72;
 240 241 242 243 244 245 246 247 	As observed with 6-AN, there was a dose-dependent decrease in both the percentage of oocytes with high PPP activity of and the meiotic maturation rate in the presence of the physiological inhibitor of the pathway (P<0.05, Figure 5a and 5d). However, lactate production and glucose uptake per COC remained constant in the presence of the different concentrations of NADPH (Figure 5b and 5c). A high positive correlation between glucose uptake and lactate production was recorded (r=0.72; P=0.0000). Neither cumulus cells nor oocyte viability were affected at any of the
 240 241 242 243 244 245 246 247 248 	As observed with 6-AN, there was a dose-dependent decrease in both the percentage of oocytes with high PPP activity of and the meiotic maturation rate in the presence of the physiological inhibitor of the pathway (P<0.05, Figure 5a and 5d). However, lactate production and glucose uptake per COC remained constant in the presence of the different concentrations of NADPH (Figure 5b and 5c). A high positive correlation between glucose uptake and lactate production was recorded (r=0.72; P=0.0000). Neither cumulus cells nor oocyte viability were affected at any of the

RDA Manuscript Proof

The addition of increasing concentrations of the physiological stimulator of PPP showed no effect on the activity of the pathway (Figure 6a). Lactate production per COC decreased to a plateau from 0.125 to 12.5 mM NADP (P<0.05, Figure 6b), although glucose uptake was not modified respect to control (Figure 6c). A weak positive correlation between glucose uptake and lactate production was determined (r=0.31; P=0.0019). A slightly but significant decrease in the oocyte meiotic maturation rate was observed in the presence of NADP (P<0.05, Figure 6d). However, neither cumulus cells nor oocyte viability were affected at any of the concentrations of NADP assessed (Table 1). Discussion The glucose consumption by COCs during in vitro culture is necessary for proper oocyte maturation (Thompson 2006). The fate of glucose towards glycolysis and PPP could be directly implicated in the acquisition of maturational competence. Here, the modulation of the glycolytic and PPP activities by means of enzymatic effectors demonstrated the impact of these metabolic pathways on the progression of oocyte maturation, increasing the understanding of the participation of each pathway in the maturation process. The glucose consumed by porcine COCs would mainly be converted to lactate, suggesting significant glycolytic activity by cumulus cells (Alvarez et al. 2012). NaF is a well-characterized pharmacological inhibitor of glycolysis in somatic cells, and its action has been described on the enzyme enolase (Harris 2002). Lactate production and

275 glucose uptake per COC decreased in a dose-dependent manner when porcine oocyte

RDA Manuscript Proof

1
2
2 3 4 5 6 7
4
5
6
0
1
8
9
10
11
12
13
1.0
14
15
16
17
18
19
9 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 31 32
21
21
22
23
24
25
26
27
28
20
29
30
30 31 32 33 34 35 36 37 38
32
33
34
35
36
30
37
38
39
40
41
42
43
43 44
44 15
45
46
47
48
49
50
51
50
52 53
53
54
55
56
57
58
58 59
29

60

276	IVM took place in the presence of NaF. Noteworthy, the very strong positive correlation
277	between both parameters remained despite the addition of different concentrations of
278	this inhibitor, demonstrating that glycolysis is the main fate of glucose consumed by
279	porcine COCs. The concentrations of NaF found to have inhibitory effect in the present
280	study were higher than those reported to diminish glucose consumption in several types
281	of eukaryotic cells (Anderson 1969; Feig et al. 1971; Shayiq and Kidwai 1986),
282	confirming the high glycolytic activity in porcine COCs. Interestingly, when maturation
283	medium was added with 5 mM NaF, the percentage of oocytes reaching metaphase II,
284	as well as lactate production and glucose uptake per COC, were 75% lower than those
285	of the control group, suggesting that oocyte nuclear maturation and glycolytic activity in
286	COCs are very closely related events in porcine species. Interestingly, when maturation
287	medium was added with 5 mM NaF, the percentage of oocytes reaching metaphase II
288	was 75% lower than that of the control group was a quarter than control group, and
289	lactate production and glucose uptake per COC also showed a quarter of the activity
290	than control groups, suggesting that oocyte nuclear maturation and glycolytic activity in
291	COCs are very close related events in porcine species. In porcine COCs matured in
292	medium added with other glycolytic pharmacological inhibitors, cumulus cells were
293	removed at the conclusion of IVM and no effect on glycolytic activity was determined
294	in denuded porcine oocytes (Herrick et al. 2006). This result is in agreement with the
295	suggestion that glycolysis is a predominant pathway in porcine cumulus cells (Alvarez
296	et al. 2012). The concentrations of NaF found to have inhibitory effect in the present
297	study were higher than those reported to diminish glucose consumption in several types
298	of eukaryotic cells (Anderson 1969; Feig et al. 1971; Shayiq and Kidwai 1986),
299	confirming the high glycolytic activity in porcine COCs. The inhibition of oocyte
300	maturation due to stimulation of adenylate cyclase by NaF has been reported in bovine

Page 13 of 38

1

RDA Manuscript Proof

2
3
4
5
6
7
8
9
10
11
12
14
14
16
17
18
19
20
2 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 14 5 6 7 8 9 10 11 23 14 5 6 7 8 9 10 11 23 14 5 6 7 8 9 10 11 23 14 5 6 7 8 9 10 11 23 14 5 14 5 14 15 14 14 14 15 14 14 14 14 14 14 14 14 14 14 14 14 14
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
23
24
25
26
27
28
29
30
31 22
32 33
34
35
36
37
38
39
40
41
42
43
44
45
46 47
47
48 ⊿q
49 50
51
52
53
54
55
56
49 50 51 52 53 54 55 56 57
58 59
59
60

301	COCs. However, the concentration used to obtain this effect was higher than in the
302	present study (Sirard 1990) or was utilized in combination with 3-isobutyl-1-
303	methylxanthine to achieve the inhibition of nuclear maturation (Bilodeau et al. 1993).
304	ATP has been pointed out as a physiological regulator of glycolysis, being a
305	negative allosteric effector of the main key enzyme of the pathway (Harris 2002; Kamp
306	et al. 2007). Lactate production and glucose uptake per COC also showed a dose-
307	dependent decrease when porcine oocyte IVM was carried out with the addition of ATP
308	to the maturation medium, and the very high positive correlation between both
309	parameters remained despite the diverse concentrations of the inhibitor assessed. These
310	results showed for the first time the regulatory effect of ATP on the glycolytic activity
311	of porcine COCs and reinforce the statement that glycolysis is the principal metabolic
312	route in these complexes. It is interesting to note that the inhibitory concentrations of
313	ATP determined in this work were about the ones reported to be effective on enzymatic
314	extracts of phosphofructokinase 1 (Harris 2002; Kamp et al. 2007). In the present work,
315	when porcine COCs were cultured in the presence of 1 mM ATP, the oocyte nuclear
316	nuclear maturation rate, as well as the lactate production and glucose uptake per COC,
317	was 50% lower than that observed in the control group, confirming the close
318	relationship between oocyte meiotic maturation and glycolytic activity in porcine COCs
319	during IVM.
320	The AMP has been identified as a positive allosteric effector of the main key
321	enzyme of glycolysis (Harris 2002; Simpfendorfer et al. 2006; Kamp et al. 2007). In
322	the experiment performed in the presence AMP in culture medium, no effect was
323	observed on lactate production and glucose uptake per COC, suggesting no stimulating
324	effect by this compound on glycolysis in porcine COCs. In a previous work, we
325	demonstrated the stimulation of glycolysis in COCs by the supplementation of IVM

RDA Manuscript Proof

326	medium with gonadotropins in this species (Alvarez et al. 2012). We can propose that
327	AMP has no effect on glycolytic activity of porcine COCs or that the stimulatory effect
328	of gonadotropins on glycolysis could overlap the effect of AMP. It is important to
329	remark that the concentrations of AMP evaluated in this study were either the same as
330	or higher than the ones reported previously to be effective for stimulating
331	phosphofructokinase 1 (Simpfendorfer et al. 2006; Kamp et al. 2007).
332	6-AN is an effective pharmacological inhibitor of the PPP, acting as a
333	competitive inhibitor of the enzyme glucose 6-phosphate dehydrogenase (Tyson et al.
334	2000). The addition of this compound in the IVM medium of porcine oocytes induced a
335	dose-dependent decrease in both the percentage of oocytes with high PPP activity and
336	the nuclear maturation rate, indicating an association between both events. The
337	interference of 6-AN on the meiotic progression of murine and porcine oocytes has been
338	previously reported (Downs et al. 1998; Sato et al. 2007; Funahashi et al. 2008).
339	Glucose uptake and lactate production per COC were inhibited at higher concentrations
340	of 6-AN, but not in a dose-dependent manner, showing a good correlation between
341	them. The specific inhibition of the PPP by 6-AN seems to reduce the amount of
342	glucose used by COCs through this pathway, but the concurrent decrease in lactate
343	production suggests a reduction in glycolytic activity as well. This effect could be
344	explained by some kind of enzymatic inhibition of glycolysis or by the decrease in PPP
345	end products fated to the glycolytic pathway. In coincidence, PPP inhibition also
346	induces a decrease in glucose uptake and lactate production in murine COCs (Downs et
347	al. 1998). This effect on glycolysis due to the inhibition of the PPP with
348	diphenyleneiodonium has also been reported in mature porcine oocytes isolated from
349	cumulus cells (Herrick et al. 2006). The accumulation of 6-phosphogluconate due to the
350	inhibition of the PPP enzyme 6-phosphogluconate dehydrogenase with 6-AN has been

RDA Manuscript Proof

2
3
4
5
6
7 8 9 10
8
9
10
11
12
13 14 15 16 17 18 19
14
15
10
10
10
20
20
20 21 22 23
23
/4
25
26
27
20 27 28 29 30
29
00
31
32 33 34 35 36 37 38
33
34
35
30
31 20
30 39
39 40
41
42
43
44
45
46
47
48
49
50
51
52 53
53
54
55 56
56 57
57 58
58 59
60

351	previously observed in somatic cells; this compound seems to inhibit the glycolytic
352	enzyme phosphoglucose isomerase (Tyson et al. 2000). Thus, the inhibition of PPP with
353	6-AN would lead to a secondary inhibition of glycolysis in COCs, both affecting the
354	maturational capability of porcine oocytes.
355	PPP activity is physiologically regulated by the intracellular NADP/NADPH
356	ratio: a high ratio increases glucose consumption through the pathway, whereas a low
357	ratio induces the inhibition of the pathway (Clarenburg 1992; Nelson and Cox 2005). In
358	the present work, the addition of NADPH in the IVM medium caused a dose-dependent
359	decrease in both the percentage of oocytes with high PPP activity and the nuclear
360	maturation rate, reinforcing the evidences that both events are related. These results also
361	show for the first time the regulatory effect of NADPH on PPP activity of porcine
362	COCs. In contrast to that observed with 6-AN, neither glucose uptake nor lactate
363	production per COC were altered by the addition of NADPH to the maturation medium,
364	and a high positive correlation between both parameters was maintained. Therefore, we
365	can propose that the decrease in PPP activity by increasing levels of its physiological
366	inhibitor would not impair the glycolytic activity in porcine COCs during IVM, in
367	contrast to that observed with the pharmacological inhibitors of the pathway.
368	The addition of NADP, a physiological stimulator of PPP, in the IVM medium
369	caused no effects on the percentage of oocytes with high activity of this metabolic route.
370	PPP activity seems to be high during porcine oocyte maturation and NADP
371	supplementation seems to be unable to further stimulate this pathway. NADP did not
372	modify glucose uptake per COC, although at higher concentrations it induced a
373	reduction in lactate production by porcine COCs during IVM. The decrease observed in
374	lactate production suggests some variation in glucose fate when NADP was present. A
375	possible explanation is that NADP induces most of the consumed glucose to be destined

RDA Manuscript Proof

2
3 4 5
4
5
6
6 7
8
9
10
11
12
12
10
14
15
16
17
18
19
20
21
22
, 8 9 10 11 12 13 14 15 16 17 18 19 21 22 3 4 25 26 27 28 9 30 1 32 33 4 35 36 7 8 9 20 12 23 4 35 36 7 8 9 20 12 12 12 12 12 12 12 12 12 12 12 12 12
24
25
26
27
28
20
20
21
31 22
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
46 47
47
48 49
49 50
50
51
51 52 53 54
53
54
55
56
57
58
59
60
50

400

1 2

376	to PPP, and thus fewer molecules would be catabolised in glycolysis. This reduced
377	glycolytic activity in COCs could justify the decrease in the number of porcine oocytes
378	that reached metaphase II stage. Important interrelationships between different
379	carbohydrate pathways in COCs during IVM have been described, and the over or
380	under activation of one of them can impact on the activity of the others and
381	subsequently affect oocyte maturational and/or developmental competence (Thompson
382	2006).
383	Finally, the viability of cumulus cells and oocytes was not affected at any of the
384	concentrations of the different modulators used to control glycolytic and PPP activities,
385	denoting that no toxic effect could be attributed to the results obtained.
386	In conclusion, the inhibition of glycolysis or PPP during IVM of porcine COCs
387	leads to a decrease in nuclear oocyte in vitro maturation, demonstrating the importance
388	of glucose utilization through these pathways for the progression of meiosis in the
389	porcine gamete. This study shows for the first time that ATP and NADPH would act as
390	physiological negative regulators of glycolytic and PPP activities in porcine COCs,
391	respectively. Besides, glycolysis and PPP seem to reach their maximum activities in
392	porcine COCs under the IVM conditions used in the present study because no further
393	increase was achieved by AMP or NADP. The modulation of alternative pathways
394	involved in glucose metabolism and their relationship with oocyte maturation will
395	further contribute to the elucidation of the role of this hexose in the IVM process.
396	
397	<u>Conflicts of interest</u>
398	
399	The authors declare they have no conflicts of interest that might impede their

impartiality with respect to the work performed.

401	
402	Funding
403	
404	This work was funded by the University of Buenos Aires, Argentina (grant number
405	UBACyT V007).
406	
407	Acknowledgements
408	
409	The authors thank the Japanese International Cooperation Agency (JICA) for
410	technology transfer and equipment, the Porkind abattoir for ovaries, Astra Laboratories
411	for ultra-pure water, and ETC Internacional S.A. for donation of cell culture products
412	and V.H. Chávez for his technical assistance.
413	
414	Figure legends
415	
416	Figure 1.
417	a. Lactate production by cumulus-oocyte complex (COC) during maturation with
418	different concentrations of NaF. ^{a, b, c} Different superscripts over bars indicate
419	significant differences (P< 0.05). n = 30 COCs for each bar. Experiments were repeated
420	three times. Data are presented as mean \pm SEM.
421	b. Glucose uptake by COC during maturation with different concentrations of NaF. ^{a, b, c}
422	Different superscripts over bars indicate significant differences (P< 0.05). n = 30 COCs
423	for each bar. Experiments were repeated three times. Data are presented as mean \pm
424	SEM.

RDA Manuscript Proof

425	c. Percentage of oocytes reaching metaphase II (M II) after maturation with different
426	concentrations of NaF. ^{a, b, c} Different superscripts over bars indicate significant
427	differences (P< 0.05). n = 27-30 oocytes for each bar. Experiments were repeated three
428	times.
429	
430	Figure 2.
431	a. Lactate production by cumulus-oocyte complex (COC) during maturation with
432	different concentrations of ATP. ^{a, b, c, d} Different superscripts over bars indicate
433	significant differences ($P < 0.05$). n = 30 COCs for each bar. Experiments were repeated
434	three times. Data are presented as mean \pm SEM.
435	b. Glucose uptake by COC during maturation with different concentrations of ATP. ^{a, b, c}
436	Different superscripts over bars indicate significant differences ($P < 0.05$). n = 30 COCs
437	for each bar. Experiments were repeated three times. Data are presented as mean \pm
438	SEM.
439	c. Percentage of oocytes reaching metaphase II (M II) after maturation with different
440	concentrations of ATP. ^{a, b, c} Different superscripts over bars indicate significant
441	differences (P< 0.05). n = 29-30 oocytes for each bar. Experiments were repeated three
442	times.
443	
444	Figure 3.
445	a. Lactate production by cumulus-oocyte complex (COC) during maturation with
446	different concentrations of AMP. ^a The same superscript over bars indicates no
447	significant difference. $n = 30$ COCs for each bar. Experiments were repeated three
448	times. Data are presented as mean \pm SEM.

RDA Manuscript Proof

449	b. Glucose uptake by COC during maturation with different concentrations of AMP. ^a
450	The same superscript over bars indicates no significant difference. $n = 30$ COCs for
451	each bar. Experiments were repeated three times. Data are presented as mean \pm SEM.
452	c. Percentage of oocytes reaching metaphase II (M II) after maturation with different
453	concentrations of AMP. ^a The same superscript over bars indicates no significant
454	difference. $n = 29-30$ oocytes for each bar. Experiments were repeated three times.
455	
456	Figure 4.
457	a. Percentage of oocytes with active pentose phosphate pathway, evaluated by BCB test,
458	after maturation with different concentrations of 6-AN. ^{a, b, c, d} Different superscripts
459	over bars indicate significant differences (P< 0.05). n = 28-30 oocytes for each bar.
460	Experiments were repeated three times.
461	b. Lactate production by cumulus-oocyte complex (COC) during maturation with
462	different concentrations of 6-AN. ^{a, b} Different superscripts over bars indicate significant
463	differences (P< 0.05). n = 30 COCs for each bar. Experiments were repeated three times.
464	Data are presented as mean ± SEM.
465	c. Glucose uptake by COC during maturation with different concentrations of 6-AN. ^{a, b}
466	Different superscripts over bars indicate significant differences ($P < 0.05$). n = 30 COCs
467	for each bar. Experiments were repeated three times. Data are presented as mean \pm
468	SEM.
469	d. Percentage of oocytes reaching metaphase II (M II) after maturation with different
470	concentrations of 6-AN. ^{a, b, c, d} Different superscripts over bars indicate significant
471	differences (P< 0.05). n = 28-30 oocytes for each bar. Experiments were repeated three
472	times.
473	

Figure 5.

- **a.** Percentage of oocytes with active pentose phosphate pathway, evaluated by BCB test,
- 476 after maturation with different concentrations of NADPH.^{a, b, c, d} Different superscripts
- 477 over bars indicate significant differences (P < 0.05). n = 29-30 oocytes for each bar.
- 478 Experiments were repeated three times.
- **b.** Lactate production by cumulus-oocyte complex (COC) during maturation with
- 480 different concentrations of NADPH.^a The same superscript over bars indicates no
- 481 significant difference. n = 30 COCs for each bar. Experiments were repeated three
- 482 times. Data are presented as mean \pm SEM.
- **c.** Glucose uptake by COC during maturation with different concentrations of NADPH.
- a The same superscript over bars indicates no significant difference. n = 30 COCs for
- 485 each bar. Experiments were repeated three times. Data are presented as mean \pm SEM.
- 486 d. Percentage of oocytes reaching metaphase II (M II) after maturation with different
- 487 concentrations of NADPH.^{a, b, c, d} Different superscripts over bars indicate significant
- 488 differences (P<0.05). n = 29-30 oocytes for each bar. Experiments were repeated three
- times.

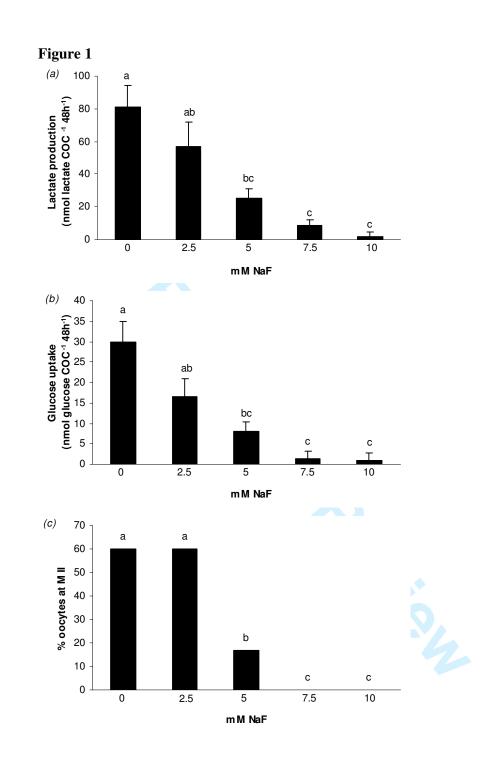
- **Figure 6**.
- **a.** Percentage of oocytes with active pentose phosphate pathway, evaluated by BCB test,
- 493 after maturation with different concentrations of NADP.^a The same superscript over
- 494 bars indicates no significant difference. n = 28-30 oocytes for each bar. Experiments
- 495 were repeated three times.
- **b.** Lactate production by cumulus-oocyte complex (COC) during maturation with
- 497 different concentrations of NADPH.^{a, b} Different superscripts over bars indicate

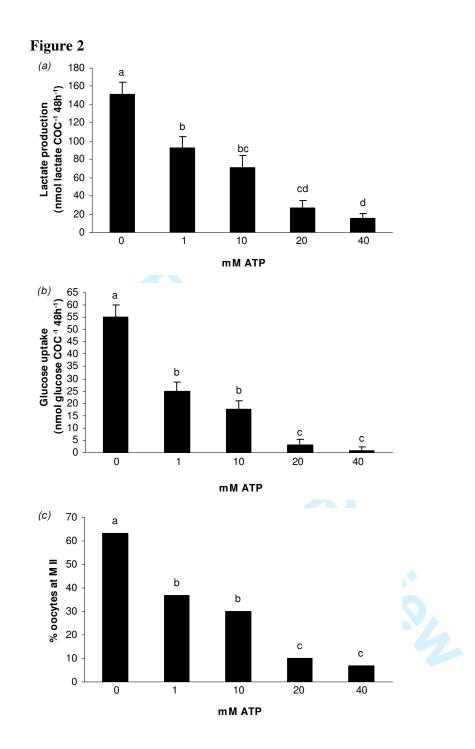
RDA Manuscript Proof

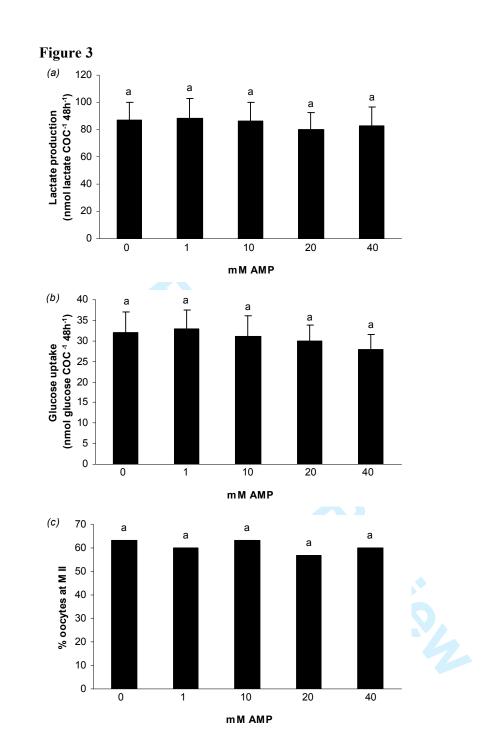
3	
4	
5	
6	
7	
8	
9 10	
10 11 12 13 14 15 16 17 18 19	
10	
12	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
20 21 22 23 24 25 26 27 28 29 30 31 32 33	
29	
30	
31	
32	
33 34	
34	
35	
36 37	
37 38	
38	
39 40	
40 41	
41	
42	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

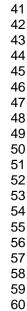
498	significant differences (P<0.05). $n = 30$ COCs for each bar. Experiments were repeated
499	three times. Data are presented as mean \pm SEM.
500	c. Glucose uptake by COC during maturation with different concentrations of NADP. ^a
501	The same superscript over bars indicates no significant difference. $n = 30$ COCs for
502	each bar. Experiments were repeated three times. Data are presented as mean \pm SEM.
503	d. Percentage of oocytes reaching metaphase II (M II) after maturation with different
504	concentrations of NADP. ^{a, b, c, d} Different superscripts over bars indicate significant
505	differences (P<0.05). $n = 28-30$ oocytes for each bar. Experiments were repeated three
506	times.
507	
508	Table 1. Percentage of live oocytes and live cumulus in cumulus-oocyte complex
509	(COC) matured in the presence of different modulators. ^a The same superscript indicates
510	no significant difference within line. $n = 30$ COCs for each value. Experiments were
511	repeated three times.
512	repeated three times. REFERENCES Abeydeera L R, Wang W H, Prather R S, Day B N, 2001: Effect of incubation
513	REFERENCES
514	
515 516 517 518	Abeydeera L R, Wang W H, Prather R S, Day B N, 2001: Effect of incubation temperature on in vitro maturation of porcine oocytes: nuclear maturation, fertilisation and developmental competence. Zygote 9 , 331-337.
510 519 520 521 522	Alvarez G, Dalvit G, Cetica P, 2012: Influence of the Cumulus and Gonadotropins on the Metabolic Profile of Porcine Cumulus–Oocyte Complexes During In Vitro Maturation. Reproduction in domestic animals = Zuchthygiene, In Press.
523 524 525 526	Alvarez G M, Dalvit G C, Achi M V, Miguez M S, Cetica P D, 2009: Immature oocyte quality and maturational competence of porcine cumulus-oocyte complexes subpopulations. Biocell 33 , 167-177.
520 527 528 529	Anderson D M, 1969: In vitro inhibition of glycolysis in blood and its effect on the haematocrit. Journal of comparative pathology 79 , 525-535.

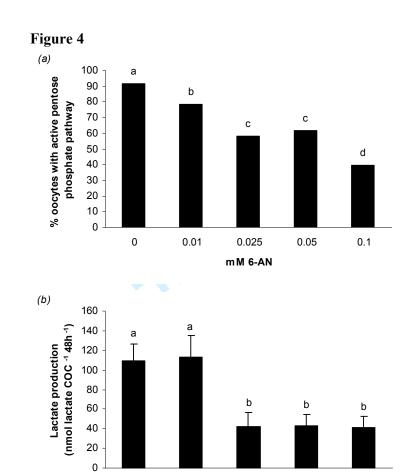
530	Barham D, Trinder P, 1972: An improved colour reagent for the determination of blood
531	glucose by the oxidase system. Analyst 97, 142-145.
532	Shoose by the oxidube system. Thirdyst 77, 112 115.
533	Bilodeau S, Fortier M A, Sirard M A, 1993: Effect of adenylate cyclase stimulation on
534	meiotic resumption and cyclic AMP content of zona-free and cumulus-enclosed bovine
535	oocytes in vitro. Journal of reproduction and fertility 97 , 5-11.
536	bodytes in vitro. southar of reproduction and refunity 97, 5 11.
530	Cetica P, Pintos L, Dalvit G, Beconi M, 2002: Activity of key enzymes involved in
538	glucose and triglyceride catabolism during bovine oocyte maturation in vitro.
539	Reproduction (Cambridge, England) 124 , 675-681.
540	Reproduction (Cambridge, England) 124, 075-001.
540	Cetica P D, Pintos L N, Dalvit G C, Beconi M T, 1999: Effect of lactate dehydrogenase
542	activity and isoenzyme localization in bovine oocytes and utilization of oxidative
543	substrates on in vitro maturation. Theriogenology 51 , 541-550.
543 544	substrates on in vitro maturation. Theriogenology 51, 541-550.
544 545	Clarenburg R, 1992: Carbohydrate metabolism, In: Reinhardt, R. (Ed.), Physiological
545 546	chemistry of domestic animals, Mosby Year Book Inc, Saint Louis, pp. 239-291.
540 547	chemistry of domestic annuals, Mosby Tear Book nic, Saint Louis, pp. 259-291.
548	Downs S.M. 1005: The influence of glucose, sumulus calls, and motabolic coupling on
548 549	Downs S M, 1995: The influence of glucose, cumulus cells, and metabolic coupling on ATP levels and meiotic control in the isolated mouse oocyte. Developmental biology
	5 1 05
550	167 , 502-512.
551	Daving S.M. Hummharson B.C. Losse H.L. 1009: Maiatia induction in aumulus call
552	Downs S M, Humpherson P G, Leese H J, 1998: Meiotic induction in cumulus cell-
553	enclosed mouse oocytes: involvement of the pentose phosphate pathway. Biology of
554	reproduction 58 , 1084-1094.
555	
556	Downs S M, Utecht A M, 1999: Metabolism of radiolabeled glucose by mouse oocytes
557	and oocyte-cumulus cell complexes. Biology of reproduction 60, 1446-1452.
558	
559	Feig S A, Shohet S B, Nathan D G, 1971: Energy metabolism in human erythrocytes. I.
560	Effects of sodium fluoride. The Journal of clinical investigation 50 , 1731-1737.
561	
562	Funahashi H, Koike T, Sakai R, 2008: Effect of glucose and pyruvate on nuclear and
563	cytoplasmic maturation of porcine oocytes in a chemically defined medium.
564	Theriogenology 70 , 1041-1047.
565	
566	Gutnisky C, Dalvit G C, Pintos L N, Thompson J G, Beconi M T, Cetica P D, 2007:
567	Influence of hyaluronic acid synthesis and cumulus mucification on bovine oocyte in
568	vitro maturation, fertilisation and embryo development. Reprod Fertil Dev 19, 488-497.
569	
570	Harris R A, 2002: Carbohydrate metabolism I: Major metabolic pathways and their
571	control, In: Devlin, T.M. (Ed.), Textbook of Biochemistry, Wiley-Liss, New York, pp.
572	597-664.
573	
574	Herrick J R, Brad A M, Krisher R L, 2006: Chemical manipulation of glucose
575	metabolism in porcine oocytes: effects on nuclear and cytoplasmic maturation in vitro.
576	Reproduction (Cambridge, England) 131, 289-298.
577	
578	Hothersall J S, Zubairu S, McLean P, Greenbaum A L, 1981: Alternative pathways of
579	glucose utilization in brain; changes in the pattern of glucose utilization in brain

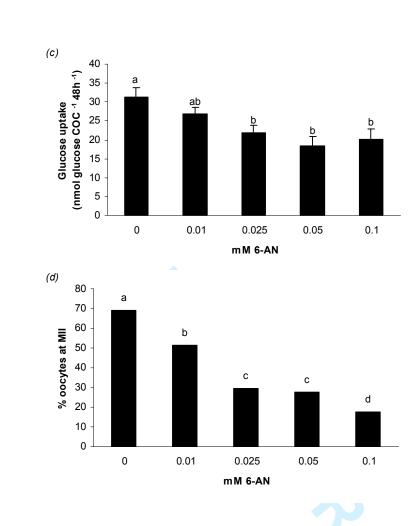

RDA Manuscript Proof

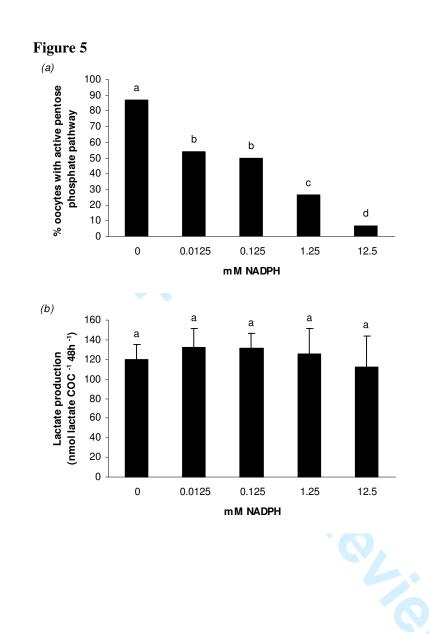

1		
2	580	resulting from treatment of rats with 6-aminonicotinamide. Journal of neurochemistry
3	581	•
4 5		37 , 1484-1496.
6	582	
7	583	Kamp G, Schmidt H, Stypa H, Feiden S, Mahling C, Wegener G, 2007: Regulatory
8	584	properties of 6-phosphofructokinase and control of glycolysis in boar spermatozoa.
9	585	Reproduction (Cambridge, England) 133, 29-40.
10	586	
10	587	Khurana N K, Niemann H, 2000: Effects of oocyte quality, oxygen tension, embryo
12	588	density, cumulus cells and energy substrates on cleavage and morula/blastocyst
13	589	formation of bovine embryos. Theriogenology 54 , 741-756.
14	590	
15	591	Krisher R L, Brad A M, Herrick J R, Sparman M L, Swain J E, 2007: A comparative
16	592	analysis of metabolism and viability in porcine oocytes during in vitro maturation.
17		
18	593	Animal reproduction science 98, 72-96.
19	594	
20	595	Lim J M, Lee B C, Lee E S, Chung H M, Ko J J, Park S E, Cha K Y, Hwang W S,
21	596	1999: In vitro maturation and in vitro fertilization of bovine oocytes cultured in a
22	597	chemically defined, protein-free medium: effects of carbohydrates and amino acids.
23	598	Reprod Fertil Dev 11, 127-132.
24	599	
25	600	Mayes P A, Bender D, 2004: Glucólisis y la oxidación del piruvato, In: Murray, R.
26	601	(Ed.), Harper. Bioquímica Ilustrada, Editorial El Manual Moderno, S.A. de C.V.,
27	602	México, D.F., pp. 153-161.
28	603	Mexico, D.I., pp. 105 101.
29	604	Nelson D, Cox M, 2005: Glycolysis, gluconeogenesis, and the pehtose phosphate
30	605	
31		pathway, In: Nelson D, C.M. (Ed.), Lehninger. Principles of biochemistry, W. H.
32	606	Freeman and Company, New York, pp. 521-559.
33	607	
34	608	Preis K A, Seidel G, Jr., Gardner D K, 2005: Metabolic markers of developmental
35	609	competence for in vitro-matured mouse oocytes. Reproduction (Cambridge, England)
36	610	130 , 475-483.
37	611	
38	612	Sato H, Iwata H, Hayashi T, Kimura K, Kuwayama T, Monji Y, 2007: The effect of
39	613	glucose on the progression of the nuclear maturation of pig oocytes. Animal
40 41	614	reproduction science 99 , 299-305.
41	615	
42 43	616	Schirmer T, Evans P R, 1990: Structural basis of the allosteric behaviour of
44	617	phosphofructokinase. Nature 343 , 140-145.
44 45	618	phosphoraciokillase. Nature 343 , 140-143.
46		Sharin D.M. Kidami A.M. 1006. Effect of flooride on untake of D. shares having lated
47	619	Shayiq R M, Kidwai A M, 1986: Effect of fluoride on uptake of D-glucose by isolated
48	620	epithelial cells of rat intestine. Environmental research 41, 388-399.
49	621	
50	622	Simpfendorfer R W, Oelckers K B, Lopez D A, 2006: Phosphofructokinase from
51	623	muscle of the marine giant barnacle Austromegabalanus psittacus: kinetic
52	624	characterization and effect of in vitro phosphorylation. Comp Biochem Physiol C
53	625	Toxicol Pharmacol 142, 382-389.
54	626	
55	627	Sirard M A, 1990: Temporary inhibition of meiosis resumption in vitro by adenylate
56	628	cyclase stimulation in immature bovine oocytes. Theriogenology 33 , 757-767.
57	620 629	
58	527	
59		
60		

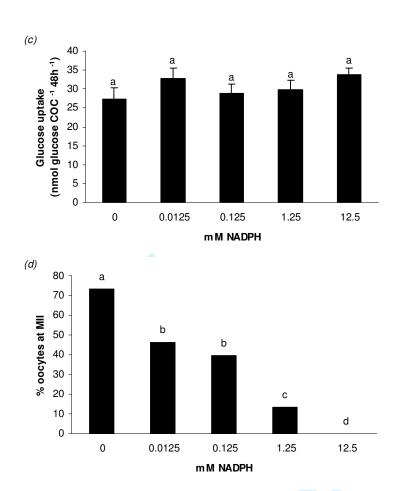

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 0	
4 5 6	
7 8	
9 10	
11 12 13	
14 15	
16 17 18	
19 20	
21 22	
23 24 25	
26 27	
28 29 30	
31 32	
33 34 25	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	
38 39	
40 41 42	
43 44	
45 46 47	
48 49	
50 51 52	
52 53 54	
55 56	
57 58 59	
60	

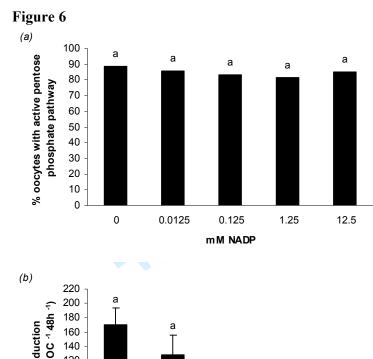

1

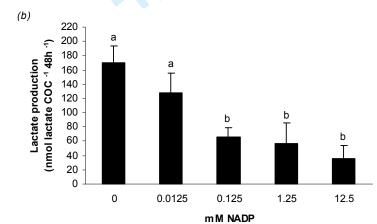

630 Sutton M L, Cetica P D, Beconi M T, Kind K L, Gilchrist R B, Thompson J G, 2003a: 631 Influence of oocyte-secreted factors and culture duration on the metabolic activity of 632 bovine cumulus cell complexes. Reproduction (Cambridge, England) 126, 27-34. 633 634 Sutton M L, Gilchrist R B, Thompson J G, 2003b: Effects of in-vivo and in-vitro 635 environments on the metabolism of the cumulus-oocyte complex and its influence on oocyte developmental capacity. Human reproduction update 9, 35-48. 636 637 638 Thompson J G, 2006: The impact of nutrition of the cumulus oocyte complex and 639 embryo on subsequent development in ruminants. The Journal of reproduction and 640 development 52, 169-175. 641 642 Tyson R L, Perron J, Sutherland G R, 2000: 6-Aminonicotinamide inhibition of the 643 pentose phosphate pathway in rat neocortex. Neuroreport 11, 1845-1848. 644 645 Wongsrikeao P, Otoi T, Taniguchi M, Karja N W, Agung B, Nii M, Nagai T, 2006a: 646 Effects of hexoses on in vitro oocyte maturation and embryo development in pigs. 647 Theriogenology **65**, 332-343. 648 649 Wongsrikeao P, Otoi T, Yamasaki H, Agung B, Taniguchi M, Naoi H, Shimizu R, Nagai T, 2006b: Effects of single and double exposure to brilliant cresyl blue on the 650 651 selection of porcine oocytes for in vitro production of embryos. Theriogenology 66, 652 366-372. 653 654

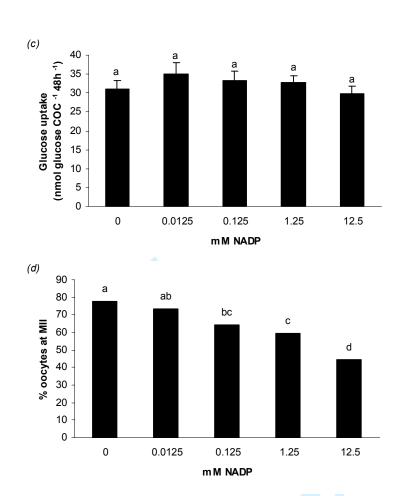



0.01 0.025 **mM 6-AN**


Q. Q.


0.1


0.05



P. P.

Table 1. Effect of modulators on COC vitality					
			NaF		
_	0 mM	2.5 mM	5 mM	7.5 mM	10 mM
% live oocytes	100 ^a	93.3 ^a	96.7 ^a	100 ^a	100 ^a
% live cumulus	100 ^a	100 ^a	100 ^a	100 ^a	100 ^a
			ATP		
_	0 mM	1 mM	10 mM	20 mM	40 mM
% live oocytes	96.7 ^a	100 ^a	93.3 ^a	100 ^a	96.7 ^a
% live cumulus	100 ^a	100 ^a	100 ^a	100 ^a	100 ^a
			AMP		
_	0 mM	1 mM	10 mM	20 mM	40 mM
% live oocytes	96.7 ^a	93.3 ^a	100 ^a	96.7 ^a	100 ^a
% live cumulus	100 ^a	100 ^a	100 ^a	100 ^a	100 ^a
			6-AN		
_	0 mM	0.01 mM	0.025 mM	0.05 mM	0.1 mM
% live oocytes	96.7 ^{a a}	100 ^a	100	100 ^a	93.3 ^a
% live cumulus	100 ^a	100 ^a	100 ^a	100 ^a	100 ^a
			NADPH		
_	0 mM	0.0125 mM	0.125 mM	1.25 mM	12.5 mM
% live oocytes	100 ^a	100 ^a	100 ^a	96.7 ^a	96.7 ^a
% live cumulus	100 ^a	100 ^a	100 ^a	♦ 100 ^a	100 ^a
			NADP	0	
_	0 mM	0.0125 mM	0.125 mM	1.25 mM	12.5 mM
% live oocytes	93.3 ^a	93.3 ^a	100 ^a	100 ^a	100 ^a
% live cumulus	100 ^a	100 ^a	100 ^a	100 ^a	100 ^a

1
2
3
4
5
6
7
8
9
10
11
10
12
13
14
15
16
17
18
19
$\begin{smallmatrix} 2 & 3 & 4 & 5 & 6 \\ 7 & 8 & 9 & 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 & 5 & 1 & 6 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\ 2 & 1 & 2 & 1 & 2 & 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 & 3 & 0 & 1 \\ 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\ 3 & 3 &$
21
22
22
23
24
25
26
27
28
29
30
31
32
33
22
34
35
36
37
38
39
40
41
42
43
44
44 45
46
47
48
49
50
51
52
53
54
55
56
50 57
5/
58
59

COPYRIGHT TRANSFER AGREEMENT	WILEY-
Date: 07/05/2012 Contributor name: Gabriel M. Alvarez	BLACKWELL
Contributor address: Charroario 280, Buenas Aires, Argentina.	
Manuscript number (Editorial office only): Re: Manuscript entitled <u>Modulation of glycolysis and the pentose phosphate</u> Influences porcine oncyte in vitro maturation (the	pothway
influences parcine adapte in vitro motoration (the forpublication in Reproduction in Domestic Animals	e "Contribution")

published by Blackwell Verlag GmbH ("Wiley-Blackwell").

Dear Contributor(s):

Thank you for submitting the Contribution for publication. In order to expedite the editing and publishing process and enable Wiley-Blackwell to disseminate the Contribution to the fullest extent, we need to have this Copyright Transfer Agreement signed and returned as directed in the Journal's instructions for authors as soon as possible. If the Contribution is not accepted for publication, or if the Contribution is subsequently rejected, this Agreement shall be null and void. **Publication cannot proceed without a signed copy of this Agreement.**

A. RIGHTS GRANTED

1. The Contributor hereby grants to Wiley-Blackwell for the duration of the statutory term of copyright protection, the full and exclusive rights comprised in the Contribution including but not limited to the right to publish, republish, transmit, sell, distribute, store and process in electronic media of any kind, include in document delivery services and otherwise use the Contribution in whole or in part in electronic and print editions of the Journal and in derivative works throughout the world, in all languages and in all media of expression now known or later developed, and to license or permit others to do so.

2. Reproduction, posting, transmission or other distribution or use of the final Contribution in whole or in part in any medium by the Contributor as permitted by this Agreement requires a citation to the Journal and an appropriate credit to Wiley-Blackwell as Publisher, suitable in form and content as follows: (Title of Article, Author, Journal Title and Volume/Issue Copyright © [year] copyright owner as specified in the Journal).

 Please note that Wiley-Blackwell reserves the right to require changes to the Contribution, including changes to the length of the Contribution, as a condition of acceptance.

4. Please note that Wiley-Blackwell reserves the right, notwithstanding acceptance, not to publish the Contribution if for any reason such publication would in the reasonable judgement of Wiley-Blackwell, result in legal liability or violation of iournal ethical practices.

B. RETAINED RIGHTS

Notwithstanding the above, the Contributor or, if applicable, the Contributor's Employer, retains all proprietary rights other than copyright, such as patent rights, in any process, procedure or article of manufacture described in the Contribution.

C. PERMITTED USES BY CONTRIBUTOR

 Submitted Version. Wiley-Blackwell licenses back the following rights to the Contributor in the version of the Contribution as originally submitted for publication:

a. After publication of the final article, the right to self-archive on the Contributor's personal intranet page or in the Contributor's institutions' employer's institutional intranet repository or archive. The Contributor may not update the submission version or replace it with the published Contribution. The version posted must contain a legend as follows: This is the pre-peer reviewed version of the following article: FULL CITE, which has been published in final form at [Link to final article].

b. The right to transmit, print and share copies with colleagues.

2. Accepted Version. Reuse of the accepted and peer-reviewed (but not final) version of the Contribution shall be by separate agreement with Wiley-Blackwell. Wiley-Blackwell has agreements with certain funding agencies governing reuse of this version. The details of those relationships, and other offerings allowing open web use are set forth at the following website: http://www.wiley.com/go/funderstatement. NIH grantees should check the box at the bottom of this document.

(I)

 Final Published Version. Wiley-Blackwell hereby licenses back to the Contributor the following rights with respect to the final published version of the Contribution:

a. Copies for colleagues. The personal right of the Contributor only to send or transmit individual copies of the final published version to colleagues upon their specific request provided no fee is charged, and further-provided that there is no systematic distribution of the Contribution, e.g. posting on a listserve, website or automated delivery. For those Contributors who wish to send high-quality e-prints, purchase reprints, or who wish to distribute copies more broady than allowed hereunder (e.g. to groups of colleagues or maling lists), please contact the publishing office.

b. Re-use in other publications. Re-use in other publications. The right to re-use the final Contribution or parts thereof for any publication authored or edited by the Contributor (excluding journal articles) where such re-used material constitutes less than half of the total material in such publication. In such case, any modifications should be accurately noted.

c. Teaching duties. The right to include the Contribution in teaching or training duties at the Contributor's institution/place of employment including in course packs, e-reserves, presentation at professional conferences, in-house training, or distance learning. The Contribution may not be used in seminars outside of normal teaching obligations (e.g. commercial seminars). Electronic posting of the final published version in connection with teaching/training at the Contributor's institution/place of employment is permitted subject to the implementation of reasonable access control mechanisms, such as user name and password. Posting the final published version on the open Internet is not permitted.

d. Oral presentations. The right to make oral presentations based on the Contribution.

4. Article Abstracts, Figures, Tables, Data Sets, Artwork and Selected Text (up to 250 words).

a. Contributors may re-use unmodified abstracts for any non-commercial purpose. For on-line uses of the abstracts, Wiley-Blackwell encourages but does not require linking back to the final published versions.

b. Contributors may re-use figures, tables, data sets, artwork, and selected text up to 250 words from their Contributions, provided the following conditions are met:

- (i) Full and accurate credit must be given to the Contribution.
- Modifications to the figures, tables and data must be noted. Otherwise, no changes may be made.
- (iii) The reuse may not be made for direct commercial purposes, or for
- financial consideration to the Contributor. (iv) Nothing herein shall permit dual publication in violation of journal
- ethical practices.

D. CONTRIBUTIONS OWNED BY EMPLOYER

1. If the Contribution was written by the Contributor in the course of the Contributor's employment (as a "work-made-for-hire" in the course of employment), the Contributor is owned by the company/employer which must sign this Agreement (in addition to the Contributor's signature) in the space provided below. In such case, the company/employer hereby grants to Wiley-Blackwell the full and exclusive rights comprised in the Contribution as specified in paragraph A above throughout the world for the duration of the statutory term of protection.

2. In addition to the rights specified as retained in paragraph B above and the rights granted back to the Contributor pursuant to paragraph C above, Wiley-Blackwell hereby grants back, without charge, to such company/employer, its subsidiaries and divisions, the right to make copies of and distribute the final published Contribution internally in print formation and text from the Contribution as part of an information package included with software or other products offered for sale or license or included in patent applications. Posting of the final published Contribution by the institution on a public access website may only be done with Wiley-Blackwell's written permission, and payment of any applicable fee(s). Also, upon payment of Wiley-Blackwell's contribution externally.

E. GOVERNMENT CONTRACTS

In the case of a Contribution prepared under U.S. Government contract or grant, the U.S. Government may reproduce, without charge, all or portions of the Contribution and may authorize others to do so, for official U.S. Government purposes only, if the U.S. Government contract or grant so requires. (U.S. Government, U.K. Government, and other government employees: see notes at end.)

F. COPYRIGHT NOTICE

The Contributor and the company/employer agree that any and all copies of the final published version of the Contribution or any part thereof distributed or posted by them in print or electronic format as permitted herein will include the notice of copyright as stipulated in the Journal and a full citation to the Journal as published by Wiley-Blackwell.

G. CONTRIBUTOR'S REPRESENTATIONS

The Contributor represents that the Contribution is the Contributor's original work, all individuals identified as Contributors actually contributed to the Contribution, and all individuals who contributed are included. If the Contribution was prepared jointly, the Contributor agrees to inform the co-Contributors of the terms of this Agreement and to obtain their signature to this Agreement or their written permission to sign on their behalf. The Contribution is submitted only to this Journal and has not been published before. (If excerpts from copyrighted works owned by third parties are included, the Contributor will obtain written permission from the copyright owners for all uses as set forth in Wiley-Blackwell's permissions form or in the Journal's Instructions for Contributors, and show credit to the sources in the Contribution.) The Contributor also warrants that the Contribution contains no libelous or unlawful statements, does not infringe upon the rights (including without limitation the copyright, patent or trademark rights) or the privacy of others, or contain material or instructions that might cause harm or injury.

CHECK ONE BOX:	n a S No	
Contributor-owned work ATTACH ADDITIONAL SIGNATURE PAGES AS NECESSARY	Contributor's signature	Date 07/05/2012
÷	Type or print name and title Gobriel Alvarez Phy Co-contributor's signature Dull	Date 0705 2012
	Type or print name and title Eusenra Ferretti	u.
Company/Institution-owned work		
(made-for-hire in the course of employment)	Company or Institution (Employer-for-Hire)	Date
	Authorized signature of Employer	Date
	·	
U.S. Government work	Note to U.S. Government Employees A contribution prepared by a U.S. federal government employee as part of the employee's official duties, or which is an official U.S. Government publication, is called a "U.S. Government work," and is in the publi domain in the United States. In such case, the employee may cross out Paragraph A.I. but must sign (in the Contributor's signature line) and return this Agreement. If the Contribution was not prepared as part of the employee's duties or is not an official U.S. Government publication, it is not a U.S. Government work.	
U.K. Government work (Crown Copyright)	Note to U.K. Government Employees The rights in a Contribution prepared by an employee of a U.K. government department, agency or other Crown body as part of his/her official dutes, or which is an official government publication, belong to the Crown. U.K. government authors should submit a signed declaration form together with this Agreement. The form can be obtained via http://www.opsi.govuk/advice/crown-copyright/copyright-guidance/ publication-of-articles-written-by-ministers-and-civil-servants.htm	
Other Government work	Note to Non-U.S., Non-U.K. Government Employees If your status as a government employee legally prevents you from signing this Agreement, please contact the editorial office.	······
NIH Grantees	Note to NIH Grantees Pursuant to NIH mandate, Wiley-Blackwell will post the accepted version of Contributions authored by NiH grant-holders to PubMed Central upon acceptance. This accepted version will be made publicly available 12 months after publication. For further information, see http://www.wiley.com/go/funderstatement.	

D. CONTRIBUTIONS OWNED BY EMPLOYER

1. If the Contribution was written by the Contributor in the course of the Contributor's employment (as a "work-made-for-hire" in the course of employment), the Contribution is owned by the company/employer which must sign this Agreement (in addition to the Contributor's signature) in the space provided below. In such case, the company/employer hereby grants to Wiley-Blackwell the full and exclusive rights comprised in the Contribution as specified in paragraph A above throughout the world for the duration of the statutory term of protection.

2. In addition to the rights specified as retained in paragraph B above and the 2. In addition to the rights specified as retained in paragraph 8 above and the rights granted back to the Contributor pursuant to paragraph C above, Wiley-Blackwell hereby grants back, without charge, to such company/employer, its subsidiaries and divisions, the right to make copies of and distribute the final published Contribution internally in print format or electronically on the Company internal in the company internal in the contribution internal in the contract of the content of the control of the content of the co published controlution internally in print formation exclositically of the Con-pany's internal network. Copies so used may not be resold or distributed externally. However the company/employer may include information and text from the Contribution as part of an information package included with software or other products offered for sale or license or included in patent applications. other products offered for sale of incluses in incluses in patient applications. Posting of the final published Contribution by the institution on a public access website may only be done with Wiley-Blackwell's written permission, and payment of any applicable fee(s). Also, upon payment of Wiley-Blackwell's reprint fee, the institution may distribute print copies of the published Contribution externally.

E. GOVERNMENT CONTRACTS

In the case of a Contribution prepared under U.S. Government contract or grant, the U.S. Government may reproduce, without charge, all or portions of the Contribution and may authorize others to do so, for official U.S. Govern-

ment purposes only, if the U.S. Government contract or grant so requires. (U.S. Government, U.K. Government, and other government employees: see notes at end.)

F. COPYRIGHT NOTICE

The Contributor and the company/employer agree that any and all copies of the final published version of the Contribution or any part thereof distributed or posted by them in print or electronic format as permitted herein will include the notice of copyright as stipulated in the Journal and a full citation to the Journal as published by Wiley-Blackwell.

G. CONTRIBUTOR'S REPRESENTATIONS

The Contributor represents that the Contribution is the Contributor's original work, all individuals identified as Contributors actually contributed to the Conwork, all individuals identified as Contributors actually contributed to the Con-tribution, and all individuals who contributed are included. If the Contribution was prepared jointly, the Contributor agrees to inform the co-Contributors of the terms of this Agreement and to obtain their signature to this Agreement or their written permission to sign on their behalf. The Contribution is submitted only to this Journal and has not been published before. (If excerpts from copyrighted works owned by third parties are included, the Contributor will obtain written permission from the copyright owners for all uses as set forth in Wiley-Blackwell's permissions form or in the Journal's Instructions for Contributors, and show credit to the sources in the Contribution.) The Contributor also warrants that the Contribution contains no libelous or unlawful statements, does not infringe upon the rights (including without limitation the copyright, patent or trademark rights) or the privacy of others, or contain material or instructions that might cause harm or injury.

CHECK ONE BOX:	8	
Contributor-owned work ATTACH ADDITIONAL SIGNATURE PAGES AS, NECESSARY	Contributor's signature	Date 8 5 2012
	Type or print name and title and title	al.)
	Co-contributor's signature	Date 8/5/2012
	Type or print name and title HALKEL DALVIT	
Company/Institution-owned work))
(made-for-hire in the course of employment)	Company or Institution (Employer-for-Hire)	Date
	Authorized signature of Employer	Date
U.S. Government work	Note to U.S. Government Employees A contribution prepared by a U.S. federal government employee as part of the employee's official duties, or which is an official U.S. Government publication, is called a "U.S. Government work," and is in the publi domain in the United States. In such case, the employee may cross out Paragraph A.1 but must sign (in the Contributor's signature line) and return this Agreement. If the Contribution was not prepared as part of the employee's duties or is not an official U.S. Government publication, it is not a U.S. Government work.	
U.K. Government work (Crown Copyright)	Note to U.K. Government Employees The rights in a Contribution prepared by an employee of a U.K. government department, agency or other Crown body as part of his/her official duties, or which is an official government publication, belong to the Crown. U.K. government authors should submit a signed declaration form together with this Agreement. The form can be obtained via http://www.opsi.gov.uk/advice/crown-copyright/copyright-guidance/ publication-of-articles-written-by-ministers-and-civil-servants.htm	
Other Government work	Note to Non-U.S., Non-U.K. Government Employees If your status as a government employee legally prevents you from signing this Agreement, please contact the editorial office.	
NIH Grantees	Note to NIH Grantees Pursuant to NIH mandate, Wiley-Blackwell will post the accepted version of Contributions authored by NIH grant-holders to PubMed Central upon acceptance. This accepted version will be made publicly available 12 months after publication. For further information, see http://www.wiley.com/gof/understatement.	

RDA Manuscript Proof

D. CONTRIBUTIONS OWNED BY EMPLOYER

 If the Contribution was written by the Contributor in the course of the Contributor's employment (as a "work-made-for-hire" in the course of employment), the Contribution is owned by the company/employer which employment), the Contribution is owned by the company/employer which must sign this Agreement (in addition to the Contributor's signature) in the space provided below. In such case, the company/employer hereby grants to Wiley-Blackwell the full and exclusive rights comprised in the Contribution as specified in paragraph A above throughout the world for the duration of the statutory term of protection.

statutory term or protection.
2. In addition to the rights specified as retained in paragraph B above and the rights granted back to the Contributor pursuant to paragraph C above, Wiley-Blackwell hereby grants back, without charge, to such company/employer, its subsidiaries and divisions, the right to make copies of and distribute the final published Contribution internally in print format or electronically on the Company's internal network. Copies so used may not be resold or distributed externally. However the company/employer may include information and text from the Contribution as part of an information package included with software or other products offered for sale or license or included in patent applications. other products othered tor sale or license or included in patent applications. Posting of the final published Contribution by the institution on a public access website may only be done with Wiley-Blackwell's written permission, and payment of any applicable fee(s). Also, upon payment of Wiley-Blackwell's reprint fee, the institution may distribute print copies of the published Contribution externally.

E. GOVERNMENT CONTRACTS

In the case of a Contribution prepared under U.S. Government contract or grant, the U.S. Government may reproduce, without charge, all or portions of the Contribution and may authorize others to do so, for official U.S. Govern-

ment purposes only, if the U.S. Government contract or grant so requires. (U.S. Government, U.K. Government, and other government employees: see notes at end.)

F. COPYRIGHT NOTICE

The Contributor and the company/employer agree that any and all copies of the final published version of the Contribution or any part thereof distributed or posted by them in print or electronic format as permitted herein will include the notice of copyright as stipulated in the Journal and a full citation to the method with the distribution. Journal as published by Wiley-Blackwell.

G. CONTRIBUTOR'S REPRESENTATIONS

G. CONTRIBUTOR'S REPRESENTATIONS The Contributor represents that the Contribution is the Contributor's original work, all individuals identified as Contributors actually contributed to the Con-tribution, and all individuals who contributed are included. If the Contribution was prepared jointly, the Contributor agrees to inform the co-Contributors of their written permission to sign on their behalf. The Contribution is submitted only to this Journal and has not been published before. (If excerpts from copy-righted works owned by third parties are included, the Contributor will obtain written permission form the copyright owners for all uses as set forth in Wiley-Blackwell's permissions form or in the Journal's Instructions for Contributor also warrants that the Contribution contains no libelous or unlawful statements, does not infringe upon the rights (including without limitation the copyright, patent or trademark rights) or the privacy of others, or contain material or instructions that might cause harm or injury. instructions that might cause harm or injury.

Contributor-owned work	toll libier	Date 8/5/204
PAGES AS NECESSARY	Contributor's signature Space Pallo Cettes	
	Co-contributor's signature	Date
	Type or print name and title	
Company/Institution-owned work		
(made-for-hire in the course of employment)	Company or institution (Employer-for-Hire)	Date
	Authorized signature of Employer	Date
U.S. Government work	Note to U.S. Government Employees A contribution prepared by a U.S. federal government employee as part of the employee's official duties, or which is an official U.S. Government publication, is called a "U.S. Government work," and is in the publi domain in the United States. In such case, the employee may cross out Paragraph A.1 but must sign (in the Contributor's signature line) and return this Agreement. If the Contribution was not prepared as part of the employee's duties or is not an official U.S. Government publication, it is not a U.S. Government work.	
U.K. Government work (Crown Copyright)	Note to U.K. Government Employees The rights in a Contribution prepared by an employee of a U.K. government department, agency or other Crown body as part of his/her official duties, or which is an official government publication, belong to the Crown. U.K. government authors should submit a signed declaration form together with this Agreement. The form can be obtained via http://www.opsi.gov.uk/advice/crown-copyright/copyright-guidance/ publication-of-articles-written-by-ministers-and-civil-servants.htm	-
Other Government work	Note to Non-U.S., Non-U.K. Government Employees If your status as a government employee legally prevents you from signing this Agreement, please contact the editorial office.	
NIH Grantees	Note to NIH Grantees Pursuant to NIH mandate, Wiley-Blackwell will post the accepted version of Contributions authored by Nil grant-holders to PubMed Central upon acceptance. This accepted version will be made publicly available 12 months after publication. For further information, see http://www.wiley.com/go/funderstatement.	4