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Abstract: This study investigates the nanofluid flow towards a shrinking cylinder consisting of Al2O3

nanoparticles. Here, the flow is subjected to prescribed surface heat flux. The similarity variables are
employed to gain the similarity equations. These equations are solved via the bvp4c solver. From
the findings, a unique solution is found for the shrinking strength λ ≥ −1. Meanwhile, the dual
solutions are observed when λc < λ < −1. Furthermore, the friction factor Re1/2

x C f and the heat
transfer rate Re−1/2

x Nux increase with the rise of Al2O3 nanoparticles ϕ and the curvature parameter
γ. Quantitatively, the rates of heat transfer Re−1/2

x Nux increase up to 3.87% when ϕ increases from 0
to 0.04, and 6.69% when γ increases from 0.05 to 0.2. Besides, the profiles of the temperature θ(η)

and the velocity f ′(η) on the first solution incline for larger γ, but their second solutions decline.
Moreover, it is noticed that the streamlines are separated into two regions. Finally, it is found that the
first solution is stable over time.

Keywords: heat transfer; prescribed heat flux; similarity solutions; dual solutions; stability analysis

1. Introduction

The fluid flow toward a stagnation point on a fixed surface was first introduced by
Hiemenz [1] in 1911. The axisymmetric flow was then studied by Homann [2]. Ariel [3]
followed by examining the flow with the hydromagnetic effects. The flow on a shrink-
ing sheet was reported by Wang [4] and Kamal et al. [5]. Different from the aforemen-
tioned studies, which considered the flow over a flat plate, Wang [6] discussed the fluid
flow over a circular cylinder. This was then followed by several researchers, including
Ishak et al. [7] and Awaludin et al. [8], who studied the flow over a shrinking cylinder
subject to a prescribed surface heat flux. They found that the increment of the curvature
parameter delayed the boundary layer separation from the surface of the cylinder. Muth-
tamilselvan and Prakash [9] studied the unsteady flow and heat transfer of a nanofluid
over a moving surface with prescribed heat and mass fluxes, and stated that the heat
flux condition is important in a microelectromechanical (MEM) condensation application.
Several researchers [10–16] have also considered this type of surface heating condition in
their studies.

Nanoparticles and structures have been used by humans in fourth century AD, by the
Romans, which demonstrated one of the most interesting examples of nanotechnology in
the ancient world [17]. The term nanofluid, a mixture of the base fluid and nanoparticles,
was initiated by Choi and Eastman [18]. It seems that Pak and Cho [19] were the first
who introduced the thermophysical correlations for the nanofluid. Several studies have
considered these nanofluid correlations [20–25]. The nanofluid correlations introduced
by Pak and Cho [19] were improved by Ho et al. [26]. They reported that the numerical
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predictions from the existing nanofluid correlations are contradicted with the experimental
results. The dispersion of nanoparticles in the base fluid was observed to result in a
marked reduction, instead of an enhancement. Therefore, they have introduced the new
correlations of the Al2O3-water nanofluid through a least-square curve fitting from the
experimental results. They concluded that these new correlations give more accurate
predictions with the experimental data. It should be noted that the studies of the nanofluid
employing these nanofluid correlations are very limited. Among them, Sheremet et al. [27]
employed these correlations to study the natural convective heat transfer and fluid flow
of Al2O3-water nanofluid in an inclined wavy-walled cavity under the effect of non-
uniform heating. They found that the heat transfer rate and fluid flow rate are non-
monotonic functions of the cavity inclination angle and undulation number. Similarly, these
correlations have been considered by Waini et al. [28] to examine the impact of Dufour and
Soret diffusions on Al2O3-water nanofluid flow over a moving thin needle. They reported
that the skin friction coefficient and the heat transfer coefficients increase, but the mass
transfer coefficient decreases in the presence of Al2O3 nanoparticles. This concept has been
upgraded by considering two or more types of nanoparticles that dispersed simultaneously
into the base fluid and is called ‘hybrid nanofluid’. Some works on such fluids can be
found in references [29–31]. Additionally, Takabi and Salehi [32] and Devi and Devi [33]
introduced the hybrid nanofluid thermophysical models, which were widely used by many
researchers [34–43] in the boundary layer problems. Furthermore, Waini et al. [44–47]
scrutinized the temporal stability of the hybrid nanofluid flow.

In this study, the stagnation point flow towards a shrinking cylinder with the Al2O3
nanoparticle subjected to prescribed surface heat flux is investigated. Different from
the previous studies, the present study examines the flow and thermal behavior of the
Al2O3/water nanofluid by employing the correlations introduced by Ho et al. [26]. Most
importantly, this is the first attempt to study the flow towards a stagnation region of a
shrinking cylinder by considering these correlations. Moreover, the dual solutions and
their stability are also reported in this study. The finding from this study can contribute to
foresee the flow and thermal behaviors in industrial applications.

2. Mathematical Formulation

Consider the nanofluid flow on a shrinking cylinder with Al2O3 nanoparticles as
shown in Figure 1.
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Figure 1. The flow configuration.

Here, ue(x) = c1x/L denotes the external flow velocity with c1 > 0. The surface
velocity is represented by uw(x) = c2x/L where c2 is a constant. Besides, qw(x) = T0x/L
is the prescribed heat flux where T0 and T∞ correspond to the reference and the ambient
temperatures, respectively.

Accordingly, the governing equations are [7,8]:

∂(ru)
∂x

+
∂(rv)

∂r
= 0 (1)
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u
∂u
∂x

+ v
∂u
∂r

= ue
due

dx
+

µn f

ρn f

(
∂2u
∂r2 +

1
r

∂u
∂r

)
(2)

u
∂T
∂x

+ v
∂T
∂r

=
kn f

(ρCp)n f

(
∂2T
∂r2 +

1
r

∂T
∂r

)
(3)

Subject to:
u = uw(x), v = 0, kn f

∂T
∂r = −qw(x) at r = a

u→ ue(x), T → T∞ as r → ∞
(4)

where (u, v) are the corresponding velocity components and T is the temperature. Further,
Table 1 provides the properties of water and Al2O3 [22]. Here, Prandtl number, Pr is taken
as Pr = 6.2. Meanwhile, the nanofluid thermophysical models are given by [19,26]:

µn f = µ f
(
1 + 4.93ϕ + 222.4ϕ2), kn f = k f

(
1 + 2.944ϕ + 19.672ϕ2),

ρn f = (1− ϕ)ρ f + ϕρs, (ρCp)n f = (1− ϕ)(ρCp) f + ϕ(ρCp)s
(5)

where µ, k, ρ, and (ρCp) denote the dynamic viscosity, the thermal conductivity, the density,
and the heat capacity, respectively with ϕ is the Al2O3 nanoparticle volume fractions
and the subscript s represents its solid component. Meanwhile, the subscripts f and n f
correspond to fluid and nanofluid, respectively. Note that these thermophysical models
were also considered by Sheremet et al. [27] and Waini et al. [28].

Table 1. Thermophysical properties.

Properties Nanoparticle Base Fluid

Al2O3 water

Cp (J/kgK) 765 4179
ρ
(
kg/m3) 3970 997.1

k (W/mK) 40 0.613

Consider the following dimensionless variables [7,8]:

ψ =

( c1ν f

L

)1/2
ax f (η), T = T∞ +

qw

k f

(
ν f L
c1

)1/2

θ(η), η =

(
c1

ν f L

)1/2
r2 − a2

2a
(6)

With the stream function ψ, the characteristic length L, and the fluid kinematic viscos-
ity ν f . Here, u = (∂ψ/∂r)/r and v = −(∂ψ/∂x)/r. So that:

u =
c1x
L

f ′(η), v = − a
r

( c1ν f

L

)1/2
f (η) (7)

On using Equations (6) and (7), the continuity equation, i.e., Equation (1), is identically
satisfied. Now, Equations (2) and (3) become:

µn f /µ f

ρn f /ρ f
[2γ f ′′ + (1 + 2γη) f ′′′ ] + 1− f ′2 + f f ′′ = 0 (8)

1
Pr

kn f /k f

(ρCp)n f /(ρCp) f

[
2γθ′ + (1 + 2γη)θ′′

]
+ f θ′ − f ′θ = 0 (9)

Subject to:

f ′(0) = λ, f (0) = 0, θ′(0) = − k f
kn f

,

f ′(η)→ 1, θ(η)→ 0 as η → ∞
(10)
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The physical parameters appearing in Equations (8)–(10) are the stretching/shrinking
parameter λ, the curvature parameter γ, and the Prandtl number Pr, given as:

λ =
c2

c1
, γ =

(
ν f L
c1a2

)1/2

, Pr =
(µCp) f

k f
(11)

Note that, λ < 0 and λ > 0 signify the shrinking and stretching sheets, while λ = 0 is
for the static sheet. Here, by taking ϕ = λ = γ = 0, Equation (8) reduces to the Hiemenz
flow, see White [48]. The local Nusselt number Nux and the skin friction coefficients C f are:

Nux = −
xkn f

k f (Tw − T∞)

(
∂T
∂r

)
r=a

, C f =
µn f

ρ f u2
e

(
∂u
∂r

)
r=a

(12)

On using Equation (6), one obtains

Re−1/2
x Nux =

1
θ(0)

, Re1/2
x C f =

µn f

µ f
f ′′ (0) (13)

where Rex = uex/ν f is the local Reynolds number.

3. Stability Analysis

This temporal stability analysis was first introduced by Merkin [49] and then followed
by Weidman et al. [50]. Firstly, consider the new variables as follows [8]:

ψ =

( c1ν f

L

)1/2
ax f (η, τ), T = T∞ +

qw

k f

(
ν f L
c1

)1/2

θ(η, τ), η =

(
c1

ν f L

)1/2
r2 − a2

2a
, τ =

c1

L
t (14)

where τ is the dimensionless time variable. Then, the unsteady form of Equations (2)
and (3) are employed. On using Equation (14), one obtains:

µn f /µ f

ρn f /ρ f

[
2γ

∂2 f
∂η2 + (1 + 2γη)

∂3 f
∂η3

]
+ 1−

(
∂ f
∂η

)2
+ f

∂2 f
∂η2 −

∂2 f
∂η∂τ

= 0 (15)

1
Pr

kn f /k f

(ρCp)n f /(ρCp) f

[
2γ

∂θ

∂η
+ (1 + 2γη)

∂2θ

∂η2

]
+ f

∂θ

∂η
− θ

∂ f
∂η
− ∂θ

∂τ
= 0 (16)

Subject to:
∂ f
∂η (0, τ) = λ, f (0, τ) = 0, ∂θ

∂η (0, τ) = − k f
kn f

,
∂ f
∂η (∞, τ) = 1, θ(∞, τ) = 0

(17)

To investigate the temporal stability, the following perturbation functions are em-
ployed [50]:

f (η, τ) = f0(η) + e−ατ F(η), θ(η, τ) = θ0(η) + e−ατG(η) (18)

where F(η) and G(η) are comparatively small compared to f0(η) and θ0(η), and α denotes
the eigenvalue. On using Equation (18), Equations (15) and (16) respectively become:

µn f /µ f

ρn f /ρ f
[2γF′′ + (1 + 2γη)F′′′ ]− 2 f ′0F′ + f ′′0 F + f0F′′ + αF′ = 0 (19)

1
Pr

kn f /k f

(ρCp)n f /(ρCp) f

[
2γG′ + (1 + 2γη)G′′

]
+ f0G′ + θ′0F− f ′0G− θ0F′ + αG = 0 (20)
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The boundary conditions then become:

F′(0) = 0, F(0) = 0, G′(0) = 0;
F′(∞) = 0, G(∞) = 0

(21)

Without loss of generality, following Harris et al. [51], we fix the value of F′′ (0) as
F′′ (0) = 1 to obtain the smallest eigenvalues α in Equations (19) and (20).

4. Results and Discussion

The solutions of Equations (8)–(10) are attained by utilizing the package bvp4c in
MATLAB software [52]. The effects of various physical parameters are then examined and
presented in tabular and graphical forms.

By taking ϕ = λ = γ = 0, we obtain f ′′ (0) = 1.232588, which is in agreement with
what is reported by Wang [4] and Awaludin et al. [8]. The values of f ′′ (0) and 1/θ(0)
for several values of λ when ϕ = γ = 0 are also provided in Table 2 for future reference.
Further, the values of Re−1/2

x Nux and Re1/2
x C f when Pr = 6.2 with various values of ϕ,

γ, and λ are given in Table 3. The values of Re−1/2
x Nux and Re1/2

x C f are intensified with
the rise of γ and ϕ. Quantitatively, a 3.87% increment of Re−1/2

x Nux is observed when ϕ

increases from 0 to 0.04. Moreover, it is noticeable that the values of Re−1/2
x Nux increase

up to 6.69% when γ increases from 0.05 to 0.2. Meanwhile, the values of Re1/2
x C f reduce,

but the values of Re−1/2
x Nux increase when λ increases from −0.5 to 0.5. It is seen that the

nanoparticle volume fractions, the curvature, and the stretching/shrinking parameters can
be utilized to control the heat transfer rate.

Table 2. Values of f ′′ (0) and 1/θ(0) for regular fluid (ϕ = 0) under different λ when γ = 0 (flat plate).

λ
Wang [4] Awaludin et al. [8] Present Results

f”(0) f”(0) f”(0) 1/θ(0)

−1 1.32882 1.328817 −2.359393
−0.5 1.49567 1.495670 0.314542

0 1.232588 1.232588 1.232588 1.573433
0.1 1.14656 1.146561 1.146561 1.767533
0.2 1.051130 1.051130 1.051130 1.949500
0.5 0.7133 0.713295 0.713295 2.438276
1 0 0 0 3.120727
2 −1.88731 −1.887307 −1.887307 4.203068
5 −10.26475 −10.264749 −10.264749 6.491300

Table 3. Values of Re−1/2
x Nux and Re1/2

x C f for ϕ, γ, and λ when Pr = 6.2.

ϕ γ λ Re−1/2
x Nux Re1/2

x Cf

0 0 0 1.573433 1.232588
0.02 1.610281 1.382684
0.04 1.634333 1.625081
0.04 0.05 1.673416 1.667025

0.1 1.711566 1.708036
0.2 1.785416 1.787623
0.1 −0.5 0.354240 2.110589

−0.2 1.242946 1.914480
0.5 2.645346 0.979397

Next, the results in graphical forms are provided to have a better insight into the effect
of the physical parameters. The variations of the local Nusselt number Re−1/2

x Nux and the
skin friction coefficient Re1/2

x C f against λ when ϕ = 0.02 and Pr = 6.2 for several values of
γ are shown in Figures 2 and 3. Larger γ gives higher values of Re1/2

x C f and Re−1/2
x Nux
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on the first solution compared to the flat plate case (γ = 0). Besides, a unique solution is
found when λ ≥ −1. Meanwhile, two solutions are observed for the limited range of λ
when the sheet is shrunk (λc < λ < −1). The similarity solutions also terminate in this
region at λ = λc (critical value). Here, the critical values are respectively λc = −1.24657,
−1.32099, and −1.38801 for γ = 0, 0.1 and 0.2. The velocity f ′(η) and temperature θ(η)
profiles for ϕ = 0, 0.02, and 0.04 when Pr = 6.2, λ = −1.24, and γ = 0.1 are given in
Figures 4 and 5. The reduction of f ′(η) and θ(η) are observed for both branches with the
rising of ϕ. Physically, the addition of the nanoparticles makes the fluid more viscous and
thus, slows down the flow. Consequently, the fluid velocity decreases. Also, the added
nanoparticles dissipate energy in the form of heat and consequently exert more energy,
which enhances the temperature. However, in this study, we discover that the temperature
decreases as ϕ increases. This behavior is due to the prescribed heat flux on the shrinking
surface of the cylinder.

Further, Figures 6 and 7 show the effect of γ on f ′(η) and θ(η) when ϕ = 0.02,
λ = −1.24 and Pr = 6.2. The profiles of f ′(η) and θ(η) on the first solution incline for
larger γ. However, the profiles on the second solution decline. Besides, the negative values
of θ(η) are noticed in Figures 5 and 7. The definition of the curvature parameter γ is
inversely proportional to the radius of the cylinder, see Equation (11). Thus, the radius
of the cylinder decreases as γ increases. Hence, the fluid velocity amplifies due to less
resistance occurring between the surface of the cylinder and the fluid. Consequently, the
fluid temperature increases for cumulative γ. Since the Kelvin temperature of substances
is defined as the average kinetic energy of the particles of substances, as velocity enhances
with γ, the kinetic energy increases, and consequently intensifies the temperature [16].
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Figures 8 and 9 display the streamlines when λ = −1.24 (shrinking sheet), ϕ = 0.02,
and γ = 0.1 for the first and the second solutions, respectively. Here, the streamlines are
plotted for several values of ψ = ψ/a(c1ν f /L)1/2. The streamlines are separated into two
regions by the horizontal line for both solutions. It is notable that the horizontal line that
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separates the flow is nearer to the shrinking sheet for the first solution. Besides, the reverse
rotating flow occurs in the lower region. Meanwhile, the flow pattern on the upper region
behaves as the normal stagnation point.
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The variation of α against λ when ϕ = 0.02 and γ = 0.1 is described in Figure 10.
For positive values of α, it is noted that e−ατ → 0 as time evolves (τ → ∞) . In contrast,
negative values of α, e−ατ → ∞ as τ → ∞ show a growth of disturbance as time evolves.
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These behaviors show that the first solution is stable, while the second solution is unstable
in the long run.
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Figure 10. Smallest eigenvalues α against λ.
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5. Conclusions

This study examined the stagnation point flow on a shrinking cylinder filled with
Al2O3 nanoparticles. The surface of the cylinder is subjected to prescribed surface heat flux.
The correlations of Al2O3/water nanofluid introduced by Ho et al. [25] were employed.
Findings revealed two solutions to be observed for the limited range of λ when the sheet
is shrunk (λc < λ < −1). The similarity solutions terminated in this region at λ = λc.
Meanwhile, a unique solution was found when λ ≥ −1. The skin friction coefficient
Re1/2

x C f and the local Nusselt number Re−1/2
x Nux were intensified with the rising of the

nanoparticle volume fraction ϕ and the curvature parameter γ. Quantitatively, the values of
Re−1/2

x Nux increased up to 3.87% when ϕ is increased from 0 to 0.04, and 6.69% when γ is
increased from 0.05 to 0.2. Furthermore, Al2O3/water nanofluid produced higher values of
Re1/2

x C f and Re−1/2
x Nux compared to water. Moreover, the rising of ϕ tended to reduce the

velocity f ′(η) and the temperature θ(η) for both branches. Besides, the profiles on the first
solution incline when larger values of γ are applied. Finally, the temporal stability analysis
showed that the first solution is stable while the second solution is unstable over time.
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