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Abstract

Objective: Breath sound has information about underlying pathology and condition of subjects. The purpose of this study
was to examine asthmatic acuteness levels (Mild, Moderate, Severe) using frequency features extracted from wheeze sounds.
Further, analysis was extended to observe behaviour of wheeze sounds in different datasets.

Method: Segmented and validated wheeze sounds was collected from 55 asthmatic patients from the trachea and lower
lung base (LLB) during tidal breathing maneuvers. Segmented wheeze sounds have been grouped in to nine datasets based
on auscultation location, breath phases and a combination of phase and location. Frequency based features F25, F50, F75,
F90, F99 and mean frequency (MF) were calculated from normalized power spectrum. Subsequently, multivariate analysis
was performed.

Result: Generally frequency features observe statistical significance (p < 0.05) for the majority of datasets to differentiate
severity level A = 0.432-0.939, F(12, 196-1534) = 2.731-11.196, p < 0.05, n2 = 0.061-0.568. It was observed that selected
features performed better (higher effect size) for trachea related samples A = 0.432-0.620, F(12, 196-498) = 6.575-11.196,
p < 0.05,12 =0.386-0.568.

Conclusion: The results demonstrated dthat severity levels of asthmatic patients with tidal breathing can be identified
through computerized wheeze sound analysis. In general, auscultation location and breath phases produce wheeze sounds

with different characteristics.
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Introduction

During breathing, acoustic signals are produced in lungs
due to oscillations from turbulent flow at the bronchial
walls. Respiratory acoustic signals have meaningful
information about lung condition. Under normal
circumstances, normal breath sounds are produced from
lungs, while pathological disorders or airway obstructions
return abnormal sounds. In the case of airway obstruction
in asthmatic patients, whistling sounds are produced,
termed as wheeze.

Previously, a few studies wete conducted to analyse the
correlation between change in lung function values and
spectra of respiratory sounds.!-3 But in those studies, data
was collected from asthmatic patients with tidal breathing.
Baughman et al. found the ccorrelation between lung
function values and ratio of time expended with wheeze
to total recording time (Tw/Ttot).2 They collected data from
ten mild to severe asthmatic patients with forced breathing
from the trachea and chest. Analysis was done using
quartile frequencies Fso, F75 and average power (AP). Only
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Fso recorded at trachea was found to be significant with the
forced expiratory volume in one second (FEV1) values.!
Malmberg et al. collected data from 12 asthma (moderate
to severe) patients with forced breathing through the
trachea. This author investigated acoustic characteristics of
wheeze in normal, stable and nonstable asthma patients.
It was found that mean frequency (MF) in normal subjects
is different from asthmatic patients.3 However, these works
did not address the statistical analysis within the various
auscultation locations, breathing phases and severity
levels. Further, computerized wheeze sound analysis is an
active field of research. Similarly, studies performing review
on computerized wheeze sound analysis have also
reported that most of the authors in the field of
computerized wheeze sound analysis are working with
detection or classification of wheeze sound.45

The available research, when considered together,
indicated several important insights. Firstly, there is
sufficient indication that intensity of asthma can be
identified using wheeze sound spectra. Secondly, while
studies have collected data from different severity levels of
asthmatic patients and conducted various analysis,* very
few have inferred back their findings to the severity levels
of asthma. This gap is crucial given the fact that according
to the World Health Organization (WHO), 235 million
individuals are suffering from asthma.4 These statistics have
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driven researchers towards developing computerized
devices for self-monitoring and self-management of
asthma which are becoming more necessary and
important. To this effect, physician assisted devices which
are currently being used are spirometers and peak flow
meters. However, these devices are predominantly utilized
during supervised forced respiratory maneuvers which
could pose a problem when dealing with children,
manipulation for the long term and continuous
observation of patients, very severe asthmatic conditions
and unsupervised sessions. On another note, wheezing
during forced exhalation was not always correlated to the
degree of airway obstruction in asthmatic patients which
reveals that FEV1 values obtained using spirometry may not
always correlate with intensity of asthma.6

The aim of this study is to investigate behaviour of
frequency related features in three severity levels of asthma
patients (mild, moderate and severe) through a
multivariate statistical (MANOVA) approach. We further
extend our analysis and observations according to location
(Trachea and lower lung base (LLB)), phase (inspiratory
(Inspir) and expiratory (Expir) and a combination of both
(trachea inspiratory (T-Inspir), trachea expiratory (T-Expir),
LLB inspiratory (LLB-Inspir) LLB expiratory (LLB-Expir)). Such
an approach would be beneficial in the development of an
automated portable monitoring system which is required
for the self-management or treatment of patients.”
Previously, a few studies have investigated the correlation
of sound spectra and lung function values’3 using
statistical analysis. However, these studies did not use a
multi variable approach between and in-between severity
levels. Furthermore, in these studies, analysis with respect
to auscultation location and breathing phase has not been
performed. In addition, few works have focused on wheeze
generated during normal breathing maneuvers which is
essential in unsupervised sessions.1-3

Methodology

Data was collected from two hospitals in Pakistan — District
Headquarters Teaching Hospital, Gujranwala and Al-
Mustafa Chest Clinic, Wazirabad. Ethical approval was taken
from the ethical committee of both hospitals individually,
with the principles of the Declaration of Helsinki. Written
informed consent and clinical report forms were filled by
all subjects that participated in this study. The study period
began in June 2016 and ended in July 2018. Details of data
collection were taken from a study by Nabi Fet. al. .8
Furthermore, data was collected according to CORSA
standard.?

In this study, a wireless digital stethoscope, WISE'® was
used to acquire data, few other studies have also used the
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same device.!1-13 Respiratory sounds were collected from
the trachea, right and left lower lung base (LLB).4 Short-
term recording between 60 to 90 seconds were done in the
sitting position with hands on the lap. Subjects were asked
to breath by way of mouth. Recordings were done in a
sound proof room with environmental conditions and
subject’s posture was kept identical for all patients, hence
ambient noise was minimal and negligible between patient
to patient as described in literature.!

Sample Size: As no study was found in literature that dealt
with the characterization of wheeze sounds with regard to
asthmatic severity levels (mild, moderate and severe) using
a frequency based feature vector, the sample size was
determined on the basis of information obtained from the
current study itself. The minimum number of individuals in
the sample was determined using the G*Power15 software
at a 95% confidence interval (Cl), effect size (n2) = 0.60, a =
0.05, power analysis = 0.80 (80%), number of groups = 3
and response variables = 6. Given these input parameters,
the minimum sample size for this study stood at 21
individuals. In this study almost similar number of subjects
were selected as calculated by G*Power. But these number
of samples are less than the existing population within
Pakistan. A total of 55 asthmatic only subjects, male:female
- 34:21, age: mean(SD) - 55(12.2) participated. Ground
truth of severity levels was confirmed by minimum two
physicians as follows 1) Mild - 17, male:female = 9:6, Mean
age: 50+12.1 years, 2) Moderate—18, male:female=12:6,
Mean age:51.5+13.7 years and 3) Severe - 20, male:female
=13:7,Mean age: 50+11.5 years.

Inclusion and Exclusion Criteria: The patients were
diagnosed according to the available standards’é and the
asthma severity levels (mild, moderate and severe) were
identified according to the National Asthma Education and
Prevention Programme — Expert Panel Report 3.7.76 The
diagnosis of asthma was based on shortness of breath,
wheezing history (frequency of hospitalization or visits to
the ED), and general condition of the patient. Such
practices have also been observed in other studies.7.18
Given these details, the subjects were recruited based on
suggestions from senior medical officers at both hospitals.
Children and geriatric patients were not considered in this
study. The selected subjects were non-smokers who were
not addicted to drugs. In addition, the selected subjects
were those diagnosed as asthmatic patients without any
other lung, heart or bowel region disease, and none of the
patients had taken any medication for a few hours prior to
data collection.

Preprocessing and Filtering: Respiratory sounds were
sampled at 8000 Hz. The dominant frequency of respiratory
sounds, between 100-1600 Hz,419 was obtained using a
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Table-1: Summary of datasets used in this study.

F. Kiran, D.H. Khan, H. Ghazanfar

Total subjects Male  Female  All Samples Trachea  LLB Inspir  Expir  T-Inspir ~ T-Expir  LLB-Inspir  LLB-Expir
Mild 17 9 8 199 49 150 98 101 20 29 78 72
Moderate 18 12 6 254 85 169 127 127 32 53 95 74
Severe 20 13 7 322 123 199 158 164 54 69 104 95
Total 55 34 21 775 257 518 383 392 106 151 277 241

fourth order band-pass Butterworth filter. Wheeze sounds
and breath phase was identified and segmented by
physicians through audio-visual inspection of the
recordings and with the aid of spectrograms. Wheeze
sounds were segmented by its manifestation in the
spectrogram and with the criteria: increase in intensity by
20dB, duration longer or equal to 100 ms and frequency
greater or equal to 100Hz.20 The combination of these
procedures produced wheezes labeled according to
severity level, phase and location. Detail of segmented
wheeze samples is given in Table 1.

Analysis: The wheeze segments were analyzed using Fast
Fourier Transform (FFT). FFT with 512 points hamming
window with 50% overlap was applied to obtain power
spectrum density within the range of 100-1600 Hz.17.18
Hamming window is a smooth window with an acceptable
leakage.’7.'8 The amplitude of the power spectrum was
interpreted as a probable distribution of frequencies (the
sum of absolute power spectrum values normalized to
one). Using this method, the distribution of frequencies of
all recordings is comparable regardless of the loudness of
lung sounds'7.18 and lung capacity. From the characterized
frequency spectra, quartile frequencies such as — F25, F50,
F75,F90, F99 in Hz was obtained. Further, mean frequency
(MF) in Hz has been calculated from power spectrum.
MANOVA was performed to identify significant difference
between mild, moderate and severe samples by
considering 1) All wheeze samples without any
discrimination of location and phase, 2) Location - trachea
and LLB, 3) Phase - Inspir and Expir and 4) Combination of
location and phase - T-Inspir, T-Expir, LLB-Inspir and LLB-
Expir. MANOVA statics, Cohen’s effect size (n2) and all
subsequent post-hoc analysis was also
investigated. A 95% confidence level was

and phase, and samples combination of location and
phase.

Analysis of variance in all wheeze samples (Table 2, 2nd
row) indicate significant difference in severity levels A =
0.892, F(12,1534) = 7.547, p< 0.05, n2 =0.108. Further, Post
hoc result also prove significant difference in three groups
a, b and c. In Figure, it can be noticed that u(SD) of all
features is different for mild, moderate and severe.

When auscultation location was used (Table 2, 3rd and 4th
row) as a basis of comparison, at the trachea features show
significant difference with large effect size A=0.620,
F(12,498) = 11.196, p < 0.05, n?2= 0.461. Further, post hoc
also discriminated three groups a, b and c. Further, clear
difference in u(SD) values for mild, moderate and severe
also can be noticed from Figure. At the LLB (Table1, 4th
row), frequency feature proved to have significant
difference A=0.939, F(12,1020)=2.731, p < 0.05, n2 = 0.061.
However, in post hoc only groups a and b has been
discriminated. These results also can be verified from
Figure, which indicates small difference in mild, moderate
and sever u(SD) values.

In the case of breath phases (Table2, 5th and 6th row),
inspiratory samples indicated a significant difference
A=0.855, F(12, 750) = 5.109, p < 0.05, 2 = 0.145. Similarly
for expiratory phase a significant difference was also
observed A=0.877, F(12, 768) = 4.359, p< 0.05, n2 = 0.123.
In post hoc, inspiratory samples showed a significant
difference among the three groups, however, expiratory
samples were discriminated by groups a and b. Further,
differences for three severity levels by Inspir and Expir
dataset can be noticed in the Figure.

Table-2: Summary of MANOVA statistics on various datasets —details of post hoc —a (mild and moderate),
b (mild and severe), c (moderate and severe).

considered significant (p < 0.05) for all

statistical analysis‘ Eta squared (TIZ) is used to Dataset Wilks's Lambda (A) F df Error p-value Effect Size (7]2) Post hoc
determine effect size as follows — 0.02 small, All Samples 0.892 7.547 12 1534 0.000 0.108 abc
0.13 medium and 0.26 large. Trachea 0.620 11.196 12 498 0.000 0.461 ab,c
LLB 0.939 2731 12 1020 0.001 0.061 ab
Results Inspir 0.855 5.109 12 75  0.000 0.145 abc
Figure provides the O(SD) of frequencies in Expir 0.877 4359 12768 0.000 0.123 ab
nine databases sequentially. Further, Table 2 nspir 0432 8.504 12 1% 0000 0.568 ahc
indicates the summary of results of MANOVA T'EXP" ‘ 0614 6.575 12 286 0000 0.386 ab
- LLB-inspir 0.862 3.446 12 538 0.000 0.138 a,b,c
statistics results. In table 2 the results for all LLB-Expir 0935 1324 2 a6 0201 0.065 b

wheeze samples, samples grouped by location

*bold font indicates statistical significance, p < 0.05.
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Table2 (last 4 rows), provides the results for samples as a
combination of location and phase. Further, presentation

of u(SD) of features for mild, moderate and seve
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realized in Figure. For T-Inspir, features indicated
significance with large effect size A=0.432, F(12,
196) = 8.504, p< 0.05, n2 = 0.568. For T-Expir,
frequency feature produced significant
difference with large effect size A = 0.614, F(12,
286) = 6.575, p< 0.05,n2 = 0.386. Further, in post
hoc, three groups discriminated by T-Inspir,
however, groups a and b indicated significant
difference for T-Expir. It has been observe that
frequency features were statistically significant
for LLB inspiratory samples A = 0.862, F(12, 538)
=3.446, p<0.05, n2=0.138. Similar result obtained
in form of p < 0.05 for three groups. However, for
LLB-Expir features indicated p> 0.05.

Discussion

Results of this study indicated that the set of
selected features have good performance for all
the tested hypothesis as shown in Tables 2,
A=0.614-0.939,F(12, 196-1534) = 2.731-11.196,
p<0.05,12=0.061-0.568. Further, post hoc results
also discriminated with in severity levels (group
a, b and c). MANOVA results discriminated the
severity levels for most of the datasets related to
locations (trachea and LLB) and phase (Inspir
and Expir). Reason could be that the strength to
features has been improved due to MANOVA
test. This approach is necessary, as breath
sounds manifest from a very complex human
respiratory system. Breath sounds originate from
a complicated breathing system which consists
of up to 23 generations with a total of almost 17
million tubes.2!

There have been also some studies that have
used other or related features in a similar kind of
work. Correlation with severity levels has been
observed in2'! by using power spectrum bins of
breath cycles,’ through MF of non-wheeze
segments,3 using MF of wheeze segments and
number of wheezes, and in2 using the ratio of
time expended with wheeze to total recording
time (Tw/Ttot).2 However, wheeze data in321 was
obtained from forced breathing maneuvers.
According to another study, wheeze can also be
generated in normal subjects with forced
breathing.6 Hence, such wheezes are not always
related to the degree of acuteness of asthma.6
On the other hand, asthma was induced in
selected subjects under medication.'2! But,
there is evidence that medication effects the

change in frequencies of breath sounds and induced
wheeze sounds may also be different from spontaneous



45

wheeze sounds. Compared to these studies, our work
demonstrated that severity levels of asthmatic patients can
be differentiated with tidal breathing through spontaneous
and non-induced wheeze sounds.

This work has investigated the characteristics of wheeze
spectra according to severity levels obtained from two
auscultation locations, trachea and LLB.3 have found good
correlation between spectral features (mean frequency)
and lung function values using a univariate approach using
tracheal sounds. Another study, collected data from the
trachea and LLB, conducted a similar analysis and found
correlation only for tracheal breath sounds.! These findings
concur with our results. For the trachea, we found that the
frequency feature produced larger effect size A=0.432-
0.620, F(12, 196-498) = 6.575-11.196, p < 0.05, n?=
0.386-0.568. Also, can be noticed higher variance
represented by trachea related datasets in Figure. While
these studies, and ours, provide good correlation results for
the trachea, we found that a multivariate approach is
suitable for the LLB, which is predominantly the location of
auscultation by physicians for asthmatic patients, as it
provides direct information on the physical identification
and severity of pathology. Our findings revealed that the
discriminatory power in the LLB samples is A=0.862-0.939,
F(12, 538-1020) = 2.731-3.446, p < 0.05, n2=0.061-0.138.
Nevertheless, the overall analysis reveals that trachea has
better performance than LLB due to the different
characteristics in the acoustic filter that appears at these
locations.22

Correlation between severity levels and frequency feature
set were also investigated within breath phases. It can be
observed that the selected features performed for LLB-
Inspir but show statistical insignificance for LLB-Expir.
Further, in post hoc test, inspiratory and expiratory samples
performed differently. It can be noticed that three groups
a, b and c has been discriminated by all of the Inspir related
samples. However, Expir related samples indicated
significant difference for only a and b group. These findings
concluded that inspiratory and expiratory wheeze samples
exhibit different characteristics, which concurs with results
from.23 Furthermore, it was also demonstrated that breath
sounds attained during the Inspir and Expir phases showed
different characteristics.22 This is largely due to dissimilarity
in the physiology of the airway passage (i.e.long and short
airways) experienced by the airflow during the inspiratory
and expiratory phases.

It has been found that frequency parameters are higher in
Inspir related samples than Expir related datasets, it can be
noticed in datasets related to combination of phase and
location (Figure). Interestingly, in normal subjects, tidal
breathing sounds Inspir sounds are louder and higher than

F.G. Nabi, K. Sundaraj, CK. Lam

Expir sounds (vesicular breath sounds). Findings of the
study indicated that Inspir related wheeze samples have
stronger relation to severity level with respect to Expir
related wheeze sounds. This difference was most likely due
to the fact the inspiratory wheeze sounds are more
prominent or Inspir sounds can be recorded better than
Expir wheeze sounds in this study settings. Similarly,
frequency values are higher in trachea related wheeze
samples with respect to LLB related wheeze samples. This
could be due to the fact that breath sounds are filtered LLB.
These differences in location and phase also can be due to
different physiology, filters and severity levels.

In this study, the severity level of asthmatic patients has
been correlated with wheeze spectra through frequency
dependent features. The findings indicated that the
frequency A=0.432-0.939, F(12, 196-1534) = 2.731-11.196,
p < 0.05, n2=0.061-0.568 have performed well for all the
tested hypothesis as shown in Tables 2 to 5 (9 datasets). We
observed evidence of correlation to physiology, similar to
another study, where airway thickness (wall area) was
calculated and correlated to normal, mild, moderate and
severe asthmatic subjects using computed tomography,
where it was concluded that increase in wall thickness
increased the severity level of asthmatic patients.24
Similarly, another study'7 noted that high-pitch sounds are
produced when the calibre of air becomes narrow leading
to the fluttering of airway walls and fluids'? which produce
wheeze sounds. These works indicated that changes in
lung airways inevitably cause changes in the frequency of
breath sounds so much so that in severe patients, this
becomes conspicuous where wheezes appear to be louder
than the underlying breath sounds and can be clearly
heard without a stethoscope. Results of this study
concurred with other studies, which revealed that
obstruction in lung airways effect the frequencies of breath
sounds from which wheeze manifest.2.17

Limitations

In the future, this study can be extended to an analysis of
the characteristics of wheezes in other diseases with similar
symptoms, e.g., COPD and pneumonia, and their behaviour
in other related populations in which the monitoring and
management of asthma is a priority, such as children and
the elderly. An accurate and low-computation-cost solution
could indeed provide a strategy for the development of a
much needed portable and affordable computerized
decision support system (CDSS) for asthmatic patients.
Such an application must be easily tailored to individual
patients and should be aligned to the current practices of
physicians and patient ergonomics.
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Conclusion

The results of frequency feature vector demonstrated that
severity levels of asthmatic patients (mild, moderate and
severe) can be identified through analysis of wheeze sound
obtained with tidal breathing maneuver. Findings of the
study also indicated that overall frequency features
discriminated the severity level in all the datasets except
LLB expiratory (LLB-Expir). In post hoc test pair a and b
discriminated all datasets. However, pair ¢ was
discriminated by all datasets related to trachea location and
inspiratory phase. Selected features indicated different
characteristics according to severity levels, location and
breath phases. Inspiratory and expiratory breath phases
indicated different behaviour according to severity level. It
was also found both phases are equally informative for
severity level of asthma patients. With the comparison of
location related datasets, trachea related data sets
indicated higher effect size than the LLB related datasets.
Overall comparison of datasets also indicated that trachea
related datasets are more specific and good predictors.
However, trachea is not under the practice of physician.
Because it does not provide location of obstruction.
Furthermore, the set of selected features and results of this
study could play role for the discrimination/classification
of the severity level for computerized decision support
system (CDSS). In addition, the findings of this study could
be generalized to overall population of Pakistan and whole
world. As, sounds generated during respiration are not
effected by area or location of the subjects. In future
features can be selected which are more suitable for LLB
location.
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