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This paper examines the wall jet flow and heat transfer of the Glauert problem with 
the effect of the hybrid nanoparticles. Also, the influence of the magnetic field and the 
variable surface temperature are taken into consideration. Here, we consider copper 
(Cu) and alumina (Al2O3) as the hybrid nanoparticles while water is the base fluid. The 
governing equations are reduced to the similarity equations using similarity 
transformations. Then, the numerical solutions are obtained by using the bvp4c 
function in MATLAB software. The findings reveal that hybrid nanofluid provides a 
higher heat transfer rate compared to regular nanofluid. Besides, the heat transfer rate 
and the skin friction coefficient increase in the presence of nanoparticles. Moreover, 
the rise of the temperature index parameter contributes to the enhancement of the 
heat transfer rate, but it does not affect the skin friction coefficient. The stronger 
magnetic strength led to the reduction of the heat transfer rate and the skin friction 
coefficient. 
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1. Introduction 
 

These days, the process of fluid flow with heat transfer is crucial in designing and optimizing an 
efficient system [1]. Therefore, scientists and engineers have worked to intensify the thermal 
properties of fluid by adding nano-sized solid particles in the heat transfer fluid, and this mixture is 
called nanofluid [2]. 

Although nanofluid can improve thermal efficiency, better fluids in those aspects are still sought 
after to this day. By the innovations in science and technology, hybrid nanofluid has been developed 
which consists of two different nanoparticles in the base fluid and is believed to be able to provide 
better thermal properties. Furthermore, hybrid nanofluid is used in several applications, for example, 
in the heat exchanger, transformer, solar water heating, vehicle brake fluid, and domestic 
refrigerator [3]. 
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The studies of hybrid nanofluid flows were examined by Devi and Devi [4]. The new 
thermophysical model for hybrid nanofluid is developed in their studies, and being compared with 
the experimental results of Suresh et al., [5]. Moreover, the magnetic field effects on hybrid nanofluid 
flow have been studied by several authors [6–12]. Besides, many researchers have studied the hybrid 
nanofluid flow with different aspects [13–19]. For further reading, the reader is encouraged to refer 
to the review papers by Sarkar et al., [20], Babu et al., [21], Huminic and Huminic [22], Yang et al., 
[23], and Sidik et al., [24]. 

The wall jet flow on a rigid surface bounded by the fluid at rest was pioneered by Glauert [25]. 
Basically, a wall jet is defined as the flow that spreads out over a surface by striking it at the right 
angle. The spray-paint process is one of the examples that used the concept of the wall jet flow. 
Inspired by the work of Glauert [25], similar problems have been considered by Bansal and Tak 
[26,27] with the heat transfer analysis. Later, Merkin and Needham [28] reported the effect of suction 
or injection on the wall jet flow by considering the moving wall. Since that, just to name a few, there 
are several studies on the wall jet flow has been reported by the researchers, for examples, Cohen et 
al., [29], Magyari and Keller [30], Raees et al., [31], Turkyilmazoglu [32], Zaidi et al., [33], 
Jafarimoghaddam [34,35], Jafarimoghaddam and Pop [36], and Selimefendigil and Öztop [37]. 

Therefore, the hybrid nanofluid flow of the Glauert problem with the magnetic field and variable 
surface temperature effects are studied in this paper.  
 
2. Mathematical Formulation 
 

Consider the wall jet flow of hybrid nanofluid blown from a thin slit on the upper of a static flat 
surface, as displayed in Figure 1. The surrounding fluid is assumed in the rest condition. 
 

 
Fig. 1. Physical configuration 

 
Besides, to obtain similarity equations, the variable surface temperature should be within the 

form of ( ) /4
0

m
wT x T T x= +  with 0m  , while the ambient temperature T  is constant. Also, the 

magnetic field is taken as ( ) 3/4
0B x B x−=  with the magnetic field strength 0B  [34,35]. Thus, the 

governing equations are (see Glauert [25], Raees et al., [31], Zaidi et al., [33]) 
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where ( ),u v  are the corresponded velocity components in the x - and y - directions, and T  is the 

temperature. The thermophysical properties of nanoparticles, water, and hybrid nanofluid are 
provided in Table 1 and Table 2. 
 

Table 1 
Thermophysical properties of nanoparticles and water [9,38] 
Properties Nanoparticles Base fluid 

Cu Al2O3 water 

 

8933 3970 997.1 

 

385 765 4179 

 

400 40 0.613 

 

5.96×107 3.69×107 0.05 

Prandtl number,    6.2 

 
Table 2 
Thermophysical properties of nanofluid and hybrid nanofluid [4] 
Properties Nanofluid Hybrid nanofluid 

Dynamic 
viscosity  

 

Density  

 

Heat capacity  

 

Thermal 
conductivity   

where 

 

Electrical 
conductivity 
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with the stream function  . Besides, the velocity components are defined by /u y=    and 

/v x= −  . Then, we have 

 

( ) ( ) ( )( )1/2 3/44 ,       3fu x f v x f f    − −= − = −          (6) 

 
Using Eq. (5) and Eq. (6), Eq. (1) is identically fulfilled, and Eq. (2) and Eq. (3) become 
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where ( )     represents the differentiation with respect to  . Besides, m  and M  denote the 

temperature index and the magnetic parameters, while Pr  is the Prandtl number and these 
parameters are expressed as 
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The skin friction coefficient fC  and the local Nusselt number xNu  are defined as 
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By substituting Eq. (5) into Eq. (11), we get 
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where Re /x r fu x =  represents the local Reynolds number with 1/24ru x−=  denotes the reference 

velocity as in Raees et al., [31]. It should be noticed that for the regular fluid case ( )1 2 0 = = , Eq. 

(7) reduces to the classical Glauert [25] problem by replacing ( ) 0f  →  with ( ) 1f  →  as  → . 
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3. Results and Discussion 
 

Eq. (7) to Eq. (9) are solved numerically by the bvp4c solver in MATLAB software [39]. In this study, 

various volume fractions of Cu and Al2O3 are considered ( )1 20 , 0.04   . Meanwhile, water is used 

as the base fluid. The magnetic parameter M  is taken from 0 to 0.05, meanwhile the temperature 
index parameter m  is considered from 0 to 2. 

Table 3 provides the numerical values of ( )0f   and ( )0 −  when 1 2 0 = =  (regular fluid), 0M =  

and Pr 6.2=  for different values of m . The increase of ( )0 −  is observed as m  increase, whereas it 

does not affect the values of ( )0f  . Also, in the present study, we obtained ( )0 0.2222f  =  which 

consistent with the result of Glauert [25]. Furthermore, Table 4 shows the impact of M, m , 
1 , and 

2  on 1/22Rex fC  and 1/22Rex xNu−  when Pr 6.2= . We observed that the values of 1/22Rex fC  and 

1/22Rex xNu−  are accelerated with the increase of 1  and 2 . Besides, the values of 1/22Rex xNu−  

enhanced, whereas the values of 1/22Rex fC  are not affected by the rising of m . Besides, the rising of 

M led to the reduction of 1/22Rex fC  and 1/22Rex xNu− . 

 
Table 3 

Numerical values of  and  when  (regular fluid), , and 

 for different values of  
m  ( )0f 

 ( )0 −
 

Glauert [25] Present results Present results 

0 2/9   0.2222 0.2222 0.6735 
0.5     0.8193 
1     0.9304 
1.5     1.0215 
2     1.0993 

 
Table 4 

Numerical values of  and  for several parameters when  

 

 

 Cu/water  Al2O3-Cu/water  

    

0 0 0 0.2222 0.6735 0.2514 0.7266 
    0.02 0.2839 0.7442 0.3106 0.7941 
    0.04 0.3488 0.8109 0.3720 0.8579 
  1 0 0.2222 0.9304 0.2514 1.0052 
    0.02 0.2839 1.0299 0.3106 1.1003 
    0.04 0.3488 1.1239 0.3720 1.1906 
0.05 0 0 0.2082 0.6591 0.2355 0.7110 
    0.02 0.2673 0.7295 0.2921 0.7781 
    0.04 0.3295 0.7958 0.3508 0.8414 
  1 0 0.2082 0.9106 0.2355 0.9836 
    0.02 0.2673 1.0094 0.2921 1.0780 
    0.04 0.3295 1.1029 0.3508 1.1677 

 
 

( )0f  ( )0 −
1 2 0 = = 0M =

Pr 6.2= m

1/22Rex fC
1/22Rex xNu−

Pr 6.2=

M m
2 ( )1 0 = ( )1 0.04 =

1/22Rex fC 1/22Rex xNu− 1/22Rex fC 1/22Rex xNu−
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Moreover, Figure 2 displays the effect of 
1  and 

2  on 1/22Rex fC . Note that, Pr and m  does not 

affect the values of 1/22Rex fC . It is observed that the values of 1/22Rex fC  enhanced almost linearly 

with the rise of 
1  and 

2 . Besides, Figure 3 shows the variations of 1/22Rex xNu−  for 
1  and 

2  with 

m . Obviously, the values of 1/22Rex xNu−  enhanced with the rise of 
1  and 

2 , and also for larger m . 

According to Sarkar et al., [20], the fluid that consists of nanoparticles can enhance the 
heat transfer rate due to the synergistic properties of the nanoparticles. In addition, Figure 4 and 

Figure 5 show the magnetic parameter M  effects on 1/22Rex fC  and 1/22Rex xNu− . It can be seen that 

the values of 1/22Rex fC  and 1/22Rex xNu−  are reduced with the rise of M . 

 

 

 

 
Fig. 2.  vs  and   Fig. 3.  vs ,  and  

 

 

 

 
Fig. 4.  vs  and   Fig. 5.  vs  and  

 

Next, the profiles of the velocity ( )f   and the temperature ( )   for pertinent parameters are 

displayed in Figure 6 to Figure 9. It can be seen that these profiles asymptotically satisfy the infinity 
conditions (9), thus the precision of the current solution is achieved. The volumetric fraction of 

nanoparticles has a significant impact on ( )f   and ( )  . The decreasing behaviour on the boundary 

layer thickness of ( )f   and ( )    are observed with the increase of 2  as shown in Figure 6 and 

1/22Rex fC
1 2

1/22Rex xNu−

1 2 m

1/22Rex fC
2 M 1/22Rex xNu−

2 M
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Figure 7. Also, we noted that the velocity ( )f   increased near the surface and the maximum velocity 

rises as 
2  increases. The effects of magnetic parameter M  on ( )f   and ( )   are displayed in 

Figure 8 and Figure 9. It is noticed that the increasing of M  led to rising the temperature profiles 

( )  . Meanwhile, the maximum velocity occurs in the absence of M . The retardation on the velocity 

field is observed in the presence of the magnetic field due to the rising of the resistive force called 

Lorentz force. Besides, the profiles of temperature ( )   for several values of m  are displayed in 

Figure 10. It is noted that an upsurge in m  led to the reduction of the temperature ( )  . 

 

 

 

 
Fig. 6.  vs   Fig. 7.  vs  

 

 

 

 
Fig. 8.  vs   Fig. 9.  vs  

 
 

( )f 
2 ( ) 

2
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Fig. 10.  vs  

 
4. Conclusion 
 

The Glauert flow of hybrid nanofluid with the magnetic field and variable surface temperature 
has been investigated. The present results for the special case are validated to the existing results 

and show a good comparison. The values of 1/22Rex fC  accelerated with the rising values of 1  and 

2 , but it is not affected by m . Meanwhile, the values of 1/22Rex xNu−  enlarged with the increase of 1  

and 2 , and also for larger m . The values of 1/22Rex fC  and 1/22Rex xNu−  are reduced with the increase 

of M. The value of ( )   decreased with the increase of 2  and m . Moreover, we noticed that the 

boundary layer thickness of ( )f   decreased, where the maximum velocity rises as 2  increases. 

The presence of the magnetic field produces the Lorentz force that retard the velocity field. 
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